divrem.m4 revision 1.6 1 /* $NetBSD: divrem.m4,v 1.6 1996/09/09 00:51:27 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 /*
31 * Division and remainder.
32 *
33 * The use of m4 is modeled after the sparc code, but the algorithm is
34 * simple binary long division.
35 *
36 * Note that the loops could probably benefit from unrolling.
37 */
38
39 /*
40 * M4 Parameters
41 * NAME name of function to generate
42 * OP OP=div: t10 / t11 -> t12; OP=rem: t10 % t11 -> t12
43 * S S=true: signed; S=false: unsigned
44 * WORDSIZE total number of bits
45 */
46
47 define(A, `t10')
48 define(B, `t11')
49 define(RESULT, `t12')
50
51 define(BIT, `t0')
52 define(I, `t1')
53 define(CC, `t2')
54 define(T_0, `t3')
55 ifelse(S, `true', `define(NEG, `t4')')
56
57 #include "DEFS.h"
58
59 LEAF(NAME, 0) /* XXX */
60 lda sp, -64(sp)
61 stq BIT, 0(sp)
62 stq I, 8(sp)
63 stq CC, 16(sp)
64 stq T_0, 24(sp)
65 ifelse(S, `true',
66 ` stq NEG, 32(sp)')
67 stq A, 40(sp)
68 stq B, 48(sp)
69 mov zero, RESULT /* Initialize result to zero */
70
71 ifelse(S, `true',
72 `
73 /* Compute sign of result. If either is negative, this is easy. */
74 or A, B, NEG /* not the sign, but... */
75 srl NEG, WORDSIZE - 1, NEG /* rather, or of high bits */
76 blbc NEG, Ldoit /* neither negative? do it! */
77
78 ifelse(OP, `div',
79 ` xor A, B, NEG /* THIS is the sign! */
80 ', ` mov A, NEG /* sign follows A. */
81 ')
82 srl NEG, WORDSIZE - 1, NEG /* make negation the low bit. */
83
84 srl A, WORDSIZE - 1, I /* is A negative? */
85 blbc I, LnegB /* no. */
86 /* A is negative; flip it. */
87 ifelse(WORDSIZE, `32', `
88 /* top 32 bits may be random junk */
89 zap A, 0xf0, A
90 ')
91 subq zero, A, A
92 srl B, WORDSIZE - 1, I /* is B negative? */
93 blbc I, Ldoit /* no. */
94 LnegB:
95 /* B is definitely negative, no matter how we got here. */
96 ifelse(WORDSIZE, `32', `
97 /* top 32 bits may be random junk */
98 zap B, 0xf0, B
99 ')
100 subq zero, B, B
101 Ldoit:
102 ')
103 ifelse(WORDSIZE, `32', `
104 /*
105 * Clear the top 32 bits of each operand, as they may
106 * sign extension (if negated above), or random junk.
107 */
108 zap A, 0xf0, A
109 zap B, 0xf0, B
110 ')
111
112 /* kill the special cases. */
113 beq B, Ldotrap /* division by zero! */
114
115 cmpult A, B, CC /* A < B? */
116 /* RESULT is already zero, from above. A is untouched. */
117 bne CC, Lret_result
118
119 cmpeq A, B, CC /* A == B? */
120 cmovne CC, 1, RESULT
121 cmovne CC, zero, A
122 bne CC, Lret_result
123
124 /*
125 * Find out how many bits of zeros are at the beginning of the divisor.
126 */
127 LBbits:
128 CONST(1, T_0) /* I = 0; BIT = 1<<WORDSIZE-1 */
129 mov zero, I
130 sll T_0, WORDSIZE-1, BIT
131 LBloop:
132 and B, BIT, CC /* if bit in B is set, done. */
133 bne CC, LAbits
134 addq I, 1, I /* increment I, shift bit */
135 srl BIT, 1, BIT
136 cmplt I, WORDSIZE-1, CC /* if I leaves one bit, done. */
137 bne CC, LBloop
138
139 LAbits:
140 beq I, Ldodiv /* If I = 0, divide now. */
141 CONST(1, T_0) /* BIT = 1<<WORDSIZE-1 */
142 sll T_0, WORDSIZE-1, BIT
143
144 LAloop:
145 and A, BIT, CC /* if bit in A is set, done. */
146 bne CC, Ldodiv
147 subq I, 1, I /* decrement I, shift bit */
148 srl BIT, 1, BIT
149 bne I, LAloop /* If I != 0, loop again */
150
151 Ldodiv:
152 sll B, I, B /* B <<= i */
153 CONST(1, T_0)
154 sll T_0, I, BIT
155
156 Ldivloop:
157 cmpult A, B, CC
158 or RESULT, BIT, T_0
159 cmoveq CC, T_0, RESULT
160 subq A, B, T_0
161 cmoveq CC, T_0, A
162 srl BIT, 1, BIT
163 srl B, 1, B
164 beq A, Lret_result
165 bne BIT, Ldivloop
166
167 Lret_result:
168 ifelse(OP, `div',
169 `', ` mov A, RESULT
170 ')
171 ifelse(S, `true',
172 `
173 /* Check to see if we should negate it. */
174 subqv zero, RESULT, T_0
175 cmovlbs NEG, T_0, RESULT
176 ')
177
178 ldq BIT, 0(sp)
179 ldq I, 8(sp)
180 ldq CC, 16(sp)
181 ldq T_0, 24(sp)
182 ifelse(S, `true',
183 ` ldq NEG, 32(sp)')
184 ldq A, 40(sp)
185 ldq B, 48(sp)
186 lda sp, 64(sp)
187 ret zero, (t9), 1
188
189 Ldotrap:
190 CONST(-2, a0) /* This is the signal to SIGFPE! */
191 call_pal PAL_gentrap
192 ifelse(OP, `div',
193 `', ` mov zero, A /* so that zero will be returned */
194 ')
195 br zero, Lret_result
196
197 END(NAME)
198