auto.c revision 1.11 1 1.11 dholland /* $NetBSD: auto.c,v 1.11 2009/07/20 06:39:06 dholland Exp $ */
2 1.1 christos
3 1.1 christos /*-
4 1.1 christos * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 1.1 christos * All rights reserved.
6 1.1 christos *
7 1.1 christos * This code is derived from software contributed to The NetBSD Foundation
8 1.1 christos * by Christos Zoulas.
9 1.1 christos *
10 1.1 christos * Redistribution and use in source and binary forms, with or without
11 1.1 christos * modification, are permitted provided that the following conditions
12 1.1 christos * are met:
13 1.1 christos * 1. Redistributions of source code must retain the above copyright
14 1.1 christos * notice, this list of conditions and the following disclaimer.
15 1.1 christos * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 christos * notice, this list of conditions and the following disclaimer in the
17 1.1 christos * documentation and/or other materials provided with the distribution.
18 1.1 christos *
19 1.1 christos * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 christos * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 christos * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 christos * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 christos * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 christos * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 christos * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 christos * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 christos * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 christos * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 christos * POSSIBILITY OF SUCH DAMAGE.
30 1.1 christos */
31 1.1 christos
32 1.1 christos /*
33 1.1 christos * Automatic move.
34 1.1 christos * intelligent ?
35 1.10 dholland * Algo :
36 1.1 christos * IF scrapheaps don't exist THEN
37 1.10 dholland * IF not in danger THEN
38 1.7 christos * stay at current position
39 1.7 christos * ELSE
40 1.7 christos * move away from the closest robot
41 1.1 christos * FI
42 1.10 dholland * ELSE
43 1.7 christos * find closest heap
44 1.7 christos * find closest robot
45 1.7 christos * IF scrapheap is adjacent THEN
46 1.7 christos * move behind the scrapheap
47 1.1 christos * ELSE
48 1.1 christos * take the move that takes you away from the
49 1.1 christos * robots and closest to the heap
50 1.1 christos * FI
51 1.1 christos * FI
52 1.1 christos */
53 1.11 dholland #include <curses.h>
54 1.11 dholland #include <string.h>
55 1.1 christos #include "robots.h"
56 1.1 christos
57 1.1 christos #define ABS(a) (((a)>0)?(a):-(a))
58 1.1 christos #define MIN(a,b) (((a)>(b))?(b):(a))
59 1.1 christos #define MAX(a,b) (((a)<(b))?(b):(a))
60 1.1 christos
61 1.1 christos #define CONSDEBUG(a)
62 1.1 christos
63 1.6 jsm static int distance(int, int, int, int);
64 1.6 jsm static int xinc(int);
65 1.6 jsm static int yinc(int);
66 1.6 jsm static const char *find_moves(void);
67 1.6 jsm static COORD *closest_robot(int *);
68 1.6 jsm static COORD *closest_heap(int *);
69 1.6 jsm static char move_towards(int, int);
70 1.6 jsm static char move_away(COORD *);
71 1.6 jsm static char move_between(COORD *, COORD *);
72 1.6 jsm static int between(COORD *, COORD *);
73 1.1 christos
74 1.1 christos /* distance():
75 1.10 dholland * return "move" number distance of the two coordinates
