1 1.22 christos /* $NetBSD: bt_split.c,v 1.22 2016/09/24 21:31:25 christos Exp $ */ 2 1.5 cgd 3 1.1 cgd /*- 4 1.4 cgd * Copyright (c) 1990, 1993, 1994 5 1.1 cgd * The Regents of the University of California. All rights reserved. 6 1.1 cgd * 7 1.1 cgd * This code is derived from software contributed to Berkeley by 8 1.1 cgd * Mike Olson. 9 1.1 cgd * 10 1.1 cgd * Redistribution and use in source and binary forms, with or without 11 1.1 cgd * modification, are permitted provided that the following conditions 12 1.1 cgd * are met: 13 1.1 cgd * 1. Redistributions of source code must retain the above copyright 14 1.1 cgd * notice, this list of conditions and the following disclaimer. 15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 cgd * notice, this list of conditions and the following disclaimer in the 17 1.1 cgd * documentation and/or other materials provided with the distribution. 18 1.13 agc * 3. Neither the name of the University nor the names of its contributors 19 1.1 cgd * may be used to endorse or promote products derived from this software 20 1.1 cgd * without specific prior written permission. 21 1.1 cgd * 22 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 1.1 cgd * SUCH DAMAGE. 33 1.1 cgd */ 34 1.1 cgd 35 1.17 joerg #if HAVE_NBTOOL_CONFIG_H 36 1.17 joerg #include "nbtool_config.h" 37 1.17 joerg #endif 38 1.17 joerg 39 1.7 christos #include <sys/cdefs.h> 40 1.22 christos __RCSID("$NetBSD: bt_split.c,v 1.22 2016/09/24 21:31:25 christos Exp $"); 41 1.1 cgd 42 1.8 jtc #include "namespace.h" 43 1.1 cgd #include <sys/types.h> 44 1.1 cgd 45 1.14 christos #include <assert.h> 46 1.1 cgd #include <limits.h> 47 1.1 cgd #include <stdio.h> 48 1.1 cgd #include <stdlib.h> 49 1.1 cgd #include <string.h> 50 1.1 cgd 51 1.1 cgd #include <db.h> 52 1.1 cgd #include "btree.h" 53 1.1 cgd 54 1.14 christos static int bt_broot(BTREE *, PAGE *, PAGE *, PAGE *); 55 1.14 christos static PAGE *bt_page(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t); 56 1.14 christos static int bt_preserve(BTREE *, pgno_t); 57 1.14 christos static PAGE *bt_psplit(BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t); 58 1.14 christos static PAGE *bt_root(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t); 59 1.14 christos static int bt_rroot(BTREE *, PAGE *, PAGE *, PAGE *); 60 1.14 christos static recno_t rec_total(PAGE *); 61 1.1 cgd 62 1.1 cgd #ifdef STATISTICS 63 1.15 joerg unsigned long bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved; 64 1.1 cgd #endif 65 1.1 cgd 66 1.1 cgd /* 67 1.1 cgd * __BT_SPLIT -- Split the tree. 68 1.1 cgd * 69 1.1 cgd * Parameters: 70 1.1 cgd * t: tree 71 1.1 cgd * sp: page to split 72 1.1 cgd * key: key to insert 73 1.1 cgd * data: data to insert 74 1.1 cgd * flags: BIGKEY/BIGDATA flags 75 1.1 cgd * ilen: insert length 76 1.1 cgd * skip: index to leave open 77 1.1 cgd * 78 1.1 cgd * Returns: 79 1.1 cgd * RET_ERROR, RET_SUCCESS 80 1.1 cgd */ 81 1.1 cgd int 82 1.14 christos __bt_split(BTREE *t, PAGE *sp, const DBT *key, const DBT *data, int flags, 83 1.15 joerg size_t ilen, uint32_t argskip) 84 1.1 cgd { 85 1.7 christos BINTERNAL *bi = NULL; /* pacify gcc */ 86 1.7 christos BLEAF *bl = NULL, *tbl; /* pacify gcc */ 87 1.1 cgd DBT a, b; 88 1.1 cgd EPGNO *parent; 89 1.1 cgd PAGE *h, *l, *r, *lchild, *rchild; 90 1.1 cgd indx_t nxtindex; 91 1.15 joerg uint16_t skip; 92 1.15 joerg uint32_t n, nbytes, nksize = 0; /* pacify gcc */ 93 1.1 cgd int parentsplit; 94 1.1 cgd char *dest; 95 1.1 cgd 96 1.1 cgd /* 97 1.1 cgd * Split the page into two pages, l and r. The split routines return 98 1.1 cgd * a pointer to the page into which the key should be inserted and with 99 1.1 cgd * skip set to the offset which should be used. Additionally, l and r 100 1.1 cgd * are pinned. 