cdbw.c revision 1.2 1 /* $NetBSD: cdbw.c,v 1.2 2012/03/13 21:13:31 christos Exp $ */
2 /*-
3 * Copyright (c) 2009, 2010 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Joerg Sonnenberger.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #if HAVE_NBTOOL_CONFIG_H
35 #include "nbtool_config.h"
36 #endif
37
38 #include <sys/cdefs.h>
39 __RCSID("$NetBSD: cdbw.c,v 1.2 2012/03/13 21:13:31 christos Exp $");
40
41 #include "namespace.h"
42
43 #include <sys/endian.h>
44 #include <sys/queue.h>
45 #include <assert.h>
46 #include <cdbw.h>
47 #include <stdlib.h>
48 #include <string.h>
49 #include <unistd.h>
50
51 #ifdef __weak_alias
52 __weak_alias(cdbw_close,_cdbw_close)
53 __weak_alias(cdbw_open,_cdbw_open)
54 __weak_alias(cdbw_output,_cdbw_output)
55 __weak_alias(cdbw_put,_cdbw_put)
56 __weak_alias(cdbw_put_data,_cdbw_put_data)
57 __weak_alias(cdbw_put_key,_cdbw_put_key)
58 #endif
59
60 struct key_hash {
61 SLIST_ENTRY(key_hash) link;
62 uint32_t hashes[3];
63 uint32_t idx;
64 void *key;
65 size_t keylen;
66 };
67
68 SLIST_HEAD(key_hash_head, key_hash);
69
70 struct cdbw {
71 size_t data_counter;
72 size_t data_allocated;
73 size_t data_size;
74 size_t *data_len;
75 void **data_ptr;
76
77 size_t hash_size;
78 struct key_hash_head *hash;
79 size_t key_counter;
80 };
81
82 /* Max. data counter that allows the index size to be 32bit. */
83 static const uint32_t max_data_counter = 0xccccccccU;
84
85 struct cdbw *
86 cdbw_open(void)
87 {
88 struct cdbw *cdbw;
89 size_t i;
90
91 cdbw = calloc(sizeof(*cdbw), 1);
92 if (cdbw == NULL)
93 return NULL;
94
95 cdbw->hash_size = 1024;
96 cdbw->hash = calloc(cdbw->hash_size, sizeof(*cdbw->hash));
97 if (cdbw->hash == NULL) {
98 free(cdbw);
99 return NULL;
100 }
101
102 for (i = 0; i < cdbw->hash_size; ++i)
103 SLIST_INIT(cdbw->hash + i);
104
105 return cdbw;
106 }
107
108 int
109 cdbw_put(struct cdbw *cdbw, const void *key, size_t keylen,
110 const void *data, size_t datalen)
111 {
112 uint32_t idx;
113 int rv;
114
115 rv = cdbw_put_data(cdbw, data, datalen, &idx);
116 if (rv)
117 return rv;
118 rv = cdbw_put_key(cdbw, key, keylen, idx);
119 if (rv) {
120 --cdbw->data_counter;
121 free(cdbw->data_ptr[cdbw->data_counter]);
122 cdbw->data_size -= datalen;
123 return rv;
124 }
125 return 0;
126 }
127
128 int
129 cdbw_put_data(struct cdbw *cdbw, const void *data, size_t datalen,
130 uint32_t *idx)
131 {
132
133 if (cdbw->data_counter == max_data_counter)
134 return -1;
135
136 if (cdbw->data_size + datalen < cdbw->data_size ||
137 cdbw->data_size + datalen > 0xffffffffU)
138 return -1; /* Overflow */
139
140 if (cdbw->data_allocated == cdbw->data_counter) {
141 void **new_data_ptr;
142 size_t *new_data_len;
143 size_t new_allocated;
144
145 if (cdbw->data_allocated == 0)
146 new_allocated = 256;
147 else
148 new_allocated = cdbw->data_allocated * 2;
149
150 new_data_ptr = realloc(cdbw->data_ptr,
151 sizeof(*cdbw->data_ptr) * new_allocated);
152 if (new_data_ptr == NULL)
153 return -1;
