cdbw.c revision 1.2 1 1.2 christos /* $NetBSD: cdbw.c,v 1.2 2012/03/13 21:13:31 christos Exp $ */
2 1.1 joerg /*-
3 1.1 joerg * Copyright (c) 2009, 2010 The NetBSD Foundation, Inc.
4 1.1 joerg * All rights reserved.
5 1.1 joerg *
6 1.1 joerg * This code is derived from software contributed to The NetBSD Foundation
7 1.1 joerg * by Joerg Sonnenberger.
8 1.1 joerg *
9 1.1 joerg * Redistribution and use in source and binary forms, with or without
10 1.1 joerg * modification, are permitted provided that the following conditions
11 1.1 joerg * are met:
12 1.1 joerg *
13 1.1 joerg * 1. Redistributions of source code must retain the above copyright
14 1.1 joerg * notice, this list of conditions and the following disclaimer.
15 1.1 joerg * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 joerg * notice, this list of conditions and the following disclaimer in
17 1.1 joerg * the documentation and/or other materials provided with the
18 1.1 joerg * distribution.
19 1.1 joerg *
20 1.1 joerg * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 1.1 joerg * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 1.1 joerg * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 1.1 joerg * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 1.1 joerg * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 1.1 joerg * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 1.1 joerg * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 1.1 joerg * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 1.1 joerg * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 1.1 joerg * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 1.1 joerg * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 1.1 joerg * SUCH DAMAGE.
32 1.1 joerg */
33 1.1 joerg
34 1.1 joerg #if HAVE_NBTOOL_CONFIG_H
35 1.1 joerg #include "nbtool_config.h"
36 1.1 joerg #endif
37 1.1 joerg
38 1.1 joerg #include <sys/cdefs.h>
39 1.2 christos __RCSID("$NetBSD: cdbw.c,v 1.2 2012/03/13 21:13:31 christos Exp $");
40 1.1 joerg
41 1.1 joerg #include "namespace.h"
42 1.1 joerg
43 1.1 joerg #include <sys/endian.h>
44 1.1 joerg #include <sys/queue.h>
45 1.2 christos #include <assert.h>
46 1.1 joerg #include <cdbw.h>
47 1.1 joerg #include <stdlib.h>
48 1.1 joerg #include <string.h>
49 1.1 joerg #include <unistd.h>
50 1.1 joerg
51 1.1 joerg #ifdef __weak_alias
52 1.1 joerg __weak_alias(cdbw_close,_cdbw_close)
53 1.1 joerg __weak_alias(cdbw_open,_cdbw_open)
54 1.1 joerg __weak_alias(cdbw_output,_cdbw_output)
55 1.1 joerg __weak_alias(cdbw_put,_cdbw_put)
56 1.1 joerg __weak_alias(cdbw_put_data,_cdbw_put_data)
57 1.1 joerg __weak_alias(cdbw_put_key,_cdbw_put_key)
58 1.1 joerg #endif
59 1.1 joerg
60 1.1 joerg struct key_hash {
61 1.1 joerg SLIST_ENTRY(key_hash) link;
62 1.1 joerg uint32_t hashes[3];