101 1.1 cgd */ 102 1.4 cgd skip = argskip; 103 1.1 cgd h = sp->pgno == P_ROOT ? 104 1.1 cgd bt_root(t, sp, &l, &r, &skip, ilen) : 105 1.1 cgd bt_page(t, sp, &l, &r, &skip, ilen); 106 1.1 cgd if (h == NULL) 107 1.1 cgd return (RET_ERROR); 108 1.1 cgd 109 1.1 cgd /* 110 1.1 cgd * Insert the new key/data pair into the leaf page. (Key inserts 111 1.1 cgd * always cause a leaf page to split first.) 112 1.1 cgd */ 113 1.14 christos _DBFIT(ilen, indx_t); 114 1.14 christos h->upper -= (indx_t)ilen; 115 1.14 christos h->linp[skip] = h->upper; 116 1.10 christos dest = (char *)(void *)h + h->upper; 117 1.6 cgd if (F_ISSET(t, R_RECNO)) 118 1.14 christos WR_RLEAF(dest, data, flags); 119 1.1 cgd else 120 1.14 christos WR_BLEAF(dest, key, data, flags); 121 1.1 cgd 122 1.1 cgd /* If the root page was split, make it look right. */ 123 1.1 cgd if (sp->pgno == P_ROOT && 124 1.6 cgd (F_ISSET(t, R_RECNO) ? 125 1.1 cgd bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR) 126 1.1 cgd goto err2; 127 1.1 cgd 128 1.1 cgd /* 129 1.1 cgd * Now we walk the parent page stack -- a LIFO stack of the pages that 130 1.1 cgd * were traversed when we searched for the page that split. Each stack 131 1.1 cgd * entry is a page number and a page index offset. The offset is for 132 1.1 cgd * the page traversed on the search. We've just split a page, so we 133 1.1 cgd * have to insert a new key into the parent page. 134 1.1 cgd * 135 1.1 cgd * If the insert into the parent page causes it to split, may have to 136 1.1 cgd * continue splitting all the way up the tree. We stop if the root 137 1.1 cgd * splits or the page inserted into didn't have to split to hold the 138 1.1 cgd * new key. Some algorithms replace the key for the old page as well 139 1.1 cgd * as the new page. We don't, as there's no reason to believe that the 140 1.1 cgd * first key on the old page is any better than the key we have, and, 141 1.1 cgd * in the case of a key being placed at index 0 causing the split, the 142 1.1 cgd * key is unavailable. 143 1.1 cgd * 144 1.1 cgd * There are a maximum of 5 pages pinned at any time. We keep the left 145 1.1 cgd * and right pages pinned while working on the parent. The 5 are the 146 1.1 cgd * two children, left parent and right parent (when the parent splits) 147 1.1 cgd * and the root page or the overflow key page when calling bt_preserve. 148 1.1 cgd * This code must make sure that all pins are released other than the 149 1.1 cgd * root page or overflow page which is unlocked elsewhere. 150 1.1 cgd */ 151 1.1 cgd while ((parent = BT_POP(t)) != NULL) { 152 1.1 cgd lchild = l; 153 1.1 cgd rchild = r; 154 1.1 cgd 155 1.1 cgd /* Get the parent page. */ 156 1.22 christos if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL) 157 1.1 cgd goto err2; 158 1.1 cgd 159 1.1 cgd /* 160 1.1 cgd * The new key goes ONE AFTER the index, because the split 161 1.1 cgd * was to the right. 162 1.1 cgd */ 163 1.1 cgd skip = parent->index + 1; 164 1.1 cgd 165 1.1 cgd /* 166 1.1 cgd * Calculate the space needed on the parent page. 167 1.1 cgd * 168 1.1 cgd * Prefix trees: space hack when inserting into BINTERNAL 169 1.1 cgd * pages. Retain only what's needed to distinguish between 170 1.1 cgd * the new entry and the LAST entry on the page to its left. 171 1.1 cgd * If the keys compare equal, retain the entire key. Note, 172 1.1 cgd * we don't touch overflow keys, and the entire key must be 173 1.1 cgd * retained for the next-to-left most key on the leftmost 174 1.1 cgd * page of each level, or the search will fail. Applicable 175 1.1 cgd * ONLY to internal pages that have leaf pages as children. 