Home | History | Annotate | Line # | Download | only in gen
divrem.m4 revision 1.8.4.1
      1  1.8.4.1  nathanw /* $NetBSD: divrem.m4,v 1.8.4.1 2002/01/28 20:49:41 nathanw Exp $ */
      2      1.1      cgd 
      3      1.1      cgd /*
      4      1.1      cgd  * Copyright (c) 1994, 1995 Carnegie-Mellon University.
      5      1.1      cgd  * All rights reserved.
      6      1.1      cgd  *
      7      1.1      cgd  * Author: Chris G. Demetriou
      8      1.1      cgd  *
      9      1.1      cgd  * Permission to use, copy, modify and distribute this software and
     10      1.1      cgd  * its documentation is hereby granted, provided that both the copyright
     11      1.1      cgd  * notice and this permission notice appear in all copies of the
     12      1.1      cgd  * software, derivative works or modified versions, and any portions
     13      1.1      cgd  * thereof, and that both notices appear in supporting documentation.
     14      1.1      cgd  *
     15      1.1      cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     16      1.1      cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     17      1.1      cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     18      1.1      cgd  *
     19      1.1      cgd  * Carnegie Mellon requests users of this software to return to
     20      1.1      cgd  *
     21      1.1      cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     22      1.1      cgd  *  School of Computer Science
     23      1.1      cgd  *  Carnegie Mellon University
     24      1.1      cgd  *  Pittsburgh PA 15213-3890
     25      1.1      cgd  *
     26      1.1      cgd  * any improvements or extensions that they make and grant Carnegie the
     27      1.1      cgd  * rights to redistribute these changes.
     28      1.1      cgd  */
     29      1.1      cgd 
     30      1.1      cgd /*
     31      1.1      cgd  * Division and remainder.
     32      1.1      cgd  *
     33      1.1      cgd  * The use of m4 is modeled after the sparc code, but the algorithm is
     34      1.1      cgd  * simple binary long division.
     35      1.1      cgd  *
     36      1.1      cgd  * Note that the loops could probably benefit from unrolling.
     37      1.1      cgd  */
     38      1.1      cgd 
     39      1.1      cgd /*
     40      1.1      cgd  * M4 Parameters
     41      1.1      cgd  * NAME		name of function to generate
     42      1.1      cgd  * OP		OP=div: t10 / t11 -> t12; OP=rem: t10 % t11 -> t12
     43      1.4      cgd  * S		S=true: signed; S=false: unsigned
     44      1.1      cgd  * WORDSIZE	total number of bits
     45      1.1      cgd  */
     46      1.1      cgd 
     47      1.1      cgd define(A, `t10')
     48      1.1      cgd define(B, `t11')
     49      1.1      cgd define(RESULT, `t12')
     50      1.1      cgd 
     51      1.1      cgd define(BIT, `t0')
     52      1.1      cgd define(I, `t1')
     53      1.1      cgd define(CC, `t2')
     54      1.1      cgd define(T_0, `t3')
     55      1.5      cgd ifelse(S, `true', `define(NEG, `t4')')
     56      1.1      cgd 
     57      1.7      cgd #include <machine/asm.h>
     58      1.1      cgd 
     59      1.1      cgd LEAF(NAME, 0)					/* XXX */
     60      1.3      cgd 	lda	sp, -64(sp)