63 1.1 joerg uint32_t idx;
64 1.1 joerg void *key;
65 1.1 joerg size_t keylen;
66 1.1 joerg };
67 1.1 joerg
68 1.1 joerg SLIST_HEAD(key_hash_head, key_hash);
69 1.1 joerg
70 1.1 joerg struct cdbw {
71 1.1 joerg size_t data_counter;
72 1.1 joerg size_t data_allocated;
73 1.1 joerg size_t data_size;
74 1.1 joerg size_t *data_len;
75 1.1 joerg void **data_ptr;
76 1.1 joerg
77 1.1 joerg size_t hash_size;
78 1.1 joerg struct key_hash_head *hash;
79 1.1 joerg size_t key_counter;
80 1.1 joerg };
81 1.1 joerg
82 1.1 joerg /* Max. data counter that allows the index size to be 32bit. */
83 1.1 joerg static const uint32_t max_data_counter = 0xccccccccU;
84 1.1 joerg
85 1.1 joerg struct cdbw *
86 1.1 joerg cdbw_open(void)
87 1.1 joerg {
88 1.1 joerg struct cdbw *cdbw;
89 1.1 joerg size_t i;
90 1.1 joerg
91 1.1 joerg cdbw = calloc(sizeof(*cdbw), 1);
92 1.1 joerg if (cdbw == NULL)
93 1.1 joerg return NULL;
94 1.1 joerg
95 1.1 joerg cdbw->hash_size = 1024;
96 1.1 joerg cdbw->hash = calloc(cdbw->hash_size, sizeof(*cdbw->hash));
97 1.1 joerg if (cdbw->hash == NULL) {
98 1.1 joerg free(cdbw);
99 1.1 joerg return NULL;
100 1.1 joerg }
101 1.1 joerg
102 1.1 joerg for (i = 0; i < cdbw->hash_size; ++i)
103 1.1 joerg SLIST_INIT(cdbw->hash + i);
104 1.1 joerg
105 1.1 joerg return cdbw;
106 1.1 joerg }
107 1.1 joerg
108 1.1 joerg int
109 1.1 joerg cdbw_put(struct cdbw *cdbw, const void *key, size_t keylen,
110 1.1 joerg const void *data, size_t datalen)
111 1.1 joerg {
112 1.1 joerg uint32_t idx;
113 1.1 joerg int rv;
114 1.1 joerg
115 1.1 joerg rv = cdbw_put_data(cdbw, data, datalen, &idx);
116 1.1 joerg if (rv)
117 1.1 joerg return rv;
118 1.1 joerg rv = cdbw_put_key(cdbw, key, keylen, idx);
119 1.1 joerg if (rv) {
120 1.1 joerg --cdbw->data_counter;
121 1.1 joerg free(cdbw->data_ptr[cdbw->data_counter]);
122 1.1 joerg cdbw->data_size -= datalen;
123 1.1 joerg return rv;
124 1.1 joerg }
125 1.1 joerg return 0;
126 1.1 joerg }
127 1.1 joerg
128 1.1 joerg int
129 1.1 joerg cdbw_put_data(struct cdbw *cdbw, const void *data, size_t datalen,
130 1.1 joerg uint32_t *idx)
131 1.1 joerg {
132 1.1 joerg
133 1.1 joerg if (cdbw->data_counter == max_data_counter)
134 1.1 joerg return -1;
135 1.1 joerg
136 1.1 joerg if (cdbw->data_size + datalen < cdbw->data_size ||
137 1.1 joerg cdbw->data_size + datalen > 0xffffffffU)
138 1.1 joerg return -1; /* Overflow */
139 1.1 joerg
140 1.1 joerg if (cdbw->data_allocated == cdbw->data_counter) {
141 1.1 joerg void **new_data_ptr;
142 1.1 joerg size_t *new_data_len;
143 1.1 joerg size_t new_allocated;
144 1.1 joerg
145 1.1 joerg if (cdbw->data_allocated == 0)
146 1.1 joerg new_allocated = 256;
147 1.1 joerg else
148 1.1 joerg new_allocated = cdbw->data_allocated * 2;
149 1.1 joerg
150 1.1 joerg new_data_ptr = realloc(cdbw->data_ptr,