176 1.1 cgd * Further reduction of the key between pairs of internal 177 1.1 cgd * pages loses too much information. 178 1.1 cgd */ 179 1.1 cgd switch (rchild->flags & P_TYPE) { 180 1.1 cgd case P_BINTERNAL: 181 1.1 cgd bi = GETBINTERNAL(rchild, 0); 182 1.1 cgd nbytes = NBINTERNAL(bi->ksize); 183 1.1 cgd break; 184 1.1 cgd case P_BLEAF: 185 1.1 cgd bl = GETBLEAF(rchild, 0); 186 1.1 cgd nbytes = NBINTERNAL(bl->ksize); 187 1.1 cgd if (t->bt_pfx && !(bl->flags & P_BIGKEY) && 188 1.1 cgd (h->prevpg != P_INVALID || skip > 1)) { 189 1.14 christos size_t temp; 190 1.1 cgd tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1); 191 1.1 cgd a.size = tbl->ksize; 192 1.1 cgd a.data = tbl->bytes; 193 1.1 cgd b.size = bl->ksize; 194 1.1 cgd b.data = bl->bytes; 195 1.14 christos temp = t->bt_pfx(&a, &b); 196 1.15 joerg _DBFIT(temp, uint32_t); 197 1.15 joerg nksize = (uint32_t)temp; 198 1.1 cgd n = NBINTERNAL(nksize); 199 1.1 cgd if (n < nbytes) { 200 1.1 cgd #ifdef STATISTICS 201 1.1 cgd bt_pfxsaved += nbytes - n; 202 1.1 cgd #endif 203 1.1 cgd nbytes = n; 204 1.1 cgd } else 205 1.1 cgd nksize = 0; 206 1.1 cgd } else 207 1.1 cgd nksize = 0; 208 1.1 cgd break; 209 1.1 cgd case P_RINTERNAL: 210 1.1 cgd case P_RLEAF: 211 1.1 cgd nbytes = NRINTERNAL; 212 1.1 cgd break; 213 1.1 cgd default: 214 1.1 cgd abort(); 215 1.1 cgd } 216 1.1 cgd 217 1.1 cgd /* Split the parent page if necessary or shift the indices. */ 218 1.18 lukem if ((uint32_t)h->upper - (uint32_t)h->lower < nbytes + sizeof(indx_t)) { 219 1.1 cgd sp = h; 220 1.1 cgd h = h->pgno == P_ROOT ? 221 1.1 cgd bt_root(t, h, &l, &r, &skip, nbytes) : 222 1.1 cgd bt_page(t, h, &l, &r, &skip, nbytes); 223 1.1 cgd if (h == NULL) 224 1.1 cgd goto err1; 225 1.1 cgd parentsplit = 1; 226 1.1 cgd } else { 227 1.1 cgd if (skip < (nxtindex = NEXTINDEX(h))) 228 1.1 cgd memmove(h->linp + skip + 1, h->linp + skip, 229 1.1 cgd (nxtindex - skip) * sizeof(indx_t)); 230 1.1 cgd h->lower += sizeof(indx_t); 231 1.1 cgd parentsplit = 0; 232 1.1 cgd } 233 1.1 cgd 234 1.1 cgd /* Insert the key into the parent page. */ 235 1.6 cgd switch (rchild->flags & P_TYPE) { 236 1.1 cgd case P_BINTERNAL: 237 1.1 cgd h->linp[skip] = h->upper -= nbytes; 238 1.10 christos dest = (char *)(void *)h + h->linp[skip]; 239 1.1 cgd memmove(dest, bi, nbytes); 240 1.10 christos ((BINTERNAL *)(void *)dest)->pgno = rchild->pgno; 241 1.1 cgd break; 242 1.1 cgd case P_BLEAF: 243 1.1 cgd h->linp[skip] = h->upper -= nbytes; 244 1.10 christos dest = (char *)(void *)h + h->linp[skip]; 245 1.1 cgd WR_BINTERNAL(dest, nksize ? nksize : bl->ksize, 246 1.1 cgd rchild->pgno, bl->flags & P_BIGKEY); 247 1.1 cgd memmove(dest, bl->bytes, nksize ? nksize : bl->ksize); 248 1.20 mrg if (bl->flags & P_BIGKEY) { 249 1.20 mrg pgno_t pgno; 250 1.20 mrg memcpy(&pgno, bl->bytes, sizeof(pgno)); 251 1.20 mrg if (bt_preserve(t, pgno) == RET_ERROR) 252 1.20 mrg goto err1; 253 1.20 mrg } 254 1.1 cgd break; 255 1.1 cgd case P_RINTERNAL: 256 1.1 cgd /* 257 1.1 cgd * Update the left page count. If split 258 1.1 cgd * added at index 0, fix the correct page. 259 1.1 cgd */ 260 1.1 cgd if (skip > 0) 261 1.10 christos dest = (char *)(void *)h + h->linp[skip - 1]; 262 1.1 cgd else 263 1.10 