154 cdbw->data_ptr = new_data_ptr;
155
156 new_data_len = realloc(cdbw->data_len,
157 sizeof(*cdbw->data_len) * new_allocated);
158 if (new_data_len == NULL)
159 return -1;
160 cdbw->data_len = new_data_len;
161
162 cdbw->data_allocated = new_allocated;
163 }
164
165 cdbw->data_ptr[cdbw->data_counter] = malloc(datalen);
166 if (cdbw->data_ptr[cdbw->data_counter] == NULL)
167 return -1;
168 memcpy(cdbw->data_ptr[cdbw->data_counter], data, datalen);
169 cdbw->data_len[cdbw->data_counter] = datalen;
170 cdbw->data_size += datalen;
171 _DIAGASSERT(__type_fit(uint32_t, cdbw->data_counter));
172 *idx = (uint32_t)cdbw->data_counter++;
173 return 0;
174 }
175
176 int
177 cdbw_put_key(struct cdbw *cdbw, const void *key, size_t keylen, uint32_t idx)
178 {
179 uint32_t hashes[3];
180 struct key_hash_head *head, *head2, *new_head;
181 struct key_hash *key_hash;
182 size_t new_hash_size, i;
183
184 if (idx >= cdbw->data_counter ||
185 cdbw->key_counter == max_data_counter)
186 return -1;
187
188 mi_vector_hash(key, keylen, 0, hashes);
189
190 head = cdbw->hash + (hashes[0] & (cdbw->hash_size - 1));
191 SLIST_FOREACH(key_hash, head, link) {
192 if (key_hash->keylen != keylen)
193 continue;
194 if (key_hash->hashes[0] != hashes[0])
195 continue;
196 if (key_hash->hashes[1] != hashes[1])
197 continue;
198 if (key_hash->hashes[2] != hashes[2])
199 continue;
200 if (memcmp(key, key_hash->key, keylen))
201 continue;
202 return -1;
203 }
204 key_hash = malloc(sizeof(*key_hash));
205 if (key_hash == NULL)
206 return -1;
207 key_hash->key = malloc(keylen);
208 if (key_hash->key == NULL) {
209 free(key_hash);
210 return -1;
211 }
212 memcpy(key_hash->key, key, keylen);
213 key_hash->hashes[0] = hashes[0];
214 key_hash->hashes[1] = hashes[1];
215 key_hash->hashes[2] = hashes[2];
216 key_hash->keylen = keylen;
217 key_hash->idx = idx;
218 SLIST_INSERT_HEAD(head, key_hash, link);
219 ++cdbw->key_counter;
220
221 if (cdbw->key_counter <= cdbw->hash_size)
222 return 0;
223
224 /* Try to resize the hash table, but ignore errors. */
225 new_hash_size = cdbw->hash_size * 2;
226 new_head = calloc(sizeof(*new_head), new_hash_size);
227 if (new_head == NULL)
228 return 0;
229
230 head = &cdbw->hash[hashes[0] & (cdbw->hash_size - 1)];
231 for (i = 0; i < new_hash_size; ++i)
232 SLIST_INIT(new_head + i);
233
234 for (i = 0; i < cdbw->hash_size; ++i) {
235 head = cdbw->hash + i;
236
237 while ((key_hash = SLIST_FIRST(head)) != NULL) {
238 SLIST_REMOVE_HEAD(head, link);
239 head2 = new_head +
240 (key_hash->hashes[0] & (new_hash_size - 1));
241 SLIST_INSERT_HEAD(head2, key_hash, link);
242 }
243 }
244 free(cdbw->hash);
245 cdbw->hash_size = new_hash_size;
246 cdbw->hash = new_head;
247
248 return 0;
249 }
250
251 void
252 cdbw_close(struct cdbw *cdbw)
253 {
254 struct key_hash_head *head;
255 struct key_hash *key_hash;
256 size_t i;
257
258 for (i = 0; i < cdbw->hash_size; ++i) {
259 head = cdbw->hash + i;
260 while ((key_hash = SLIST_FIRST(head)) != NULL) {
261 SLIST_REMOVE_HEAD(head, link);