151 1.1 joerg sizeof(*cdbw->data_ptr) * new_allocated);
152 1.1 joerg if (new_data_ptr == NULL)
153 1.1 joerg return -1;
154 1.1 joerg cdbw->data_ptr = new_data_ptr;
155 1.1 joerg
156 1.1 joerg new_data_len = realloc(cdbw->data_len,
157 1.1 joerg sizeof(*cdbw->data_len) * new_allocated);
158 1.1 joerg if (new_data_len == NULL)
159 1.1 joerg return -1;
160 1.1 joerg cdbw->data_len = new_data_len;
161 1.1 joerg
162 1.1 joerg cdbw->data_allocated = new_allocated;
163 1.1 joerg }
164 1.1 joerg
165 1.1 joerg cdbw->data_ptr[cdbw->data_counter] = malloc(datalen);
166 1.1 joerg if (cdbw->data_ptr[cdbw->data_counter] == NULL)
167 1.1 joerg return -1;
168 1.1 joerg memcpy(cdbw->data_ptr[cdbw->data_counter], data, datalen);
169 1.1 joerg cdbw->data_len[cdbw->data_counter] = datalen;
170 1.1 joerg cdbw->data_size += datalen;
171 1.2 christos _DIAGASSERT(__type_fit(uint32_t, cdbw->data_counter));
172 1.2 christos *idx = (uint32_t)cdbw->data_counter++;
173 1.1 joerg return 0;
174 1.1 joerg }
175 1.1 joerg
176 1.1 joerg int
177 1.1 joerg cdbw_put_key(struct cdbw *cdbw, const void *key, size_t keylen, uint32_t idx)
178 1.1 joerg {
179 1.1 joerg uint32_t hashes[3];
180 1.1 joerg struct key_hash_head *head, *head2, *new_head;
181 1.1 joerg struct key_hash *key_hash;
182 1.1 joerg size_t new_hash_size, i;
183 1.1 joerg
184 1.1 joerg if (idx >= cdbw->data_counter ||
185 1.1 joerg cdbw->key_counter == max_data_counter)
186 1.1 joerg return -1;
187 1.1 joerg
188 1.1 joerg mi_vector_hash(key, keylen, 0, hashes);
189 1.1 joerg
190 1.1 joerg head = cdbw->hash + (hashes[0] & (cdbw->hash_size - 1));
191 1.1 joerg SLIST_FOREACH(key_hash, head, link) {
192 1.1 joerg if (key_hash->keylen != keylen)
193 1.1 joerg continue;
194 1.1 joerg if (key_hash->hashes[0] != hashes[0])
195 1.1 joerg continue;
196 1.1 joerg if (key_hash->hashes[1] != hashes[1])
197 1.1 joerg continue;
198 1.1 joerg if (key_hash->hashes[2] != hashes[2])
199 1.1 joerg continue;
200 1.1 joerg if (memcmp(key, key_hash->key, keylen))
201 1.1 joerg continue;
202 1.1 joerg return -1;
203 1.1 joerg }
204 1.1 joerg key_hash = malloc(sizeof(*key_hash));
205 1.1 joerg if (key_hash == NULL)
206 1.1 joerg return -1;
207 1.1 joerg key_hash->key = malloc(keylen);
208 1.1 joerg if (key_hash->key == NULL) {
209 1.1 joerg free(key_hash);
210 1.1 joerg return -1;
211 1.1 joerg }
212 1.1 joerg memcpy(key_hash->key, key, keylen);
213 1.1 joerg key_hash->hashes[0] = hashes[0];
214 1.1 joerg key_hash->hashes[1] = hashes[1];
215 1.1 joerg key_hash->hashes[2] = hashes[2];
216 1.1 joerg key_hash->keylen = keylen;
217 1.1 joerg key_hash->idx = idx;
218 1.1 joerg SLIST_INSERT_HEAD(head, key_hash, link);
219 1.1 joerg ++cdbw->key_counter;
220 1.1 joerg
221 1.1 joerg if (cdbw->key_counter <= cdbw->hash_size)