christos dest = (char *)(void *)l + l->linp[NEXTINDEX(l) - 1]; 264 1.10 christos ((RINTERNAL *)(void *)dest)->nrecs = rec_total(lchild); 265 1.10 christos ((RINTERNAL *)(void *)dest)->pgno = lchild->pgno; 266 1.1 cgd 267 1.1 cgd /* Update the right page count. */ 268 1.1 cgd h->linp[skip] = h->upper -= nbytes; 269 1.10 christos dest = (char *)(void *)h + h->linp[skip]; 270 1.10 christos ((RINTERNAL *)(void *)dest)->nrecs = rec_total(rchild); 271 1.10 christos ((RINTERNAL *)(void *)dest)->pgno = rchild->pgno; 272 1.1 cgd break; 273 1.1 cgd case P_RLEAF: 274 1.1 cgd /* 275 1.1 cgd * Update the left page count. If split 276 1.1 cgd * added at index 0, fix the correct page. 277 1.1 cgd */ 278 1.1 cgd if (skip > 0) 279 1.10 christos dest = (char *)(void *)h + h->linp[skip - 1]; 280 1.1 cgd else 281 1.10 christos dest = (char *)(void *)l + l->linp[NEXTINDEX(l) - 1]; 282 1.10 christos ((RINTERNAL *)(void *)dest)->nrecs = NEXTINDEX(lchild); 283 1.10 christos ((RINTERNAL *)(void *)dest)->pgno = lchild->pgno; 284 1.1 cgd 285 1.1 cgd /* Update the right page count. */ 286 1.1 cgd h->linp[skip] = h->upper -= nbytes; 287 1.10 christos dest = (char *)(void *)h + h->linp[skip]; 288 1.10 christos ((RINTERNAL *)(void *)dest)->nrecs = NEXTINDEX(rchild); 289 1.10 christos ((RINTERNAL *)(void *)dest)->pgno = rchild->pgno; 290 1.1 cgd break; 291 1.1 cgd default: 292 1.1 cgd abort(); 293 1.1 cgd } 294 1.1 cgd 295 1.1 cgd /* Unpin the held pages. */ 296 1.1 cgd if (!parentsplit) { 297 1.1 cgd mpool_put(t->bt_mp, h, MPOOL_DIRTY); 298 1.1 cgd break; 299 1.1 cgd } 300 1.1 cgd 301 1.1 cgd /* If the root page was split, make it look right. */ 302 1.1 cgd if (sp->pgno == P_ROOT && 303 1.6 cgd (F_ISSET(t, R_RECNO) ? 304 1.1 cgd bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR) 305 1.1 cgd goto err1; 306 1.1 cgd 307 1.1 cgd mpool_put(t->bt_mp, lchild, MPOOL_DIRTY); 308 1.1 cgd mpool_put(t->bt_mp, rchild, MPOOL_DIRTY); 309 1.1 cgd } 310 1.1 cgd 311 1.1 cgd /* Unpin the held pages. */ 312 1.1 cgd mpool_put(t->bt_mp, l, MPOOL_DIRTY); 313 1.1 cgd mpool_put(t->bt_mp, r, MPOOL_DIRTY); 314 1.1 cgd 315 1.1 cgd /* Clear any pages left on the stack. */ 316 1.1 cgd return (RET_SUCCESS); 317 1.1 cgd 318 1.1 cgd /* 319 1.1 cgd * If something fails in the above loop we were already walking back 320 1.1 cgd * up the tree and the tree is now inconsistent. Nothing much we can 321 1.1 cgd * do about it but release any memory we're holding. 322 1.1 cgd */ 323 1.1 cgd err1: mpool_put(t->bt_mp, lchild, MPOOL_DIRTY); 324 1.1 cgd mpool_put(t->bt_mp, rchild, MPOOL_DIRTY); 325 1.1 cgd 326 1.1 cgd err2: mpool_put(t->bt_mp, l, 0); 327 1.1 cgd mpool_put(t->bt_mp, r, 0); 328 1.1 cgd __dbpanic(t->bt_dbp); 329 1.1 cgd return (RET_ERROR); 330 1.1 cgd } 331 1.1 cgd 332 1.1 cgd /* 333 1.1 cgd * BT_PAGE -- Split a non-root page of a btree. 334 1.1 cgd * 335 1.1 cgd * Parameters: 336 1.1 cgd * t: tree 337 1.1 cgd * h: root page 338 1.1 cgd * lp: pointer to left page pointer 339 1.1 cgd * rp: pointer to right page pointer 340 1.1 cgd * skip: pointer to index to leave open 341 1.1 cgd * ilen: insert length 342 1.1 cgd * 343 1.1 cgd * Returns: 344 1.1 cgd * Pointer to page in which to insert or NULL on error. 