modf.S revision 1.7 1 1.7 joerg /* $NetBSD: modf.S,v 1.7 2013/09/12 15:36:16 joerg Exp $ */
2 1.5 christos
3 1.1 cgd /*
4 1.1 cgd * Copyright (c) 1992, 1993
5 1.1 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This software was developed by the Computer Systems Engineering group
8 1.1 cgd * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 1.1 cgd * contributed to Berkeley.
10 1.1 cgd *
11 1.1 cgd * Redistribution and use in source and binary forms, with or without
12 1.1 cgd * modification, are permitted provided that the following conditions
13 1.1 cgd * are met:
14 1.1 cgd * 1. Redistributions of source code must retain the above copyright
15 1.1 cgd * notice, this list of conditions and the following disclaimer.
16 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 cgd * notice, this list of conditions and the following disclaimer in the
18 1.1 cgd * documentation and/or other materials provided with the distribution.
19 1.6 agc * 3. Neither the name of the University nor the names of its contributors
20 1.1 cgd * may be used to endorse or promote products derived from this software
21 1.1 cgd * without specific prior written permission.
22 1.1 cgd *
23 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 cgd * SUCH DAMAGE.
34 1.1 cgd *
35 1.1 cgd * from: Header: modf.s,v 1.3 92/06/20 00:00:54 torek Exp
36 1.1 cgd */
37 1.1 cgd
38 1.5 christos #include <machine/asm.h>
39 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
40 1.5 christos #if 0
41 1.1 cgd .asciz "@(#)modf.s 8.1 (Berkeley) 6/4/93"
42 1.5 christos #else
43 1.7 joerg RCSID("$NetBSD: modf.S,v 1.7 2013/09/12 15:36:16 joerg Exp $")
44 1.5 christos #endif
45 1.1 cgd #endif /* LIBC_SCCS and not lint */
46 1.1 cgd
47 1.1 cgd #include <machine/fsr.h>
48 1.1 cgd
49 1.1 cgd /*
50 1.1 cgd * double modf(double val, double *iptr)
51 1.1 cgd *
52 1.1 cgd * Returns the fractional part of `val', storing the integer part of
53 1.1 cgd * `val' in *iptr. Both *iptr and the return value have the same sign
54 1.1 cgd * as `val'.
55 1.1 cgd *
56 1.1 cgd * Method:
57 1.1 cgd *
58 1.1 cgd * We use the fpu's normalization hardware to compute the integer portion
59 1.1 cgd * of the double precision argument. Sun IEEE double precision numbers
60 1.1 cgd * have 52 bits of mantissa, 11 bits of exponent, and one bit of sign,
61 1.1 cgd * with the sign occupying bit 31 of word 0, and the exponent bits 30:20
62 1.1 cgd * of word 0. Thus, values >= 2^52 are by definition integers.
63 1.1 cgd *
64 1.1 cgd * If we take a value that is in the range [+0..2^52) and add 2^52, all
65 1.1 cgd * of the fractional bits fall out and all of the integer bits are summed
66 1.1 cgd * with 2^52. If we then subtract 2^52, we get those integer bits back.
67 1.1 cgd * This must be done with rounding set to `towards 0' or `towards -inf'.
68 1.1 cgd * `Toward -inf' fails when the value is 0 (we get -0 back)....
69 1.1 cgd *
70 1.1 cgd * Note that this method will work anywhere, but is machine dependent in
71 1.1 cgd * various aspects.
72 1.1 cgd *
73 1.1 cgd * Stack usage:
74 1.1 cgd * 4@[%fp - 4] saved %fsr
75 1.1 cgd * 4@[%fp - 8] new %fsr with rounding set to `towards 0'
76 1.1 cgd * 8@[%fp - 16] space for moving between %i and %f registers
77 1.1 cgd * Register usage:
78 1.1 cgd * %i0%i1 double val;
79 1.1 cgd * %l0 scratch
80 1.1 cgd * %l1 sign bit (0x80000000)
81 1.1 cgd * %i2 double *iptr;
82 1.1 cgd * %f2:f3 `magic number' 2^52, in fpu registers
83 1.1 cgd * %f4:f5 double v, in fpu registers
84 1.1 cgd */
85 1.1 cgd
86 1.1 cgd .align 8
87 1.1 cgd Lmagic:
88 1.1 cgd .word 0x43300000 ! sign = 0, exponent = 52 + 1023, mantissa = 0
89 1.1 cgd .word 0 ! (i.e., .double 0r4503599627370496e+00)
90 1.1 cgd
91 1.1 cgd L0:
92 1.1 cgd .word 0 ! 0.0
93 1.1 cgd .word 0
94 1.1 cgd
95 1.1 cgd ENTRY(modf)
96 1.1 cgd save %sp, -64-16, %sp
97 1.1 cgd
98 1.1 cgd /*
99 1.1 cgd * First, compute v = abs(val) by clearing sign bit,
100 1.1 cgd * and then set up the fpu registers. This would be
101 1.1 cgd * much easier if we could do alu operations on fpu registers!