222 1.1 joerg return 0;
223 1.1 joerg
224 1.1 joerg /* Try to resize the hash table, but ignore errors. */
225 1.1 joerg new_hash_size = cdbw->hash_size * 2;
226 1.1 joerg new_head = calloc(sizeof(*new_head), new_hash_size);
227 1.1 joerg if (new_head == NULL)
228 1.1 joerg return 0;
229 1.1 joerg
230 1.1 joerg head = &cdbw->hash[hashes[0] & (cdbw->hash_size - 1)];
231 1.1 joerg for (i = 0; i < new_hash_size; ++i)
232 1.1 joerg SLIST_INIT(new_head + i);
233 1.1 joerg
234 1.1 joerg for (i = 0; i < cdbw->hash_size; ++i) {
235 1.1 joerg head = cdbw->hash + i;
236 1.1 joerg
237 1.1 joerg while ((key_hash = SLIST_FIRST(head)) != NULL) {
238 1.1 joerg SLIST_REMOVE_HEAD(head, link);
239 1.1 joerg head2 = new_head +
240 1.1 joerg (key_hash->hashes[0] & (new_hash_size - 1));
241 1.1 joerg SLIST_INSERT_HEAD(head2, key_hash, link);
242 1.1 joerg }
243 1.1 joerg }
244 1.1 joerg free(cdbw->hash);
245 1.1 joerg cdbw->hash_size = new_hash_size;
246 1.1 joerg cdbw->hash = new_head;
247 1.1 joerg
248 1.1 joerg return 0;
249 1.1 joerg }
250 1.1 joerg
251 1.1 joerg void
252 1.1 joerg cdbw_close(struct cdbw *cdbw)
253 1.1 joerg {
254 1.1 joerg struct key_hash_head *head;
255 1.1 joerg struct key_hash *key_hash;
256 1.1 joerg size_t i;
257 1.1 joerg
258 1.1 joerg for (i = 0; i < cdbw->hash_size; ++i) {
259 1.1 joerg head = cdbw->hash + i;
260 1.1 joerg while ((key_hash = SLIST_FIRST(head)) != NULL) {
261 1.1 joerg SLIST_REMOVE_HEAD(head, link);
262 1.1 joerg free(key_hash->key);
263 1.1 joerg free(key_hash);
264 1.1 joerg }
265 1.1 joerg }
266 1.1 joerg
267 1.1 joerg for (i = 0; i < cdbw->data_counter; ++i)
268 1.1 joerg free(cdbw->data_ptr[i]);
269 1.1 joerg free(cdbw->data_ptr);
270 1.1 joerg free(cdbw->data_len);
271 1.1 joerg free(cdbw->hash);
272 1.1 joerg free(cdbw);
273 1.1 joerg }
274 1.1 joerg
275 1.1 joerg #define unused 0xffffffffU
276 1.1 joerg
277 1.1 joerg struct vertex {
278 1.1 joerg uint32_t l_edge, m_edge, r_edge;
279 1.1 joerg };
280 1.1 joerg
281 1.1 joerg struct edge {
282 1.1 joerg uint32_t idx;
283 1.1 joerg
284 1.1 joerg uint32_t left, middle, right;
285 1.1 joerg uint32_t l_prev, m_prev, l_next;
286 1.1 joerg uint32_t r_prev, m_next, r_next;
287 1.1 joerg };
288 1.1 joerg
289 1.1 joerg struct state {
290 1.1 joerg uint32_t data_entries;
291 1.1 joerg uint32_t entries;
292 1.1 joerg uint32_t keys;
293 1.1 joerg uint32_t seed;
294 1.1 joerg
295 1.1 joerg uint32_t *g;
296 1.1 joerg char *visited;
297 1.1 joerg
298 1.1 joerg struct vertex *verts;
299 1.1 joerg struct edge *edges;
300 1.1 joerg uint32_t output_index;
301 1.1 joerg uint32_t *output_order;
302 1.1 joerg };
303 1.1 joerg
304 1.1 joerg static void
305 1.1 joerg remove_vertex(struct state *state, struct vertex *v)
306 1.1 joerg {
307 1.1 joerg struct edge *e;
308 1.1 joerg struct vertex *vl, *vm, *vr;
