ldexp.S revision 1.8.46.1 1 /* $NetBSD: ldexp.S,v 1.8.46.1 2009/08/16 03:36:02 matt Exp $ */
2
3 /*-
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Ralph Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #include <mips/asm.h>
36
37 #if defined(LIBC_SCCS) && !defined(lint)
38 RCSID("from: @(#)ldexp.s 8.1 (Berkeley) 6/4/93")
39 RCSID("$NetBSD: ldexp.S,v 1.8.46.1 2009/08/16 03:36:02 matt Exp $")
40 #endif /* LIBC_SCCS and not lint */
41
42 #define DEXP_INF 0x7ff
43 #define DEXP_BIAS 1023
44 #define DEXP_MIN -1022
45 #define DEXP_MAX 1023
46 #define DFRAC_BITS 52
47 #define DIMPL_ONE 0x00100000
48 #define DLEAD_ZEROS 31 - 20
49 #define STICKYBIT 1
50 #define GUARDBIT 0x80000000
51 #define DSIGNAL_NAN 0x00040000
52 #define DQUIET_NAN0 0x0007ffff
53 #define DQUIET_NAN1 0xffffffff
54
55 /*
56 * double ldexp(x, N)
57 * double x; int N;
58 *
59 * Return x * (2**N), for integer values N.
60 */
61 LEAF(ldexp)
62 mfc1 v1, $f13 # get MSW of x
63 mfc1 t3, $f12 # get LSW of x
64 sll t1, v1, 1 # get x exponent
65 srl t1, t1, 32 - 11
66 beq t1, DEXP_INF, 9f # is it a NAN or infinity?
67 beq t1, zero, 1f # zero or denormalized number?
68 addu t1, t1, a2 # scale exponent
69 sll v0, a2, 20 # position N for addition
70 bge t1, DEXP_INF, 8f # overflow?
71 addu v0, v0, v1 # multiply by (2**N)
72 ble t1, zero, 4f # underflow?
73 mtc1 v0, $f1 # save MSW of result
74 mtc1 t3, $f0 # save LSW of result
75 j ra
76 1:
77 sll t2, v1, 32 - 20 # get x fraction
78 srl t2, t2, 32 - 20
79 srl t0, v1, 31 # get x sign
80 bne t2, zero, 1f
81 beq t3, zero, 9f # result is zero
82 1:
83 /*
84 * Find out how many leading zero bits are in t2,t3 and put in t9.
85 */
86 move v0, t2
87 move t9, zero
88 bne t2, zero, 1f
89 move v0, t3
90 addu t9, 32
91 1:
92 srl ta0, v0, 16
93 bne ta0, zero, 1f
94 addu t9, 16
95 sll v0, 16
96 1:
97 srl ta0, v0, 24
98 bne ta0, zero, 1f
99 addu t9, 8
100 sll v0, 8
101 1:
102 srl ta0, v0, 28
103 bne ta0, zero, 1f
104 addu t9, 4
105 sll v0, 4
106 1:
107 srl ta0, v0, 30
108 bne ta0, zero, 1f
109 addu t9, 2
110 sll v0, 2
111 1:
112 srl ta0, v0, 31
113 bne ta0, zero, 1f
114 addu t9, 1
115 /*
116 * Now shift t2,t3 the correct number of bits.
117 */
118 1:
119 subu t9, t9, DLEAD_ZEROS # dont count normal leading zeros
120 li t1, DEXP_MIN + DEXP_BIAS
121 subu t1, t1, t9 # adjust exponent
122 addu t1, t1, a2 # scale exponent
123 li v0, 32
124 blt t9, v0, 1f
125 subu t9, t9, v0 # shift fraction left >= 32 bits
126 sll t2, t3, t9
127 move t3, zero
128 b 2f
129 1:
130 subu v0, v0, t9 # shift fraction left < 32 bits
131 sll t2, t2, t9
132 srl ta0, t3, v0
133 or t2, t2, ta0
134 sll t3, t3, t9
135 2:
136 bge t1, DEXP_INF, 8f # overflow?
137 ble t1, zero, 4f # underflow?
138 sll t2, t2, 32 - 20 # clear implied one bit
139 srl t2, t2, 32 - 20
140 3:
141 sll t1, t1, 31 - 11 # reposition exponent
142 sll t0, t0, 31 # reposition sign
143 or t0, t0, t1 # put result back together
144 or t0, t0, t2
145 mtc1 t0, $f1 # save MSW of result
146 mtc1 t3, $f0 # save LSW of result
147 j ra
148 4:
149 li v0, 0x80000000
150 ble t1, -52, 7f # is result too small for denorm?
151 sll t2, v1, 31 - 20 # clear exponent, extract fraction
152 or t2, t2, v0 # set implied one bit
153 blt t1, -30, 2f # will all bits in t3 be shifted out?
154 srl t2, t2, 31 - 20 # shift fraction back to normal position
155 subu t1, t1, 1
156 sll ta0, t2, t1 # shift right t2,t3 based on exponent
157 srl t8, t3, t1 # save bits shifted out
158 negu t1
159 srl t3, t3, t1
160 or t3, t3, ta0
161 srl t2, t2, t1
162 bge t8, zero, 1f # does result need to be rounded?
163 addu t3, t3, 1 # round result
164 sltu ta0, t3, 1
165 sll t8, t8, 1
166 addu t2, t2, ta0
167 bne t8, zero, 1f # round result to nearest
168 and t3, t3, ~1
169 1:
170 mtc1 t3, $f0 # save denormalized result (LSW)
171 mtc1 t2, $f1 # save denormalized result (MSW)
172 bge v1, zero, 1f # should result be negative?
173 neg.d $f0, $f0 # negate result
174 1:
175 j ra
176 2:
177 mtc1 zero, $f1 # exponent and upper fraction
178 addu t1, t1, 20 # compute amount to shift right by
179 sll t8, t2, t1 # save bits shifted out
180 negu t1
181 srl t3, t2, t1
182 bge t8, zero, 1f # does result need to be rounded?
183 addu t3, t3, 1 # round result
184 sltu ta0, t3, 1
185 sll t8, t8, 1
186 mtc1 ta0, $f1 # exponent and upper fraction
187 bne t8, zero, 1f # round result to nearest
188 and t3, t3, ~1
189 1:
190 mtc1 t3, $f0
191 bge v1, zero, 1f # is result negative?
192 neg.d $f0, $f0 # negate result
193 1:
194 j ra
195 7:
196 mtc1 zero, $f0 # result is zero
197 mtc1 zero, $f1
198 beq t0, zero, 1f # is result positive?
199 neg.d $f0, $f0 # negate result
200 1:
201 j ra
202 8:
203 li t1, 0x7ff00000 # result is infinity (MSW)
204 mtc1 t1, $f1
205 mtc1 zero, $f0 # result is infinity (LSW)
206 bge v1, zero, 1f # should result be negative infinity?
207 neg.d $f0, $f0 # result is negative infinity
208 1:
209 add.d $f0, $f0 # cause overflow faults if enabled
210 j ra
211 9:
212 mov.d $f0, $f12 # yes, result is just x
213 j ra
214 END(ldexp)
215