345 1.1 cgd */ 346 1.1 cgd static PAGE * 347 1.14 christos bt_page(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen) 348 1.1 cgd { 349 1.1 cgd PAGE *l, *r, *tp; 350 1.1 cgd pgno_t npg; 351 1.1 cgd 352 1.1 cgd #ifdef STATISTICS 353 1.1 cgd ++bt_split; 354 1.1 cgd #endif 355 1.1 cgd /* Put the new right page for the split into place. */ 356 1.1 cgd if ((r = __bt_new(t, &npg)) == NULL) 357 1.1 cgd return (NULL); 358 1.1 cgd r->pgno = npg; 359 1.1 cgd r->lower = BTDATAOFF; 360 1.1 cgd r->upper = t->bt_psize; 361 1.1 cgd r->nextpg = h->nextpg; 362 1.1 cgd r->prevpg = h->pgno; 363 1.1 cgd r->flags = h->flags & P_TYPE; 364 1.1 cgd 365 1.1 cgd /* 366 1.1 cgd * If we're splitting the last page on a level because we're appending 367 1.1 cgd * a key to it (skip is NEXTINDEX()), it's likely that the data is 368 1.1 cgd * sorted. Adding an empty page on the side of the level is less work 369 1.1 cgd * and can push the fill factor much higher than normal. If we're 370 1.1 cgd * wrong it's no big deal, we'll just do the split the right way next 371 1.1 cgd * time. It may look like it's equally easy to do a similar hack for 372 1.1 cgd * reverse sorted data, that is, split the tree left, but it's not. 373 1.1 cgd * Don't even try. 374 1.1 cgd */ 375 1.1 cgd if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) { 376 1.1 cgd #ifdef STATISTICS 377 1.1 cgd ++bt_sortsplit; 378 1.1 cgd #endif 379 1.1 cgd h->nextpg = r->pgno; 380 1.1 cgd r->lower = BTDATAOFF + sizeof(indx_t); 381 1.1 cgd *skip = 0; 382 1.1 cgd *lp = h; 383 1.1 cgd *rp = r; 384 1.1 cgd return (r); 385 1.1 cgd } 386 1.1 cgd 387 1.1 cgd /* Put the new left page for the split into place. */ 388 1.19 christos if ((l = calloc(1, t->bt_psize)) == NULL) { 389 1.1 cgd mpool_put(t->bt_mp, r, 0); 390 1.1 cgd return (NULL); 391 1.1 cgd } 392 1.6 cgd #ifdef PURIFY 393 1.6 cgd memset(l, 0xff, t->bt_psize); 394 1.6 cgd #endif 395 1.1 cgd l->pgno = h->pgno; 396 1.1 cgd l->nextpg = r->pgno; 397 1.1 cgd l->prevpg = h->prevpg; 398 1.1 cgd l->lower = BTDATAOFF; 399 1.1 cgd l->upper = t->bt_psize; 400 1.1 cgd l->flags = h->flags & P_TYPE; 401 1.1 cgd 402 1.1 cgd /* Fix up the previous pointer of the page after the split page. */ 403 1.1 cgd if (h->nextpg != P_INVALID) { 404 1.22 christos if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) { 405 1.1 cgd free(l); 406 1.1 cgd /* XXX mpool_free(t->bt_mp, r->pgno); */ 407 1.1 cgd return (NULL); 408 1.1 cgd } 409 1.1 cgd tp->prevpg = r->pgno; 410 1.6 cgd mpool_put(t->bt_mp, tp, MPOOL_DIRTY); 411 1.1 cgd } 412 1.1 cgd 413 1.1 cgd /* 414 1.1 cgd * Split right. The key/data pairs aren't sorted in the btree page so 415 1.1 cgd * it's simpler to copy the data from the split page onto two new pages 416 1.1 cgd * instead of copying half the data to the right page and compacting 417 1.1 cgd * the left page in place. Since the left page can't change, we have 418 1.1 cgd * to swap the original and the allocated left page after the split. 419 1.1 cgd */ 420 1.1 cgd tp = bt_psplit(t, h, l, r, skip, ilen); 421 1.1 cgd 422 1.1 cgd /* Move the new left page onto the old left page. */ 423 1.1 cgd memmove(h, l, t->bt_psize); 424 1.1 cgd if (tp == l) 425 1.1 cgd tp = h; 426 1.1 cgd free(l); 427 1.1 cgd 428 1.1 cgd *lp = h; 429 1.1 cgd *rp = r; 430 1.1 cgd return (tp); 431 1.1 cgd } 432 1.1 cgd 433 1.1 cgd /* 434 1.1 cgd * BT_ROOT -- Split the root page of a btree. 435 1.1 cgd * 436 1.1 cgd * Parameters: 437 1.1 cgd * t: tree 438 1.1 cgd * h: root page 439 1.1 cgd * lp: pointer to left page pointer 440 1.1 cgd * rp: pointer to right page pointer 441 1.1 cgd * skip: pointer to index to leave open 442 1.1 cgd * ilen: insert length 443 1.1 cgd * 444 1.1 cgd * Returns: 445 1.1 cgd * Pointer to page in which to insert or NULL on error. 