309 1.1 joerg
310 1.1 joerg if (v->l_edge != unused && v->m_edge != unused)
311 1.1 joerg return;
312 1.1 joerg if (v->l_edge != unused && v->r_edge != unused)
313 1.1 joerg return;
314 1.1 joerg if (v->m_edge != unused && v->r_edge != unused)
315 1.1 joerg return;
316 1.1 joerg if (v->l_edge == unused && v->m_edge == unused && v->r_edge == unused)
317 1.1 joerg return;
318 1.1 joerg
319 1.1 joerg if (v->l_edge != unused) {
320 1.1 joerg e = &state->edges[v->l_edge];
321 1.1 joerg if (e->l_next != unused)
322 1.1 joerg return;
323 1.1 joerg } else if (v->m_edge != unused) {
324 1.1 joerg e = &state->edges[v->m_edge];
325 1.1 joerg if (e->m_next != unused)
326 1.1 joerg return;
327 1.1 joerg } else {
328 1.1 joerg if (v->r_edge == unused)
329 1.1 joerg abort();
330 1.1 joerg e = &state->edges[v->r_edge];
331 1.1 joerg if (e->r_next != unused)
332 1.1 joerg return;
333 1.1 joerg }
334 1.1 joerg
335 1.2 christos ptrdiff_t td = e - state->edges;
336 1.2 christos _DIAGASSERT(__type_fit(uint32_t, td));
337 1.2 christos state->output_order[--state->output_index] = (uint32_t)td;
338 1.1 joerg
339 1.1 joerg vl = &state->verts[e->left];
340 1.1 joerg vm = &state->verts[e->middle];
341 1.1 joerg vr = &state->verts[e->right];
342 1.1 joerg
343 1.1 joerg if (e->l_prev == unused)
344 1.1 joerg vl->l_edge = e->l_next;
345 1.1 joerg else
346 1.1 joerg state->edges[e->l_prev].l_next = e->l_next;
347 1.1 joerg if (e->l_next != unused)
348 1.1 joerg state->edges[e->l_next].l_prev = e->l_prev;
349 1.1 joerg
350 1.1 joerg if (e->m_prev == unused)
351 1.1 joerg vm->m_edge = e->m_next;
352 1.1 joerg else
353 1.1 joerg state->edges[e->m_prev].m_next = e->m_next;
354 1.1 joerg if (e->m_next != unused)
355 1.1 joerg state->edges[e->m_next].m_prev = e->m_prev;
356 1.1 joerg
357 1.1 joerg if (e->r_prev == unused)
358 1.1 joerg vr->r_edge = e->r_next;
359 1.1 joerg else
360 1.1 joerg state->edges[e->r_prev].r_next = e->r_next;
361 1.1 joerg if (e->r_next != unused)
362 1.1 joerg state->edges[e->r_next].r_prev = e->r_prev;
363 1.1 joerg }
364 1.1 joerg
365 1.1 joerg static int
366 1.1 joerg build_graph(struct cdbw *cdbw, struct state *state)
367 1.1 joerg {
368 1.1 joerg struct key_hash_head *head;
369 1.1 joerg struct key_hash *key_hash;
370 1.1 joerg struct vertex *v;
371 1.1 joerg struct edge *e;
372 1.2 christos uint32_t hashes[3], i;
373 1.1 joerg
374 1.1 joerg e = state->edges;
375 1.1 joerg for (i = 0; i < cdbw->hash_size; ++i) {
376 1.1 joerg head = &cdbw->hash[i];
377 1.1 joerg SLIST_FOREACH(key_hash, head, link) {
378 1.1 joerg e->idx = key_hash->idx;
379 1.1 joerg mi_vector_hash(key_hash->key, key_hash->keylen,
380 1.1 joerg state->seed, hashes);
381 1.1 joerg e->left = hashes[0] % state->entries;
382 1.1 joerg e->middle = hashes[1] % state->entries;
