Home | History | Annotate | Line # | Download | only in cdb
cdbw.c revision 1.6
      1 /*	$NetBSD: cdbw.c,v 1.6 2017/11/11 18:05:31 alnsn Exp $	*/
      2 /*-
      3  * Copyright (c) 2009, 2010, 2015 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Joerg Sonnenberger and Alexander Nasonov.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  *
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in
     17  *    the documentation and/or other materials provided with the
     18  *    distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  */
     33 
     34 #if HAVE_NBTOOL_CONFIG_H
     35 #include "nbtool_config.h"
     36 #endif
     37 
     38 #include <sys/cdefs.h>
     39 __RCSID("$NetBSD: cdbw.c,v 1.6 2017/11/11 18:05:31 alnsn Exp $");
     40 
     41 #include "namespace.h"
     42 
     43 #if !HAVE_NBTOOL_CONFIG_H || HAVE_SYS_ENDIAN_H
     44 #include <sys/endian.h>
     45 #endif
     46 #include <sys/queue.h>
     47 #include <cdbw.h>
     48 #include <stdlib.h>
     49 #include <string.h>
     50 #include <unistd.h>
     51 
     52 #ifdef __weak_alias
     53 __weak_alias(cdbw_close,_cdbw_close)
     54 __weak_alias(cdbw_open,_cdbw_open)
     55 __weak_alias(cdbw_output,_cdbw_output)
     56 __weak_alias(cdbw_put,_cdbw_put)
     57 __weak_alias(cdbw_put_data,_cdbw_put_data)
     58 __weak_alias(cdbw_put_key,_cdbw_put_key)
     59 #endif
     60 
     61 struct key_hash {
     62 	SLIST_ENTRY(key_hash) link;
     63 	uint32_t hashes[3];
     64 	uint32_t idx;
     65 	void *key;
     66 	size_t keylen;
     67 };
     68 
     69 SLIST_HEAD(key_hash_head, key_hash);
     70 
     71 struct cdbw {
     72 	size_t data_counter;
     73 	size_t data_allocated;
     74 	size_t data_size;
     75 	size_t *data_len;
     76 	void **data_ptr;
     77 
     78 	size_t hash_size;
     79 	struct key_hash_head *hash;
     80 	size_t key_counter;
     81 };
     82 
     83  /* Max. data counter that allows the index size to be 32bit. */
     84 static const uint32_t max_data_counter = 0xccccccccU;
     85 
     86 struct cdbw *
     87 cdbw_open(void)
     88 {
     89 	struct cdbw *cdbw;
     90 	size_t i;
     91 
     92 	cdbw = calloc(sizeof(*cdbw), 1);
     93 	if (cdbw == NULL)
     94 		return NULL;
     95 
     96 	cdbw->hash_size = 1024;
     97 	cdbw->hash = calloc(cdbw->hash_size, sizeof(*cdbw->hash));
     98 	if (cdbw->hash == NULL) {
     99 		free(cdbw);
    100 		return NULL;
    101 	}
    102 
    103 	for (i = 0; i < cdbw->hash_size; ++i)
    104 		SLIST_INIT(cdbw->hash + i);
    105 
    106 	return cdbw;
    107 }
    108 
    109 int
    110 cdbw_put(struct cdbw *cdbw, const void *key, size_t keylen,
    111     const void *data, size_t datalen)
    112 {
    113 	uint32_t idx;
    114 	int rv;
    115 
    116 	rv = cdbw_put_data(cdbw, data, datalen, &idx);
    117 	if (rv)
    118 		return rv;
    119 	rv = cdbw_put_key(cdbw, key, keylen, idx);
    120 	if (rv) {
    121 		--cdbw->data_counter;
    122 		free(cdbw->data_ptr[cdbw->data_counter]);
    123 		cdbw->data_size -= datalen;
    124 		return rv;
    125 	}
    126 	return 0;
    127 }
    128 
    129 int
    130 cdbw_put_data(struct cdbw *cdbw, const void *data, size_t datalen,
    131     uint32_t *idx)
    132 {
    133 
    134 	if (cdbw->data_counter == max_data_counter)
    135 		return -1;
    136 
    137 	if (cdbw->data_size + datalen < cdbw->data_size ||
    138 	    cdbw->data_size + datalen > 0xffffffffU)
    139 		return -1; /* Overflow */
    140 