76 1.1 christos */
77 1.10 dholland static int
78 1.9 dholland distance(int x1, int y1, int x2, int y2)
79 1.1 christos {
80 1.1 christos return MAX(ABS(ABS(x1) - ABS(x2)), ABS(ABS(y1) - ABS(y2)));
81 1.9 dholland }
82 1.1 christos
83 1.1 christos /* xinc():
84 1.10 dholland * Return x coordinate moves
85 1.1 christos */
86 1.1 christos static int
87 1.9 dholland xinc(int dir)
88 1.1 christos {
89 1.1 christos switch(dir) {
90 1.1 christos case 'b':
91 1.1 christos case 'h':
92 1.1 christos case 'y':
93 1.1 christos return -1;
94 1.1 christos case 'l':
95 1.1 christos case 'n':
96 1.1 christos case 'u':
97 1.1 christos return 1;
98 1.1 christos case 'j':
99 1.1 christos case 'k':
100 1.1 christos default:
101 1.1 christos return 0;
102 1.1 christos }
103 1.1 christos }
104 1.1 christos
105 1.1 christos /* yinc():
106 1.10 dholland * Return y coordinate moves
107 1.1 christos */
108 1.1 christos static int
109 1.9 dholland yinc(int dir)
110 1.1 christos {
111 1.1 christos switch(dir) {
112 1.1 christos case 'k':
113 1.1 christos case 'u':
114 1.1 christos case 'y':
115 1.1 christos return -1;
116 1.1 christos case 'b':
117 1.1 christos case 'j':
118 1.1 christos case 'n':
119 1.1 christos return 1;
120 1.1 christos case 'h':
121 1.1 christos case 'l':
122 1.1 christos default:
123 1.1 christos return 0;
124 1.1 christos }
125 1.1 christos }
126 1.1 christos
127 1.1 christos /* find_moves():
128 1.10 dholland * Find possible moves
129 1.1 christos */
130 1.4 jsm static const char *
131 1.9 dholland find_moves(void)
132 1.1 christos {
133 1.1 christos int x, y;
134 1.1 christos COORD test;
135 1.4 jsm const char *m;
136 1.4 jsm char *a;
137 1.4 jsm static const char moves[] = ".hjklyubn";
138 1.1 christos static char ans[sizeof moves];
139 1.1 christos a = ans;
140 1.1 christos
141 1.10 dholland for (m = moves; *m; m++) {
142 1.1 christos test.x = My_pos.x + xinc(*m);
143 1.1 christos test.y = My_pos.y + yinc(*m);
144 1.1 christos move(test.y, test.x);
145 1.1 christos switch(winch(stdscr)) {
146 1.1 christos case ' ':
147 1.1 christos case PLAYER:
148 1.10 dholland for (x = test.x - 1; x <= test.x + 1; x++) {
149 1.10 dholland for (y = test.y - 1; y <= test.y + 1; y++) {
150 1.1 christos move(y, x);
151 1.10 dholland if (winch(stdscr) == ROBOT)
152 1.1 christos goto bad;
153 1.1 christos }
154 1.1 christos }
155 1.1 christos *a++ = *m;
156 1.1 christos }
157 1.1 christos bad:;
158 1.1 christos }
159 1.1 christos *a = 0;
160 1.10 dholland if (ans[0])
161 1.4 jsm return ans;
162 1.1 christos else
163 1.4 jsm return "t";
164 1.1 christos }
165 1.1 christos
166 1.1 christos /* closest_robot():
167 1.10 dholland * return the robot closest to us
168 1.10 dholland * and put in dist its distance
169 1.1 christos */
170 1.1 christos static COORD *
171 1.9 dholland closest_robot(int *dist)
172 1.1 christos {
173 1.3 christos COORD *rob, *end, *minrob = NULL;
174 1.1 christos int tdist, mindist;
175 1.1 christos
176 1.1 christos mindist = 1000000;
177 1.1 christos end = &Robots[MAXROBOTS];
178 1.1 christos for (rob = Robots; rob < end; rob++) {
179 1.1 christos tdist = distance(My_pos.x, My_pos.y, rob->x, rob->y);
180 1.1 christos if (tdist < mindist) {
181 1.1 christos minrob = rob;
182 1.1 christos mindist = tdist;
183 1.1 christos }
184 1.1 christos }
185 1.1 christos *dist = mindist;
186 1.1 christos return minrob;
187 1.9 dholland }