102 1.1 cgd */
103 1.2 pk sethi %hi(0x80000000), %l1 ! sign bit
104 1.1 cgd andn %i0, %l1, %l0
105 1.1 cgd st %l0, [%fp - 16]
106 1.7 joerg #ifdef __PIC__
107 1.3 pk PICCY_SET(Lmagic, %l0, %o7)
108 1.3 pk ldd [%l0], %f2
109 1.3 pk #else
110 1.1 cgd sethi %hi(Lmagic), %l0
111 1.1 cgd ldd [%l0 + %lo(Lmagic)], %f2
112 1.3 pk #endif
113 1.1 cgd st %i1, [%fp - 12]
114 1.1 cgd ldd [%fp - 16], %f4 ! %f4:f5 = v
115 1.1 cgd
116 1.1 cgd /*
117 1.1 cgd * Is %f4:f5 >= %f2:f3 ? If so, it is all integer bits.
118 1.1 cgd * It is probably less, though.
119 1.1 cgd */
120 1.1 cgd fcmped %f4, %f2
121 1.1 cgd nop ! fpop2 delay
122 1.1 cgd fbuge Lbig ! if >= (or unordered), go out
123 1.1 cgd nop
124 1.1 cgd
125 1.1 cgd /*
126 1.1 cgd * v < 2^52, so add 2^52, then subtract 2^52, but do it all
127 1.1 cgd * with rounding set towards zero. We leave any enabled
128 1.1 cgd * traps enabled, but change the rounding mode. This might
129 1.1 cgd * not be so good. Oh well....
130 1.1 cgd */
131 1.1 cgd st %fsr, [%fp - 4] ! %l5 = current FSR mode
132 1.1 cgd set FSR_RD, %l3 ! %l3 = rounding direction mask
133 1.1 cgd ld [%fp - 4], %l5
134 1.1 cgd set FSR_RD_RZ << FSR_RD_SHIFT, %l4
135 1.1 cgd andn %l5, %l3, %l6
136 1.1 cgd or %l6, %l4, %l6 ! round towards zero, please
137 1.1 cgd and %l5, %l3, %l5 ! save original rounding mode
138 1.1 cgd st %l6, [%fp - 8]
139 1.1 cgd ld [%fp - 8], %fsr
140 1.1 cgd
141 1.1 cgd faddd %f4, %f2, %f4 ! %f4:f5 += 2^52
142 1.1 cgd fsubd %f4, %f2, %f4 ! %f4:f5 -= 2^52
143 1.1 cgd
144 1.1 cgd /*
145 1.1 cgd * Restore %fsr, but leave exceptions accrued.
146 1.1 cgd */
147 1.1 cgd st %fsr, [%fp - 4]
148 1.1 cgd ld [%fp - 4], %l6
149 1.1 cgd andn %l6, %l3, %l6 ! %l6 = %fsr & ~FSR_RD;
150 1.1 cgd or %l5, %l6, %l5 ! %l5 |= %l6;
151 1.1 cgd st %l5, [%fp - 4]
152 1.1 cgd ld [%fp - 4], %fsr ! restore %fsr, leaving accrued stuff
153 1.1 cgd
154 1.1 cgd /*
155 1.1 cgd * Now insert the original sign in %f4:f5.
156 1.1 cgd * This is a lot of work, so it is conditional here.
157 1.1 cgd */
158 1.1 cgd btst %l1, %i0
159 1.1 cgd be 1f
160 1.1 cgd nop
161 1.1 cgd st %f4, [%fp - 16]
162 1.1 cgd ld [%fp - 16], %g1
163 1.1 cgd or %l1, %g1, %g1
164 1.1 cgd st %g1, [%fp - 16]
165 1.1 cgd ld [%fp - 16], %f4
166 1.1 cgd 1:
167 1.1 cgd
168 1.1 cgd /*
169 1.1 cgd * The value in %f4:f5 is now the integer portion of the original
170 1.1 cgd * argument. We need to store this in *ival (%i2), subtract it
171 1.1 cgd * from the original value argument (%i0:i1), and return the result.
172 1.1 cgd */
173 1.1 cgd std %f4, [%i2] ! *ival = %f4:f5;
174 1.1 cgd std %i0, [%fp - 16]
175 1.1 cgd ldd [%fp - 16], %f0 ! %f0:f1 = val;
176 1.1 cgd fsubd %f0, %f4, %f0 ! %f0:f1 -= %f4:f5;
177 1.1 cgd ret
178 1.1 cgd restore
179 1.1 cgd
180 1.1 cgd Lbig:
181 1.1 cgd /*
182 1.1 cgd * We get here if the original comparison of %f4:f5 (v) to
183 1.1 cgd * %f2:f3 (2^52) came out `greater or unordered'. In this
184 1.1 cgd * case the integer part is the original value, and the
185 1.1 cgd * fractional part is 0.
186 1.1 cgd */
187 1.7 joerg #ifdef __PIC__
188 1.3 pk PICCY_SET(L0, %l0, %o7)
189 1.3 pk std %f0, [%i2] ! *ival = val;
190 1.3 pk ldd [%l0], %f0 ! return 0.0;
191 1.3 pk #else
192 1.1 cgd sethi %hi(L0), %l0
193 1.1 cgd std %f0, [%i2] ! *ival = val;
194 1.1 cgd ldd [%l0 + %lo(L0)], %f0 ! return 0.0;
195 1.3 pk #endif
196 1.1 cgd ret
197 1.1 cgd restore
198