383 1.1 joerg e->right = hashes[2] % state->entries;
384 1.1 joerg
385 1.1 joerg ++e;
386 1.1 joerg }
387 1.1 joerg }
388 1.1 joerg
389 1.1 joerg for (i = 0; i < state->entries; ++i) {
390 1.1 joerg v = state->verts + i;
391 1.1 joerg v->l_edge = unused;
392 1.1 joerg v->m_edge = unused;
393 1.1 joerg v->r_edge = unused;
394 1.1 joerg }
395 1.1 joerg
396 1.1 joerg for (i = 0; i < state->keys; ++i) {
397 1.1 joerg e = state->edges + i;
398 1.1 joerg v = state->verts + e->left;
399 1.1 joerg if (v->l_edge != unused)
400 1.1 joerg state->edges[v->l_edge].l_prev = i;
401 1.1 joerg e->l_next = v->l_edge;
402 1.1 joerg e->l_prev = unused;
403 1.1 joerg v->l_edge = i;
404 1.1 joerg
405 1.1 joerg v = &state->verts[e->middle];
406 1.1 joerg if (v->m_edge != unused)
407 1.1 joerg state->edges[v->m_edge].m_prev = i;
408 1.1 joerg e->m_next = v->m_edge;
409 1.1 joerg e->m_prev = unused;
410 1.1 joerg v->m_edge = i;
411 1.1 joerg
412 1.1 joerg v = &state->verts[e->right];
413 1.1 joerg if (v->r_edge != unused)
414 1.1 joerg state->edges[v->r_edge].r_prev = i;
415 1.1 joerg e->r_next = v->r_edge;
416 1.1 joerg e->r_prev = unused;
417 1.1 joerg v->r_edge = i;
418 1.1 joerg }
419 1.1 joerg
420 1.1 joerg state->output_index = state->keys;
421 1.1 joerg for (i = 0; i < state->entries; ++i)
422 1.1 joerg remove_vertex(state, state->verts + i);
423 1.1 joerg
424 1.1 joerg i = state->keys;
425 1.1 joerg while (i > 0 && i > state->output_index) {
426 1.1 joerg --i;
427 1.1 joerg e = state->edges + state->output_order[i];
428 1.1 joerg remove_vertex(state, state->verts + e->left);
429 1.1 joerg remove_vertex(state, state->verts + e->middle);
430 1.1 joerg remove_vertex(state, state->verts + e->right);
431 1.1 joerg }
432 1.1 joerg
433 1.1 joerg return state->output_index == 0 ? 0 : -1;
434 1.1 joerg }
435 1.1 joerg
436 1.1 joerg static void
437 1.1 joerg assign_nodes(struct state *state)
438 1.1 joerg {
439 1.1 joerg struct edge *e;
440 1.1 joerg size_t i;
441 1.1 joerg
442 1.1 joerg for (i = 0; i < state->keys; ++i) {
443 1.1 joerg e = state->edges + state->output_order[i];
444 1.1 joerg
445 1.1 joerg if (!state->visited[e->left]) {
446 1.1 joerg state->g[e->left] =
447 1.1 joerg (2 * state->data_entries + e->idx
448 1.1 joerg - state->g[e->middle] - state->g[e->right])
449 1.1 joerg % state->data_entries;
450 1.1 joerg } else if (!state->visited[e->middle]) {
451 1.1 joerg state->g[e->middle] =
452 1.1 joerg (2 * state->data_entries + e->idx
453 1.1 joerg - state->g[e->left] - state->g[e->right])
454 1.1 joerg % state->data_entries;
455 1.1 joerg } else {
456 1.1 joerg state->g[e->right] =
457 1.1 joerg (2 * state->data_entries + e->idx
458 1.1 joerg - state->g[e->left] - state->g[e->middle])
459 1.1 joerg % state->data_entries;