     61      1.1      cgd 	stq	BIT, 0(sp)
     62      1.1      cgd 	stq	I, 8(sp)
     63      1.1      cgd 	stq	CC, 16(sp)
     64      1.1      cgd 	stq	T_0, 24(sp)
     65      1.1      cgd ifelse(S, `true',
     66      1.5      cgd `	stq	NEG, 32(sp)')
     67      1.3      cgd 	stq	A, 40(sp)
     68      1.3      cgd 	stq	B, 48(sp)
     69      1.1      cgd 	mov	zero, RESULT			/* Initialize result to zero */
     70      1.1      cgd 
     71      1.1      cgd ifelse(S, `true',
     72      1.1      cgd `
     73      1.1      cgd 	/* Compute sign of result.  If either is negative, this is easy.  */
     74      1.5      cgd 	or	A, B, NEG			/* not the sign, but... */
     75      1.5      cgd 	srl	NEG, WORDSIZE - 1, NEG		/* rather, or of high bits */
     76      1.5      cgd 	blbc	NEG, Ldoit			/* neither negative? do it! */
     77      1.1      cgd 
     78      1.1      cgd ifelse(OP, `div',
     79      1.5      cgd `	xor	A, B, NEG			/* THIS is the sign! */
     80      1.5      cgd ', `	mov	A, NEG				/* sign follows A. */
     81      1.1      cgd ')
     82      1.5      cgd 	srl	NEG, WORDSIZE - 1, NEG		/* make negation the low bit. */
     83      1.5      cgd 
     84      1.5      cgd 	srl	A, WORDSIZE - 1, I		/* is A negative? */
     85      1.5      cgd 	blbc	I, LnegB			/* no. */
     86      1.1      cgd 	/* A is negative; flip it. */
     87      1.5      cgd ifelse(WORDSIZE, `32', `
     88      1.5      cgd 	/* top 32 bits may be random junk */
     89      1.5      cgd 	zap	A, 0xf0, A
     90      1.5      cgd ')
     91      1.1      cgd 	subq	zero, A, A
     92      1.5      cgd 	srl	B, WORDSIZE - 1, I		/* is B negative? */
     93      1.5      cgd 	blbc	I, Ldoit			/* no. */
     94      1.1      cgd LnegB:
     95      1.1      cgd 	/* B is definitely negative, no matter how we got here. */
     96      1.5      cgd ifelse(WORDSIZE, `32', `
     97      1.5      cgd 	/* top 32 bits may be random junk */
     98      1.5      cgd 	zap	B, 0xf0, B
     99      1.5      cgd ')
    100      1.1      cgd 	subq	zero, B, B
    101      1.1      cgd Ldoit:
    102      1.5      cgd ')
    103      1.2      cgd ifelse(WORDSIZE, `32', `
    104      1.2      cgd 	/*
    105      1.5      cgd 	 * Clear the top 32 bits of each operand, as they may
    106      1.5      cgd 	 * sign extension (if negated above), or random junk.
    107      1.2      cgd 	 */
    108      1.2      cgd 	zap	A, 0xf0, A
    109      1.2      cgd 	zap	B, 0xf0, B
    110      1.5      cgd ')
    111      1.1      cgd 
    112      1.1      cgd 	/* kill the special cases. */
    113      1.4      cgd 	beq	B, Ldotrap			/* division by zero! */
    114      1.1      cgd 
    115      1.6      cgd 	cmpult	A, B, CC			/* A < B? */
    116      1.1      cgd 	/* RESULT is already zero, from above.  A is untouched. */
    117      1.1      cgd 	bne	CC, Lret_result
    118      1.1      cgd 
    119      1.1      cgd 	cmpeq	A, B, CC			/* A == B? */
    120      1.1      cgd 	cmovne	CC, 1, RESULT
    121      1.1      cgd 	cmovne	CC, zero, A
    122      1.1      cgd 	bne	CC, Lret_result
    123      1.1      cgd 
    124      1.1      cgd 	/*
    125      1.1      cgd 	 * Find out how many bits of zeros are at the beginning of the divisor.