262 free(key_hash->key);
263 free(key_hash);
264 }
265 }
266
267 for (i = 0; i < cdbw->data_counter; ++i)
268 free(cdbw->data_ptr[i]);
269 free(cdbw->data_ptr);
270 free(cdbw->data_len);
271 free(cdbw->hash);
272 free(cdbw);
273 }
274
275 #define unused 0xffffffffU
276
277 struct vertex {
278 uint32_t l_edge, m_edge, r_edge;
279 };
280
281 struct edge {
282 uint32_t idx;
283
284 uint32_t left, middle, right;
285 uint32_t l_prev, m_prev, l_next;
286 uint32_t r_prev, m_next, r_next;
287 };
288
289 struct state {
290 uint32_t data_entries;
291 uint32_t entries;
292 uint32_t keys;
293 uint32_t seed;
294
295 uint32_t *g;
296 char *visited;
297
298 struct vertex *verts;
299 struct edge *edges;
300 uint32_t output_index;
301 uint32_t *output_order;
302 };
303
304 static void
305 remove_vertex(struct state *state, struct vertex *v)
306 {
307 struct edge *e;
308 struct vertex *vl, *vm, *vr;
309
310 if (v->l_edge != unused && v->m_edge != unused)
311 return;
312 if (v->l_edge != unused && v->r_edge != unused)
313 return;
314 if (v->m_edge != unused && v->r_edge != unused)
315 return;
316 if (v->l_edge == unused && v->m_edge == unused && v->r_edge == unused)
317 return;
318
319 if (v->l_edge != unused) {
320 e = &state->edges[v->l_edge];
321 if (e->l_next != unused)
322 return;
323 } else if (v->m_edge != unused) {
324 e = &state->edges[v->m_edge];
325 if (e->m_next != unused)
326 return;
327 } else {
328 if (v->r_edge == unused)
329 abort();
330 e = &state->edges[v->r_edge];
331 if (e->r_next != unused)
332 return;
333 }
334
335 ptrdiff_t td = e - state->edges;
336 _DIAGASSERT(__type_fit(uint32_t, td));
337 state->output_order[--state->output_index] = (uint32_t)td;
338
339 vl = &state->verts[e->left];
340 vm = &state->verts[e->middle];
341 vr = &state->verts[e->right];
342
343 if (e->l_prev == unused)
344 vl->l_edge = e->l_next;
345 else
346 state->edges[e->l_prev].l_next = e->l_next;
347 if (e->l_next != unused)
348 state->edges[e->l_next].l_prev = e->l_prev;
349
350 if (e->m_prev == unused)
351 vm->m_edge = e->m_next;
352 else
353 state->edges[e->m_prev].m_next = e->m_next;
354 if (e->m_next != unused)
355 state->edges[e->m_next].m_prev = e->m_prev;
356
357 if (e->r_prev == unused)
358 vr->r_edge = e->r_next;
359 else
360 state->edges[e->r_prev].r_next = e->r_next;
361 if (e->r_next != unused)
362 state->edges[e->r_next].r_prev = e->r_prev;
363 }
364
365 static int
366 build_graph(struct cdbw *cdbw, struct state *state)
367 {
368 struct key_hash_head *head;
369 struct key_hash *key_hash;
370 struct vertex *v;
371 struct edge *e;
372 uint32_t hashes[3], i;
373
374 e = state->edges;
375 for (i = 0; i < cdbw->hash_size; ++i) {
376 head = &cdbw->hash[i];
377 SLIST_FOREACH(key_hash, head, link) {
378 e->idx = key_hash->idx;
379 mi_vector_hash(key_hash->key, key_hash->keylen,
380 state->seed, hashes);
381 e->left = hashes[0] % state->entries;
382 e->middle = hashes[1] % state->entries;
383 e->right = hashes[2] % state->entries;
384