460 1.1 joerg }
461 1.1 joerg state->visited[e->left] = 1;
462 1.1 joerg state->visited[e->middle] = 1;
463 1.1 joerg state->visited[e->right] = 1;
464 1.1 joerg }
465 1.1 joerg }
466 1.1 joerg
467 1.1 joerg static size_t
468 1.1 joerg compute_size(uint32_t size)
469 1.1 joerg {
470 1.1 joerg if (size < 0x100)
471 1.1 joerg return 1;
472 1.1 joerg else if (size < 0x10000)
473 1.1 joerg return 2;
474 1.1 joerg else
475 1.1 joerg return 4;
476 1.1 joerg }
477 1.1 joerg
478 1.1 joerg #define COND_FLUSH_BUFFER(n) do { \
479 1.1 joerg if (__predict_false(cur_pos + (n) >= sizeof(buf))) { \
480 1.1 joerg ret = write(fd, buf, cur_pos); \
481 1.1 joerg if (ret == -1 || (size_t)ret != cur_pos) \
482 1.1 joerg return -1; \
483 1.1 joerg cur_pos = 0; \
484 1.1 joerg } \
485 1.1 joerg } while (/* CONSTCOND */ 0)
486 1.1 joerg
487 1.1 joerg static int
488 1.1 joerg print_hash(struct cdbw *cdbw, struct state *state, int fd, const char *descr)
489 1.1 joerg {
490 1.1 joerg uint32_t data_size;
491 1.1 joerg uint8_t buf[90000];
492 1.1 joerg size_t i, size, size2, cur_pos;
493 1.1 joerg ssize_t ret;
494 1.1 joerg
495 1.1 joerg memcpy(buf, "NBCDB\n\0", 7);
496 1.1 joerg buf[7] = 1;
497 1.1 joerg strncpy((char *)buf + 8, descr, 16);
498 1.2 christos _DIAGASSERT(__type_fit(uint32_t, cdbw->data_size));
499 1.2 christos le32enc(buf + 24, (uint32_t)cdbw->data_size);
500 1.2 christos _DIAGASSERT(__type_fit(uint32_t, cdbw->data_counter));
501 1.2 christos le32enc(buf + 28, (uint32_t)cdbw->data_counter);
502 1.1 joerg le32enc(buf + 32, state->entries);
503 1.1 joerg le32enc(buf + 36, state->seed);
504 1.1 joerg cur_pos = 40;
505 1.1 joerg
506 1.1 joerg size = compute_size(state->entries);
507 1.1 joerg for (i = 0; i < state->entries; ++i) {
508 1.1 joerg COND_FLUSH_BUFFER(4);
509 1.1 joerg le32enc(buf + cur_pos, state->g[i]);
510 1.1 joerg cur_pos += size;
511 1.1 joerg }
512 1.2 christos _DIAGASSERT(__type_fit(uint32_t, cdbw->data_counter));
513 1.2 christos size2 = compute_size((uint32_t)cdbw->data_size);
514 1.1 joerg size = size * state->entries % size2;
515 1.1 joerg if (size != 0) {
516 1.1 joerg size = size2 - size;
517 1.1 joerg COND_FLUSH_BUFFER(4);
518 1.1 joerg le32enc(buf + cur_pos, 0);
519 1.1 joerg cur_pos += size;
520 1.1 joerg }
521 1.1 joerg for (data_size = 0, i = 0; i < cdbw->data_counter; ++i) {
522 1.1 joerg COND_FLUSH_BUFFER(4);
523 1.1 joerg le32enc(buf + cur_pos, data_size);
524 1.1 joerg cur_pos += size2;
525 1.2 christos _DIAGASSERT(__type_fit(uint32_t,
526 1.2 christos data_size + cdbw->data_len[i]));
527 1.2 christos data_size += (uint32_t)cdbw->data_len[i];
528 1.1 joerg }
529 1.1 joerg COND_FLUSH_BUFFER(4);
530 1.1 joerg le32enc(buf + cur_pos, data_size);
531 1.1 joerg cur_pos += size2;
532 1.1 joerg
533 1.1 joerg for (i = 0; i < cdbw->data_counter; ++i) {