188 1.10 dholland
189 1.1 christos /* closest_heap():
190 1.10 dholland * return the heap closest to us
191 1.10 dholland * and put in dist its distance
192 1.1 christos */
193 1.1 christos static COORD *
194 1.9 dholland closest_heap(int *dist)
195 1.1 christos {
196 1.3 christos COORD *hp, *end, *minhp = NULL;
197 1.1 christos int mindist, tdist;
198 1.1 christos
199 1.1 christos mindist = 1000000;
200 1.1 christos end = &Scrap[MAXROBOTS];
201 1.1 christos for (hp = Scrap; hp < end; hp++) {
202 1.1 christos if (hp->x == 0 && hp->y == 0)
203 1.1 christos break;
204 1.1 christos tdist = distance(My_pos.x, My_pos.y, hp->x, hp->y);
205 1.1 christos if (tdist < mindist) {
206 1.1 christos minhp = hp;
207 1.1 christos mindist = tdist;
208 1.1 christos }
209 1.1 christos }
210 1.1 christos *dist = mindist;
211 1.1 christos return minhp;
212 1.9 dholland }
213 1.1 christos
214 1.1 christos /* move_towards():
215 1.10 dholland * move as close to the given direction as possible
216 1.1 christos */
217 1.10 dholland static char
218 1.9 dholland move_towards(int dx, int dy)
219 1.1 christos {
220 1.1 christos char ok_moves[10], best_move;
221 1.1 christos char *ptr;
222 1.1 christos int move_judge, cur_judge, mvx, mvy;
223 1.1 christos
224 1.1 christos (void)strcpy(ok_moves, find_moves());
225 1.10 dholland best_move = ok_moves[0];
226 1.5 christos if (best_move != 't') {
227 1.1 christos mvx = xinc(best_move);
228 1.1 christos mvy = yinc(best_move);
229 1.1 christos move_judge = ABS(mvx - dx) + ABS(mvy - dy);
230 1.1 christos for (ptr = &ok_moves[1]; *ptr != '\0'; ptr++) {
231 1.1 christos mvx = xinc(*ptr);
232 1.1 christos mvy = yinc(*ptr);
233 1.1 christos cur_judge = ABS(mvx - dx) + ABS(mvy - dy);
234 1.1 christos if (cur_judge < move_judge) {
235 1.1 christos move_judge = cur_judge;
236 1.1 christos best_move = *ptr;
237 1.1 christos }
238 1.1 christos }
239 1.1 christos }
240 1.1 christos return best_move;
241 1.9 dholland }
242 1.1 christos
243 1.1 christos /* move_away():
244 1.10 dholland * move away form the robot given
245 1.1 christos */
246 1.1 christos static char
247 1.9 dholland move_away(COORD *rob)
248 1.1 christos {
249 1.1 christos int dx, dy;
250 1.1 christos
251 1.1 christos dx = sign(My_pos.x - rob->x);
252 1.1 christos dy = sign(My_pos.y - rob->y);
253 1.1 christos return move_towards(dx, dy);
254 1.9 dholland }
255 1.1 christos
256 1.1 christos
257 1.1 christos /* move_between():
258 1.10 dholland * move the closest heap between us and the closest robot
259 1.1 christos */
260 1.1 christos static char
261 1.9 dholland move_between(COORD *rob, COORD *hp)
262 1.1 christos {
263 1.2 christos int dx, dy;
264 1.1 christos float slope, cons;
265 1.1 christos
266 1.1 christos /* equation of the line between us and the closest robot */
267 1.1 christos if (My_pos.x == rob->x) {
268 1.10 dholland /*
269 1.10 dholland * me and the robot are aligned in x
270 1.1 christos * change my x so I get closer to the heap
271 1.1 christos * and my y far from the robot
272 1.1 christos */
273 1.1 christos dx = - sign(My_pos.x - hp->x);
274 1.1 christos dy = sign(My_pos.y - rob->y);
275 1.1 christos CONSDEBUG(("aligned in x"));
276 1.1 christos }
277 1.1 christos else if (My_pos.y == rob->y) {
278 1.1 christos /*
279 1.10 dholland * me and the robot are aligned in y
280 1.1 christos * change my y so I get closer to the heap