446 1.1 cgd */ 447 1.1 cgd static PAGE * 448 1.14 christos bt_root(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen) 449 1.1 cgd { 450 1.1 cgd PAGE *l, *r, *tp; 451 1.1 cgd pgno_t lnpg, rnpg; 452 1.1 cgd 453 1.1 cgd #ifdef STATISTICS 454 1.1 cgd ++bt_split; 455 1.1 cgd ++bt_rootsplit; 456 1.1 cgd #endif 457 1.1 cgd /* Put the new left and right pages for the split into place. */ 458 1.1 cgd if ((l = __bt_new(t, &lnpg)) == NULL || 459 1.1 cgd (r = __bt_new(t, &rnpg)) == NULL) 460 1.1 cgd return (NULL); 461 1.1 cgd l->pgno = lnpg; 462 1.1 cgd r->pgno = rnpg; 463 1.1 cgd l->nextpg = r->pgno; 464 1.1 cgd r->prevpg = l->pgno; 465 1.1 cgd l->prevpg = r->nextpg = P_INVALID; 466 1.1 cgd l->lower = r->lower = BTDATAOFF; 467 1.1 cgd l->upper = r->upper = t->bt_psize; 468 1.1 cgd l->flags = r->flags = h->flags & P_TYPE; 469 1.1 cgd 470 1.1 cgd /* Split the root page. */ 471 1.1 cgd tp = bt_psplit(t, h, l, r, skip, ilen); 472 1.1 cgd 473 1.1 cgd *lp = l; 474 1.1 cgd *rp = r; 475 1.1 cgd return (tp); 476 1.1 cgd } 477 1.1 cgd 478 1.1 cgd /* 479 1.1 cgd * BT_RROOT -- Fix up the recno root page after it has been split. 480 1.1 cgd * 481 1.1 cgd * Parameters: 482 1.1 cgd * t: tree 483 1.1 cgd * h: root page 484 1.1 cgd * l: left page 485 1.1 cgd * r: right page 486 1.1 cgd * 487 1.1 cgd * Returns: 488 1.1 cgd * RET_ERROR, RET_SUCCESS 489 1.1 cgd */ 490 1.1 cgd static int 491 1.14 christos bt_rroot(BTREE *t, PAGE *h, PAGE *l, PAGE *r) 492 1.1 cgd { 493 1.1 cgd char *dest; 494 1.15 joerg uint32_t sz; 495 1.14 christos size_t temp; 496 1.14 christos 497 1.14 christos temp = t->bt_psize - NRINTERNAL; 498 1.15 joerg _DBFIT(temp, uint32_t); 499 1.15 joerg sz = (uint32_t)temp; 500 1.1 cgd 501 1.1 cgd /* Insert the left and right keys, set the header information. */ 502 1.14 christos _DBFIT(sz, indx_t); 503 1.14 christos h->linp[0] = h->upper = (indx_t)sz; 504 1.10 christos dest = (char *)(void *)h + h->upper; 505 1.1 cgd WR_RINTERNAL(dest, 506 1.1 cgd l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno); 507 1.1 cgd 508 1.1 cgd h->linp[1] = h->upper -= NRINTERNAL; 509 1.10 christos dest = (char *)(void *)h + h->upper; 510 1.1 cgd WR_RINTERNAL(dest, 511 1.1 cgd r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno); 512 1.1 cgd 513 1.1 cgd h->lower = BTDATAOFF + 2 * sizeof(indx_t); 514 1.1 cgd 515 1.1 cgd /* Unpin the root page, set to recno internal page. */ 516 1.1 cgd h->flags &= ~P_TYPE; 517 1.1 cgd h->flags |= P_RINTERNAL; 518 1.1 cgd mpool_put(t->bt_mp, h, MPOOL_DIRTY); 519 1.1 cgd 520 1.1 cgd return (RET_SUCCESS); 521 1.1 cgd } 522 1.1 cgd 523 1.1 cgd /* 524 1.1 cgd * BT_BROOT -- Fix up the btree root page after it has been split. 525 1.1 cgd * 526 1.1 cgd * Parameters: 527 1.1 cgd * t: tree 528 1.1 cgd * h: root page 529 1.1 cgd * l: left page 530 1.1 cgd * r: right page 531 1.1 cgd * 532 1.1 cgd * Returns: 533 1.1 cgd * RET_ERROR, RET_SUCCESS 534 1.1 cgd */ 535 1.1 cgd static int 536 1.14 christos bt_broot(BTREE *t, PAGE *h, PAGE *l, PAGE *r) 537 1.1 cgd { 538 1.7 christos BINTERNAL *bi = NULL; /* pacify gcc */ 539 1.1 cgd BLEAF *bl; 540 1.15 joerg uint32_t nbytes; 541 1.1 cgd char *dest; 542 1.1 cgd 543 1.1 cgd /* 544 1.1 cgd * If the root page was a leaf page, change it into an internal page. 545 1.1 cgd * We copy the key we split on (but not the key's data, in the case of 546 1.1 cgd * a leaf page) to the new root page. 547 1.1 cgd * 548 1.1 cgd * The btree comparison code guarantees that the left-most key on any 549 1.1 cgd * level of the tree is never used, so it doesn't need to be filled in. 550 1.1 cgd */ 551 1.1 cgd nbytes = NBINTERNAL(0); 552 1.1 cgd h->linp[0] = h->upper = t->bt_psize - nbytes; 553 1.10 christos dest = (char *)(void *)h + h->upper; 554 1.1 cgd WR_BINTERNAL(dest, 0, l->pgno, 0); 555 1.1 cgd 556 1.6 cgd switch (h->flags & P_TYPE) { 557 1.1 cgd case P_BLEAF: 558 1.1 cgd bl = GETBLEAF(r, 0); 559 1.1 cgd nbytes = NBINTERNAL(bl->ksize); 560 1.1 cgd h->linp[1] = h->upper -= nbytes; 561 1.10 christos dest = (char *)(void *)h + h->upper; 562 1.1 cgd WR_BINTERNAL(dest, bl->ksize, r->pgno, 0); 563 1.1 cgd memmove(dest, bl->bytes, bl->ksize); 564 1.1 cgd 565 1.1 cgd /* 566 1.1 cgd * If the key is on an overflow page, mark the overflow chain 567 1.1 cgd * so it isn't deleted when the leaf copy of the key is deleted. 568 1.1 cgd */ 569 1.20 mrg if (bl->flags & P_BIGKEY) { 570 1.20 mrg pgno_t pgno; 571 1.20 mrg memcpy(&pgno, bl->bytes, sizeof(pgno)); 572 1.20 mrg if (bt_preserve(t, pgno) == RET_ERROR) 573 1.20 mrg return (RET_ERROR); 574 1.20 mrg } 575 1.1 cgd break; 576 1.1 cgd case P_BINTERNAL: 577 1.1 cgd bi = GETBINTERNAL(r, 0); 578 1.1 cgd nbytes = NBINTERNAL(bi->ksize); 579 1.1 cgd h->linp[1] = h->upper -= nbytes; 580 1.10 christos dest = (char *)(void *)h + h->upper; 581 1.1 cgd memmove(dest, bi, nbytes); 582 1.10 christos ((BINTERNAL *)(void *)dest)->pgno = r->pgno; 583 1.1 cgd break; 584 1.1 cgd default: 585 1.1 cgd abort(); 586 1.1 cgd } 587 1.1 cgd 588 1.1 cgd /* There are two keys on the page. */ 589 1.1 cgd h->lower = BTDATAOFF + 2 * sizeof(indx_t); 590 1.1 cgd 591 1.1 cgd /* Unpin the root page, set to btree internal page. */ 592 1.1 cgd h->flags &= ~P_TYPE; 593 1.1 cgd h->flags |= P_BINTERNAL; 594 1.1 cgd mpool_put(t->bt_mp, h, MPOOL_DIRTY); 595 1.1 cgd 596 1.1 cgd return (RET_SUCCESS); 597 1.1 cgd } 598 1.1 cgd 599 1.1 cgd /* 600 1.1 cgd * BT_PSPLIT -- Do the real work of splitting the page. 601 1.1 cgd * 602 1.1 cgd * Parameters: 603 1.1 cgd * t: tree 604 1.1 cgd * h: page to be split 605 1.1 cgd * l: page to put lower half of data 606 1.1 cgd * r: page to put upper half of data 607 1.1 cgd * pskip: pointer to index to leave open 608 1.1 cgd * ilen: insert length 609 1.1 cgd * 610 1.1 cgd * Returns: 611 1.1 cgd * Pointer to page in which to insert. 612 1.1 cgd */ 613 1.1 cgd static PAGE * 614 1.14 christos bt_psplit(BTREE *t, PAGE *h, PAGE *l, PAGE *r, indx_t *pskip, size_t ilen) 615 1.1 cgd { 616 1.1 cgd BINTERNAL *bi; 617 1.1 cgd BLEAF *bl; 618 1.6 cgd CURSOR *c; 619 1.1 cgd RLEAF *rl; 620 1.1 cgd PAGE *rval; 621 1.7 christos void *src = NULL; /* pacify gcc */ 622 1.1 cgd indx_t full, half, nxt, off, skip, top, used; 623 1.15 joerg uint32_t nbytes; 624 1.14 christos size_t temp; 625 1.1 cgd int bigkeycnt, isbigkey; 626 1.1 cgd 627 1.1 cgd /* 628 1.1 cgd * Split the data to the left and right pages. Leave the skip index 629 1.1 cgd * open. Additionally, make some effort not to split on an overflow 630 1.1 cgd * key. This makes internal page processing faster and can save 631 1.1 cgd * space as overflow keys used by internal pages are never deleted. 