385 ++e;
386 }
387 }
388
389 for (i = 0; i < state->entries; ++i) {
390 v = state->verts + i;
391 v->l_edge = unused;
392 v->m_edge = unused;
393 v->r_edge = unused;
394 }
395
396 for (i = 0; i < state->keys; ++i) {
397 e = state->edges + i;
398 v = state->verts + e->left;
399 if (v->l_edge != unused)
400 state->edges[v->l_edge].l_prev = i;
401 e->l_next = v->l_edge;
402 e->l_prev = unused;
403 v->l_edge = i;
404
405 v = &state->verts[e->middle];
406 if (v->m_edge != unused)
407 state->edges[v->m_edge].m_prev = i;
408 e->m_next = v->m_edge;
409 e->m_prev = unused;
410 v->m_edge = i;
411
412 v = &state->verts[e->right];
413 if (v->r_edge != unused)
414 state->edges[v->r_edge].r_prev = i;
415 e->r_next = v->r_edge;
416 e->r_prev = unused;
417 v->r_edge = i;
418 }
419
420 state->output_index = state->keys;
421 for (i = 0; i < state->entries; ++i)
422 remove_vertex(state, state->verts + i);
423
424 i = state->keys;
425 while (i > 0 && i > state->output_index) {
426 --i;
427 e = state->edges + state->output_order[i];
428 remove_vertex(state, state->verts + e->left);
429 remove_vertex(state, state->verts + e->middle);
430 remove_vertex(state, state->verts + e->right);
431 }
432
433 return state->output_index == 0 ? 0 : -1;
434 }
435
436 static void
437 assign_nodes(struct state *state)
438 {
439 struct edge *e;
440 size_t i;
441
442 for (i = 0; i < state->keys; ++i) {
443 e = state->edges + state->output_order[i];
444
445 if (!state->visited[e->left]) {
446 state->g[e->left] =
447 (2 * state->data_entries + e->idx
448 - state->g[e->middle] - state->g[e->right])
449 % state->data_entries;
450 } else if (!state->visited[e->middle]) {
451 state->g[e->middle] =
452 (2 * state->data_entries + e->idx
453 - state->g[e->left] - state->g[e->right])
454 % state->data_entries;
455 } else {
456 state->g[e->right] =
457 (2 * state->data_entries + e->idx
458 - state->g[e->left] - state->g[e->middle])
459 % state->data_entries;
460 }
461 state->visited[e->left] = 1;
462 state->visited[e->middle] = 1;
463 state->visited[e->right] = 1;
464 }
465 }
466
467 static size_t
468 compute_size(uint32_t size)
469 {
470 if (size < 0x100)
471 return 1;
472 else if (size < 0x10000)
473 return 2;
474 else
475 return 4;
476 }
477
478 #define COND_FLUSH_BUFFER(n) do { \
479 if (__predict_false(cur_pos + (n) >= sizeof(buf))) { \
480 ret = write(fd, buf, cur_pos); \
481 if (ret == -1 || (size_t)ret != cur_pos) \
482 return -1; \
483 cur_pos = 0; \
484 } \
485 } while (/* CONSTCOND */ 0)
486
487 static int
488 print_hash(struct cdbw *cdbw, struct state *state, int fd, const char *descr)
489 {
490 uint32_t data_size;
491 uint8_t buf[90000];
492 size_t i, size, size2, cur_pos;
493 ssize_t ret;
494
495 memcpy(buf, "NBCDB\n\0", 7);
496 buf[7] = 1;
497 strncpy((char *)buf + 8, descr, 16);
498 _DIAGASSERT(__type_fit(uint32_t, cdbw->data_size));
499 le32enc(buf + 24, (uint32_t)cdbw->data_size);
500 _DIAGASSERT(__type_fit(uint32_t, cdbw->data_counter));