281 1.1 christos * and my x far from the robot
282 1.1 christos */
283 1.1 christos dx = sign(My_pos.x - rob->x);
284 1.1 christos dy = -sign(My_pos.y - hp->y);
285 1.1 christos CONSDEBUG(("aligned in y"));
286 1.1 christos }
287 1.1 christos else {
288 1.1 christos CONSDEBUG(("no aligned"));
289 1.1 christos slope = (My_pos.y - rob->y) / (My_pos.x - rob->x);
290 1.1 christos cons = slope * rob->y;
291 1.1 christos if (ABS(My_pos.x - rob->x) > ABS(My_pos.y - rob->y)) {
292 1.1 christos /*
293 1.10 dholland * we are closest to the robot in x
294 1.1 christos * move away from the robot in x and
295 1.1 christos * close to the scrap in y
296 1.1 christos */
297 1.1 christos dx = sign(My_pos.x - rob->x);
298 1.1 christos dy = sign(((slope * ((float) hp->x)) + cons) -
299 1.1 christos ((float) hp->y));
300 1.1 christos }
301 1.1 christos else {
302 1.1 christos dx = sign(((slope * ((float) hp->x)) + cons) -
303 1.1 christos ((float) hp->y));
304 1.1 christos dy = sign(My_pos.y - rob->y);
305 1.1 christos }
306 1.1 christos }
307 1.1 christos CONSDEBUG(("me (%d,%d) robot(%d,%d) heap(%d,%d) delta(%d,%d)",
308 1.1 christos My_pos.x, My_pos.y, rob->x, rob->y, hp->x, hp->y, dx, dy));
309 1.1 christos return move_towards(dx, dy);
310 1.9 dholland }
311 1.10 dholland
312 1.1 christos /* between():
313 1.10 dholland * Return true if the heap is between us and the robot
314 1.1 christos */
315 1.1 christos int
316 1.9 dholland between(COORD *rob, COORD *hp)
317 1.1 christos {
318 1.1 christos /* I = @ */
319 1.1 christos if (hp->x > rob->x && My_pos.x < rob->x)
320 1.1 christos return 0;
321 1.1 christos /* @ = I */
322 1.1 christos if (hp->x < rob->x && My_pos.x > rob->x)
323 1.1 christos return 0;
324 1.1 christos /* @ */
325 1.1 christos /* = */
326 1.1 christos /* I */
327 1.1 christos if (hp->y < rob->y && My_pos.y > rob->y)
328 1.1 christos return 0;
329 1.1 christos /* I */
330 1.1 christos /* = */
331 1.1 christos /* @ */
332 1.1 christos if (hp->y > rob->y && My_pos.y < rob->y)
333 1.1 christos return 0;
334 1.1 christos return 1;
335 1.9 dholland }
336 1.1 christos
337 1.1 christos /* automove():
338 1.10 dholland * find and do the best move if flag
339 1.10 dholland * else get the first move;
340 1.1 christos */
341 1.1 christos char
342 1.10 dholland automove(void)
343 1.1 christos {
344 1.1 christos #if 0
345 1.1 christos return find_moves()[0];
346 1.1 christos #else
347 1.1 christos COORD *robot_close;
348 1.1 christos COORD *heap_close;
349 1.1 christos int robot_dist, robot_heap, heap_dist;
350 1.1 christos
351 1.1 christos robot_close = closest_robot(&robot_dist);
352 1.1 christos if (robot_dist > 1)
353 1.1 christos return('.');
354 1.10 dholland if (!Num_scrap)
355 1.1 christos /* no scrap heaps just run away */
356 1.1 christos return move_away(robot_close);
357 1.1 christos
358 1.1 christos heap_close = closest_heap(&heap_dist);
359 1.10 dholland robot_heap = distance(robot_close->x, robot_close->y,
360 1.10 dholland heap_close->x, heap_close->y);
361 1.1 christos if (robot_heap <= heap_dist && !between(robot_close, heap_close)) {
362 1.10 dholland /*
363 1.1 christos * robot is closest to us from the heap. Run away!
364 1.1 christos */
365 1.1 christos return move_away(robot_close);
366 1.1 christos }
367 1.10 dholland
368 1.1 christos return move_between(robot_close, heap_close);
369 1.1 christos #endif
370 1.9 dholland }
371