    126      1.1      cgd 	 */
    127      1.1      cgd LBbits:
    128      1.7      cgd 	ldiq	T_0, 1				/* I = 0; BIT = 1<<WORDSIZE-1 */
    129      1.1      cgd 	mov	zero, I
    130      1.1      cgd 	sll	T_0, WORDSIZE-1, BIT
    131      1.1      cgd LBloop:
    132      1.1      cgd 	and	B, BIT, CC			/* if bit in B is set, done. */
    133      1.1      cgd 	bne	CC, LAbits
    134      1.1      cgd 	addq	I, 1, I				/* increment I, shift bit */
    135      1.1      cgd 	srl	BIT, 1, BIT
    136      1.1      cgd 	cmplt	I, WORDSIZE-1, CC		/* if I leaves one bit, done. */
    137      1.1      cgd 	bne	CC, LBloop
    138      1.1      cgd 
    139      1.1      cgd LAbits:
    140      1.1      cgd 	beq	I, Ldodiv			/* If I = 0, divide now.  */
    141      1.7      cgd 	ldiq	T_0, 1				/* BIT = 1<<WORDSIZE-1 */
    142      1.1      cgd 	sll	T_0, WORDSIZE-1, BIT
    143      1.1      cgd 
    144      1.1      cgd LAloop:
    145      1.1      cgd 	and	A, BIT, CC			/* if bit in A is set, done. */
    146      1.1      cgd 	bne	CC, Ldodiv
    147      1.1      cgd 	subq	I, 1, I				/* decrement I, shift bit */
    148      1.1      cgd 	srl     BIT, 1, BIT
    149      1.1      cgd 	bne	I, LAloop			/* If I != 0, loop again */
    150      1.1      cgd 
    151      1.1      cgd Ldodiv:
    152      1.1      cgd 	sll	B, I, B				/* B <<= i */
    153      1.7      cgd 	ldiq	T_0, 1
    154      1.1      cgd 	sll	T_0, I, BIT
    155      1.1      cgd 
    156      1.1      cgd Ldivloop:
    157      1.1      cgd 	cmpult	A, B, CC
    158      1.1      cgd 	or	RESULT, BIT, T_0
    159      1.1      cgd 	cmoveq	CC, T_0, RESULT
    160      1.1      cgd 	subq	A, B, T_0
    161      1.1      cgd 	cmoveq	CC, T_0, A
    162      1.1      cgd 	srl	BIT, 1, BIT
    163      1.1      cgd 	srl	B, 1, B
    164      1.1      cgd 	beq	A, Lret_result
    165      1.1      cgd 	bne	BIT, Ldivloop
    166      1.1      cgd 
    167      1.1      cgd Lret_result:
    168      1.1      cgd ifelse(OP, `div',
    169      1.1      cgd `', `	mov	A, RESULT
    170      1.1      cgd ')
    171      1.1      cgd ifelse(S, `true',
    172      1.1      cgd `
    173      1.1      cgd 	/* Check to see if we should negate it. */
    174  1.8.4.1  nathanw 	subq	zero, RESULT, T_0
    175      1.5      cgd 	cmovlbs	NEG, T_0, RESULT
    176      1.1      cgd ')
    177      1.1      cgd 
    178      1.1      cgd 	ldq	BIT, 0(sp)
    179      1.1      cgd 	ldq	I, 8(sp)
    180      1.1      cgd 	ldq	CC, 16(sp)
    181      1.1      cgd 	ldq	T_0, 24(sp)
    182      1.1      cgd ifelse(S, `true',
    183      1.5      cgd `	ldq	NEG, 32(sp)')
    184      1.3      cgd 	ldq	A, 40(sp)
    185      1.3      cgd 	ldq	B, 48(sp)
    186      1.3      cgd 	lda	sp, 64(sp)
    187      1.1      cgd 	ret	zero, (t9), 1
    188      1.1      cgd 
    189      1.1      cgd Ldotrap:
    190      1.7      cgd 	ldiq	a0, -2			/* This is the signal to SIGFPE! */
    191      1.1      cgd 	call_pal PAL_gentrap
    192      1.2      cgd ifelse(OP, `div',
    193      1.2      cgd `', `	mov	zero, A			/* so that zero will be returned */
    194      1.2      cgd ')
    195      1.1      cgd 	br	zero, Lret_result
    196      1.1      cgd 
    197      1.1      cgd END(NAME)
    198