    141 	if (cdbw->data_allocated == cdbw->data_counter) {
    142 		void **new_data_ptr;
    143 		size_t *new_data_len;
    144 		size_t new_allocated;
    145 
    146 		if (cdbw->data_allocated == 0)
    147 			new_allocated = 256;
    148 		else
    149 			new_allocated = cdbw->data_allocated * 2;
    150 
    151 		new_data_ptr = realloc(cdbw->data_ptr,
    152 		    sizeof(*cdbw->data_ptr) * new_allocated);
    153 		if (new_data_ptr == NULL)
    154 			return -1;
    155 		cdbw->data_ptr = new_data_ptr;
    156 
    157 		new_data_len = realloc(cdbw->data_len,
    158 		    sizeof(*cdbw->data_len) * new_allocated);
    159 		if (new_data_len == NULL)
    160 			return -1;
    161 		cdbw->data_len = new_data_len;
    162 
    163 		cdbw->data_allocated = new_allocated;
    164 	}
    165 
    166 	cdbw->data_ptr[cdbw->data_counter] = malloc(datalen);
    167 	if (cdbw->data_ptr[cdbw->data_counter] == NULL)
    168 		return -1;
    169 	memcpy(cdbw->data_ptr[cdbw->data_counter], data, datalen);
    170 	cdbw->data_len[cdbw->data_counter] = datalen;
    171 	cdbw->data_size += datalen;
    172 	*idx = cdbw->data_counter++;
    173 	return 0;
    174 }
    175 
    176 int
    177 cdbw_put_key(struct cdbw *cdbw, const void *key, size_t keylen, uint32_t idx)
    178 {
    179 	uint32_t hashes[3];
    180 	struct key_hash_head *head, *head2, *new_head;
    181 	struct key_hash *key_hash;
    182 	size_t new_hash_size, i;
    183 
    184 	if (idx >= cdbw->data_counter ||
    185 	    cdbw->key_counter == max_data_counter)
    186 		return -1;
    187 
    188 	mi_vector_hash(key, keylen, 0, hashes);
    189 
    190 	head = cdbw->hash + (hashes[0] & (cdbw->hash_size - 1));
    191 	SLIST_FOREACH(key_hash, head, link) {
    192 		if (key_hash->keylen != keylen)
    193 			continue;
    194 		if (key_hash->hashes[0] != hashes[0])
    195 			continue;
    196 		if (key_hash->hashes[1] != hashes[1])
    197 			continue;
    198 		if (key_hash->hashes[2] != hashes[2])
    199 			continue;
    200 		if (memcmp(key, key_hash->key, keylen))
    201 			continue;
    202 		return -1;
    203 	}
    204 	key_hash = malloc(sizeof(*key_hash));
    205 	if (key_hash == NULL)
    206 		return -1;
    207 	key_hash->key = malloc(keylen);
    208 	if (key_hash->key == NULL) {
    209 		free(key_hash);
    210 		return -1;
    211 	}
    212 	memcpy(key_hash->key, key, keylen);
    213 	key_hash->hashes[0] = hashes[0];
    214 	key_hash->hashes[1] = hashes[1];
    215 	key_hash->hashes[2] = hashes[2];
    216 	key_hash->keylen = keylen;
    217 	key_hash->idx = idx;
    218 	SLIST_INSERT_HEAD(head, key_hash, link);
    219 	++cdbw->key_counter;
    220 
    221 	if (cdbw->key_counter <= cdbw->hash_size)
    222 		return 0;
    223 
    224 	/* Try to resize the hash table, but ignore errors. */
    225 	new_hash_size = cdbw->hash_size * 2;
    226 	new_head = calloc(sizeof(*new_head), new_hash_size);
    227 	if (new_head == NULL)
    228 		return 0;
    229 
    230 	head = &cdbw->hash[hashes[0] & (cdbw->hash_size - 1)];
    231 	for (i = 0; i < new_hash_size; ++i)
    232 		SLIST_INIT(new_head + i);
    233 
    234 	for (i = 0; i < cdbw->hash_size; ++i) {
    235 		head = cdbw->hash + i;
    236 
    237 		while ((key_hash = SLIST_FIRST(head)) != NULL) {
    238 			SLIST_REMOVE_HEAD(head, link);
    239 			head2 = new_head +
    240 			    (key_hash->hashes[0] & (new_hash_size - 1));
    241 			SLIST_INSERT_HEAD(head2, key_hash, link);
    242 		}
    243 	}
    244 	free(cdbw->hash);
    245 	cdbw->hash_size = new_hash_size;