501 le32enc(buf + 28, (uint32_t)cdbw->data_counter);
502 le32enc(buf + 32, state->entries);
503 le32enc(buf + 36, state->seed);
504 cur_pos = 40;
505
506 size = compute_size(state->entries);
507 for (i = 0; i < state->entries; ++i) {
508 COND_FLUSH_BUFFER(4);
509 le32enc(buf + cur_pos, state->g[i]);
510 cur_pos += size;
511 }
512 _DIAGASSERT(__type_fit(uint32_t, cdbw->data_counter));
513 size2 = compute_size((uint32_t)cdbw->data_size);
514 size = size * state->entries % size2;
515 if (size != 0) {
516 size = size2 - size;
517 COND_FLUSH_BUFFER(4);
518 le32enc(buf + cur_pos, 0);
519 cur_pos += size;
520 }
521 for (data_size = 0, i = 0; i < cdbw->data_counter; ++i) {
522 COND_FLUSH_BUFFER(4);
523 le32enc(buf + cur_pos, data_size);
524 cur_pos += size2;
525 _DIAGASSERT(__type_fit(uint32_t,
526 data_size + cdbw->data_len[i]));
527 data_size += (uint32_t)cdbw->data_len[i];
528 }
529 COND_FLUSH_BUFFER(4);
530 le32enc(buf + cur_pos, data_size);
531 cur_pos += size2;
532
533 for (i = 0; i < cdbw->data_counter; ++i) {
534 COND_FLUSH_BUFFER(cdbw->data_len[i]);
535 if (cdbw->data_len[i] < sizeof(buf)) {
536 memcpy(buf + cur_pos, cdbw->data_ptr[i],
537 cdbw->data_len[i]);
538 cur_pos += cdbw->data_len[i];
539 } else {
540 ret = write(fd, cdbw->data_ptr[i], cdbw->data_len[i]);
541 if (ret == -1 || (size_t)ret != cdbw->data_len[i])
542 return -1;
543 }
544 }
545 if (cur_pos != 0) {
546 ret = write(fd, buf, cur_pos);
547 if (ret == -1 || (size_t)ret != cur_pos)
548 return -1;
549 }
550 return 0;
551 }
552
553 int
554 cdbw_output(struct cdbw *cdbw, int fd, const char descr[16],
555 uint32_t (*seedgen)(void))
556 {
557 struct state state;
558 int rv;
559
560 if (cdbw->data_counter == 0 || cdbw->key_counter == 0) {
561 state.entries = 0;
562 state.seed = 0;
563 print_hash(cdbw, &state, fd, descr);
564 return 0;
565 }
566
567 if (seedgen == NULL)
568 seedgen = arc4random;
569
570 rv = 0;
571
572 _DIAGASSERT(__type_fit(uint32_t, cdbw->key_counter));
573 state.keys = (uint32_t)cdbw->key_counter;
574 _DIAGASSERT(__type_fit(uint32_t, cdbw->key_counter));
575 state.data_entries = (uint32_t)cdbw->data_counter;
576 state.entries = state.keys + (state.keys + 3) / 4;
577 if (state.entries < 10)
578 state.entries = 10;
579
580 #define NALLOC(var, n) var = calloc(sizeof(*var), n)
581 NALLOC(state.g, state.entries);
582 NALLOC(state.visited, state.entries);
583 NALLOC(state.verts, state.entries);
584 NALLOC(state.edges, state.entries);
585 NALLOC(state.output_order, state.keys);
586 #undef NALLOC
587
588 if (state.g == NULL || state.visited == NULL || state.verts == NULL ||
589 state.edges == NULL || state.output_order == NULL) {
590 rv = -1;
591 goto release;
592 }
593
594 do {
595 state.seed = (*seedgen)();
596 } while (build_graph(cdbw, &state));
597
598 assign_nodes(&state);
599 rv = print_hash(cdbw, &state, fd, descr);
600
601 release:
602 free(state.g);
603 free(state.visited);
604 free(state.verts);
605 free(state.edges);
606 free(state.output_order);
607
608 return rv;
609 }
610