534 1.1 joerg COND_FLUSH_BUFFER(cdbw->data_len[i]);
535 1.1 joerg if (cdbw->data_len[i] < sizeof(buf)) {
536 1.1 joerg memcpy(buf + cur_pos, cdbw->data_ptr[i],
537 1.1 joerg cdbw->data_len[i]);
538 1.1 joerg cur_pos += cdbw->data_len[i];
539 1.1 joerg } else {
540 1.1 joerg ret = write(fd, cdbw->data_ptr[i], cdbw->data_len[i]);
541 1.1 joerg if (ret == -1 || (size_t)ret != cdbw->data_len[i])
542 1.1 joerg return -1;
543 1.1 joerg }
544 1.1 joerg }
545 1.1 joerg if (cur_pos != 0) {
546 1.1 joerg ret = write(fd, buf, cur_pos);
547 1.1 joerg if (ret == -1 || (size_t)ret != cur_pos)
548 1.1 joerg return -1;
549 1.1 joerg }
550 1.1 joerg return 0;
551 1.1 joerg }
552 1.1 joerg
553 1.1 joerg int
554 1.1 joerg cdbw_output(struct cdbw *cdbw, int fd, const char descr[16],
555 1.1 joerg uint32_t (*seedgen)(void))
556 1.1 joerg {
557 1.1 joerg struct state state;
558 1.1 joerg int rv;
559 1.1 joerg
560 1.1 joerg if (cdbw->data_counter == 0 || cdbw->key_counter == 0) {
561 1.1 joerg state.entries = 0;
562 1.1 joerg state.seed = 0;
563 1.1 joerg print_hash(cdbw, &state, fd, descr);
564 1.1 joerg return 0;
565 1.1 joerg }
566 1.1 joerg
567 1.1 joerg if (seedgen == NULL)
568 1.1 joerg seedgen = arc4random;
569 1.1 joerg
570 1.1 joerg rv = 0;
571 1.1 joerg
572 1.2 christos _DIAGASSERT(__type_fit(uint32_t, cdbw->key_counter));
573 1.2 christos state.keys = (uint32_t)cdbw->key_counter;
574 1.2 christos _DIAGASSERT(__type_fit(uint32_t, cdbw->key_counter));
575 1.2 christos state.data_entries = (uint32_t)cdbw->data_counter;
576 1.1 joerg state.entries = state.keys + (state.keys + 3) / 4;
577 1.1 joerg if (state.entries < 10)
578 1.1 joerg state.entries = 10;
579 1.1 joerg
580 1.1 joerg #define NALLOC(var, n) var = calloc(sizeof(*var), n)
581 1.1 joerg NALLOC(state.g, state.entries);
582 1.1 joerg NALLOC(state.visited, state.entries);
583 1.1 joerg NALLOC(state.verts, state.entries);
584 1.1 joerg NALLOC(state.edges, state.entries);
585 1.1 joerg NALLOC(state.output_order, state.keys);
586 1.1 joerg #undef NALLOC
587 1.1 joerg
588 1.1 joerg if (state.g == NULL || state.visited == NULL || state.verts == NULL ||
589 1.1 joerg state.edges == NULL || state.output_order == NULL) {
590 1.1 joerg rv = -1;
591 1.1 joerg goto release;
592 1.1 joerg }
593 1.1 joerg
594 1.1 joerg do {
595 1.1 joerg state.seed = (*seedgen)();
596 1.1 joerg } while (build_graph(cdbw, &state));
597 1.1 joerg
598 1.1 joerg assign_nodes(&state);
599 1.1 joerg rv = print_hash(cdbw, &state, fd, descr);
600 1.1 joerg
601 1.1 joerg release:
602 1.1 joerg free(state.g);
603 1.1 joerg free(state.visited);
604 1.1 joerg free(state.verts);
605 1.1 joerg free(state.edges);
606 1.1 joerg free(state.output_order);
607 1.1 joerg
608 1.1 joerg return rv;
609 1.1 joerg }
610