    246 	cdbw->hash = new_head;
    247 
    248 	return 0;
    249 }
    250 
    251 void
    252 cdbw_close(struct cdbw *cdbw)
    253 {
    254 	struct key_hash_head *head;
    255 	struct key_hash *key_hash;
    256 	size_t i;
    257 
    258 	for (i = 0; i < cdbw->hash_size; ++i) {
    259 		head = cdbw->hash + i;
    260 		while ((key_hash = SLIST_FIRST(head)) != NULL) {
    261 			SLIST_REMOVE_HEAD(head, link);
    262 			free(key_hash->key);
    263 			free(key_hash);
    264 		}
    265 	}
    266 
    267 	for (i = 0; i < cdbw->data_counter; ++i)
    268 		free(cdbw->data_ptr[i]);
    269 	free(cdbw->data_ptr);
    270 	free(cdbw->data_len);
    271 	free(cdbw->hash);
    272 	free(cdbw);
    273 }
    274 
    275 uint32_t
    276 cdbw_stable_seeder(void)
    277 {
    278 	return 0;
    279 }
    280 
    281 /*
    282  * The algorithm below is based on paper
    283  * Cache-Oblivious Peeling of Random Hypergraphs by Djamal Belazzougui,
    284  * Paolo Boldi, Giuseppe Ottaviano, Rossano Venturini, and Sebastiano
    285  * Vigna.
    286  * http://zola.di.unipi.it/rossano/wp-content/papercite-data/pdf/dcc14.pdf
    287  */
    288 
    289 /*
    290  * Data type for a valid oriented edge (v0, v1, v2), v1 < v2.
    291  * The first vertex v0 is implicit and is determined by an index
    292  * of the corresponding element in the state->oedges array.
    293  * If the degree of v0 is greater than 1, other members don't
    294  * make sense because they're a result of XORing multiple values.
    295  */
    296 struct oedge {
    297 	uint32_t degree;   /* Degree of v0. */
    298 	uint32_t verts[2]; /* v1 and v2 */
    299 	uint32_t edge;
    300 };
    301 
    302 struct edge {
    303 	uint32_t idx;
    304 
    305 	uint32_t left, middle, right;
    306 };
    307 
    308 struct state {
    309 	uint32_t data_entries;
    310 	uint32_t entries;
    311 	uint32_t keys;
    312 	uint32_t seed;
    313 
    314 	uint32_t *g;
    315 	char *visited;
    316 
    317 	struct oedge *oedges;
    318 	struct edge *edges;
    319 	uint32_t output_index;
    320 	uint32_t *output_order;
    321 };
    322 
    323 /*
    324  * Add (delta == 1) or remove (delta == -1) the edge e from vertex v0.
    325  */
    326 static inline void
    327 add_remove_edge(struct oedge *o, int delta, uint32_t e,
    328     uint32_t v0, uint32_t v1, uint32_t v2)
    329 {
    330 
    331 	o[v0].verts[v1 < v2 ? 0 : 1] ^= v1;
    332 	o[v0].verts[v1 < v2 ? 1 : 0] ^= v2;
    333 	o[v0].degree += delta;
    334 	o[v0].edge ^= e;
    335 }
    336 
    337 static inline void
    338 add_edge(struct oedge *o, uint32_t e,
    339     uint32_t v0, uint32_t v1, uint32_t v2)
    340 {
    341 
    342 	add_remove_edge(o, 1, e, v0, v1, v2);
    343 }
    344 
    345 static inline void
    346 remove_vertex(struct state *state, uint32_t v0)
    347 {
    348 	uint32_t e, v1, v2;
    349 	struct oedge *o = state->oedges;
    350 
    351 	if (o[v0].degree == 1) {
    352 		e = o[v0].edge;
    353 		v1 = o[v0].verts[0];
    354 		v2 = o[v0].verts[1];
    355 		o[v0].degree = 0;
    356 		add_remove_edge(o, -1, e, v1, v0, v2);
    357 		add_remove_edge(o, -1, e, v2, v0, v1);
    358 		state->output_order[--state->output_index] = e;
    359 	}
    360 }
    361 
    362 static int
    363 build_graph(struct cdbw *cdbw, struct state *state)
    364 {
    365 	struct key_hash_head *head;
    366 	struct key_hash *key_hash;
    367 	struct edge *e;
    368 	uint32_t hashes[3];
    369 	size_t i;
    370 
    371 	memset(state->oedges, 0, sizeof(struct oedge) * state->entries);
    372 
    373 	e = state->edges;
    374 	for (i = 0; i < cdbw->hash_size; ++i) {
    375 		head = &cdbw->hash[i];
    376 		SLIST_FOREACH(key_hash, head, link) {
    377 			e->idx = key_hash->idx;
    378 			mi_vector_hash(key_hash->key, key_hash->keylen,
    379 			    state->seed, hashes);
    380 			e->left = hashes[0] % state->entries;
    381 			e->middle = hashes[1] % state->entries;
    382 			e->right = hashes[2] % state->entries;
    383 
    384 			if (e->left == e->middle)
    385 				return -1;
    386 			add_edge(state->oedges, e - state->edges,
    387 			    e->right, e->left, e->middle);
    388 			if (e->left == e->right)
    389 				return -1;
    390 			add_edge(state->oedges, e - state->edges,
    391 			    e->middle, e->left, e->right);
    392 			if (e->middle == e->right)
    393 				return -1;
    394 			add_edge(state->oedges, e - state->edges,
    395 			    e->left, e->middle, e->right);
    396 
    397 			++e;
    398 		}
    399 	}
    400 
    401 	state->output_index = state->keys;
    402 	for (i = 0; i < state->entries; ++i)
    403 		remove_vertex(state, i);
    404 
    405 	i = state->keys;
    406 	while (i > 0 && i > state->output_index) {
    407 		--i;
    408 		e = state->edges + state->output_order[i];
    409 		remove_vertex(state, e->left);
    410 		remove_vertex(state, e->middle);
    411 		remove_vertex(state, e->right);
    412 	}
    413 
    414 	return state->output_index == 0 ? 0 : -1;
    415 }
    416 
    417 static void
    418 assign_nodes(struct state *state)
    419 {
    420 	struct edge *e;
    421 	size_t i;
    422 
    423 	for (i = 0; i < state->keys; ++i) {
    424 		e = state->edges + state->output_order[i];
    425 
    426 		if (!state->visited[e->left]) {
    427 			state->g[e->left] =
    428 			    (2 * state->data_entries + e->idx
    429 			    - state->g[e->middle] - state->g[e->right])
    430 			    % state->data_entries;
    431 		} else if (!state->visited[e->middle]) {
    432 			state->g[e->middle] =
    433 			    (2 * state->data_entries + e->idx
    434 			    - state->g[e->left] - state->g[e->right])
    435 			    % state->data_entries;
    436 		} else {
    437 			state->g[e->right] =
    438 			    (2 * state->data_entries + e->idx
    439 			    - state->g[e->left] - state->g[e->middle])
    440 			    % state->data_entries;
    441 		}
    442 		state->visited[e->left] = 1;
    443 		state->visited[e->middle] = 1;
    444 		state->visited[e->right] = 1;
    445 	}
    446 }
    447 
    448 static size_t
    449 compute_size(uint32_t size)
    450 {
    451 	if (size < 0x100)
    452 		return 1;
    453 	else if (size < 0x10000)
    454 		return 2;
    455 	else
    456 		return 4;
    457 }
    458 
    459 #define COND_FLUSH_BUFFER(n) do { 				\
    460 	if (__predict_false(cur_pos + (n) >= sizeof(buf))) {	\
    461 		ret = write(fd, buf, cur_pos);			\
    462 		if (ret == -1 || (size_t)ret != cur_pos)	\
    463 			return -1;				\
    464 		cur_pos = 0;					\
    465 	}							\
    466 } while (/* CONSTCOND */ 0)
    467 
    468 static int
    469 print_hash(struct cdbw *cdbw, struct state *state, int fd, const char *descr)
    470 {
    471 	uint32_t data_size;
    472 	uint8_t buf[90000];
    473 	size_t i, size, size2, cur_pos;
    474 	ssize_t ret;
    475 
    476 	memcpy(buf, "NBCDB\n\0", 7);
    477 	buf[7] = 1;
    478 	strncpy((char *)buf + 8, descr, 16);
    479 	le32enc(buf + 24, cdbw->data_size);
    480 	le32enc(buf + 28, cdbw->data_counter);
    481 	le32enc(buf + 32, state->entries);
    482 	le32enc(buf + 36, state->seed);
    483 	cur_pos = 40;
    484 
    485 	size = compute_size(state->entries);
    486 	for (i = 0; i < state->entries; ++i) {
    487 		COND_FLUSH_BUFFER(4);
    488 		le32enc(buf + cur_pos, state->g[i]);
    489 		cur_pos += size;
    490 	}
    491 	size2 = compute_size(cdbw->data_size);
    492 	size = size * state->entries % size2;
    493 	if (size != 0) {
    494 		size = size2 - size;
    495 		COND_FLUSH_BUFFER(4);
    496 		le32enc(buf + cur_pos, 0);
    497 		cur_pos += size;
    498 	}
    499 	for (data_size = 0, i = 0; i < cdbw->data_counter; ++i) {
    500 		COND_FLUSH_BUFFER(4);
    501 		le32enc(buf + cur_pos, data_size);
    502 		cur_pos += size2;
    503 		data_size += cdbw->data_len[i];
    504 	}
    505 	COND_FLUSH_BUFFER(4);
    506 	le32enc(buf + cur_pos, data_size);
    507 	cur_pos += size2;
    508 
    509 	for (i = 0; i < cdbw->data_counter; ++i) {
    510 		COND_FLUSH_BUFFER(cdbw->data_len[i]);
    511 		if (cdbw->data_len[i] < sizeof(buf)) {
    512 			memcpy(buf + cur_pos, cdbw->data_ptr[i],
    513 			    cdbw->data_len[i]);
    514 			cur_pos += cdbw->data_len[i];
    515 		} else {
    516 			ret = write(fd, cdbw->data_ptr[i], cdbw->data_len[i]);
    517 			if (ret == -1 || (size_t)ret != cdbw->data_len[i])
    518 				return -1;
    519 		}
    520 	}
    521 	if (cur_pos != 0) {
    522 		ret = write(fd, buf, cur_pos);
    523 		if (ret == -1 || (size_t)ret != cur_pos)
    524 			return -1;
    525 	}
    526 	return 0;
    527 }
    528 
    529 int
    530 cdbw_output(struct cdbw *cdbw, int fd, const char descr[16],
    531     uint32_t (*seedgen)(void))
    532 {
    533 	struct state state;
    534 	int rv;
    535 
    536 	if (cdbw->data_counter == 0 || cdbw->key_counter == 0) {
    537 		state.entries = 0;
    538 		state.seed = 0;
    539 		print_hash(cdbw, &state, fd, descr);
    540 		return 0;
    541 	}
    542 
    543 #if HAVE_NBTOOL_CONFIG_H
    544 	if (seedgen == NULL)
    545 		seedgen = cdbw_stable_seeder;
    546 #else
    547 	if (seedgen == NULL)
    548 		seedgen = arc4random;
    549 #endif
    550 
    551 	rv = 0;
    552 
    553 	state.keys = cdbw->key_counter;
    554 	state.data_entries = cdbw->data_counter;
    555 	state.entries = state.keys + (state.keys + 3) / 4;
    556 	if (state.entries < 10)
    557 		state.entries = 10;
    558 
    559 #define	NALLOC(var, n)	var = calloc(sizeof(*var), n)
    560 	NALLOC(state.g, state.entries);
    561 	NALLOC(state.visited, state.entries);
    562 	NALLOC(state.oedges, state.entries);
    563 	NALLOC(state.edges, state.keys);
    564 	NALLOC(state.output_order, state.keys);
    565 #undef NALLOC
    566 
    567 	if (state.g == NULL || state.visited == NULL || state.oedges == NULL ||
    568 	    state.edges == NULL || state.output_order == NULL) {
    569 		rv = -1;
    570 		goto release;
    571 	}
    572 
    573 	state.seed = 0;
    574 	do {
    575 		if (seedgen == cdbw_stable_seeder)
    576 			++state.seed;
    577 		else
    578 			state.seed = (*seedgen)();
    579 	} while (build_graph(cdbw, &state));
    580 
    581 	assign_nodes(&state);
    582 	rv = print_hash(cdbw, &state, fd, descr);
    583 
    584 release:
    585 	free(state.g);
    586 	free(state.visited);
    587 	free(state.oedges);
    588 	free(state.edges);
    589 	free(state.output_order);
    590 
    591 	return rv;
    592 }
    593