632 1.1 cgd */ 633 1.1 cgd bigkeycnt = 0; 634 1.1 cgd skip = *pskip; 635 1.14 christos temp = t->bt_psize - BTDATAOFF; 636 1.14 christos _DBFIT(temp, indx_t); 637 1.14 christos full = (indx_t)temp; 638 1.1 cgd half = full / 2; 639 1.1 cgd used = 0; 640 1.1 cgd for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) { 641 1.1 cgd if (skip == off) { 642 1.15 joerg _DBFIT(ilen, uint32_t); 643 1.15 joerg nbytes = (uint32_t)ilen; 644 1.1 cgd isbigkey = 0; /* XXX: not really known. */ 645 1.1 cgd } else 646 1.1 cgd switch (h->flags & P_TYPE) { 647 1.1 cgd case P_BINTERNAL: 648 1.1 cgd src = bi = GETBINTERNAL(h, nxt); 649 1.1 cgd nbytes = NBINTERNAL(bi->ksize); 650 1.1 cgd isbigkey = bi->flags & P_BIGKEY; 651 1.1 cgd break; 652 1.1 cgd case P_BLEAF: 653 1.1 cgd src = bl = GETBLEAF(h, nxt); 654 1.1 cgd nbytes = NBLEAF(bl); 655 1.1 cgd isbigkey = bl->flags & P_BIGKEY; 656 1.1 cgd break; 657 1.1 cgd case P_RINTERNAL: 658 1.1 cgd src = GETRINTERNAL(h, nxt); 659 1.1 cgd nbytes = NRINTERNAL; 660 1.1 cgd isbigkey = 0; 661 1.1 cgd break; 662 1.1 cgd case P_RLEAF: 663 1.1 cgd src = rl = GETRLEAF(h, nxt); 664 1.1 cgd nbytes = NRLEAF(rl); 665 1.1 cgd isbigkey = 0; 666 1.1 cgd break; 667 1.1 cgd default: 668 1.1 cgd abort(); 669 1.1 cgd } 670 1.1 cgd 671 1.1 cgd /* 672 1.1 cgd * If the key/data pairs are substantial fractions of the max 673 1.1 cgd * possible size for the page, it's possible to get situations 674 1.1 cgd * where we decide to try and copy too much onto the left page. 675 1.1 cgd * Make sure that doesn't happen. 676 1.1 cgd */ 677 1.9 is if ((skip <= off && used + nbytes + sizeof(indx_t) >= full) || 678 1.9 is nxt == top - 1) { 679 1.1 cgd --off; 680 1.1 cgd break; 681 1.1 cgd } 682 1.1 cgd 683 1.1 cgd /* Copy the key/data pair, if not the skipped index. */ 684 1.1 cgd if (skip != off) { 685 1.1 cgd ++nxt; 686 1.1 cgd 687 1.1 cgd l->linp[off] = l->upper -= nbytes; 688 1.10 christos memmove((char *)(void *)l + l->upper, src, nbytes); 689 1.1 cgd } 690 1.1 cgd 691 1.14 christos temp = nbytes + sizeof(indx_t); 692 1.14 christos _DBFIT(temp, indx_t); 693 1.14 christos used += (indx_t)temp; 694 1.1 cgd if (used >= half) { 695 1.1 cgd if (!isbigkey || bigkeycnt == 3) 696 1.1 cgd break; 697 1.1 cgd else 698 1.1 cgd ++bigkeycnt; 699 1.1 cgd } 700 1.1 cgd } 701 1.1 cgd 702 1.1 cgd /* 703 1.1 cgd * Off is the last offset that's valid for the left page. 704 1.1 cgd * Nxt is the first offset to be placed on the right page. 705 1.1 cgd */ 706 1.14 christos temp = (off + 1) * sizeof(indx_t); 707 1.14 christos _DBFIT(temp, indx_t); 708 1.14 christos l->lower += (indx_t)temp; 709 1.1 cgd 710 1.1 cgd /* 711 1.1 cgd * If splitting the page that the cursor was on, the cursor has to be 712 1.1 cgd * adjusted to point to the same record as before the split. If the 713 1.1 cgd * cursor is at or past the skipped slot, the cursor is incremented by 714 1.1 cgd * one. If the cursor is on the right page, it is decremented by the 715 1.1 cgd * number of records split to the left page. 716 1.1 cgd */ 717 1.6 cgd c = &t->bt_cursor; 718 1.6 cgd if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) { 719 1.6 cgd if (c->pg.index >= skip) 720 1.6 cgd ++c->pg.index; 721 1.6 cgd if (c->pg.index < nxt) /* Left page. */ 722 1.6 cgd c->pg.pgno = l->pgno; 723 1.1 cgd else { /* Right page. */ 724 1.6 cgd c->pg.pgno = r->pgno; 725 1.6 cgd c->pg.index -= nxt; 726 1.1 cgd } 727 1.1 cgd } 728 1.1 cgd 729 1.1 cgd /* 730 1.1 cgd * If the skipped index was on the left page, just return that page. 731 1.1 cgd * Otherwise, adjust the skip index to reflect the new position on 732 1.1 cgd * the right page. 733 1.1 cgd */ 734 1.1 cgd if (skip <= off) { 735 1.12 mycroft skip = MAX_PAGE_OFFSET; 736 1.1 cgd rval = l; 737 1.1 cgd } else { 738 1.1 cgd rval = r; 739 1.1 cgd *pskip -= nxt; 740 1.1 cgd } 741 1.1 cgd 742 1.1 cgd for (off = 0; nxt < top; ++off) { 743 1.1 cgd if (skip == nxt) { 744 1.1 cgd ++off; 745 1.12 mycroft skip = MAX_PAGE_OFFSET; 746 1.1 cgd } 747 1.1 cgd switch (h->flags & P_TYPE) { 748 1.1 cgd case P_BINTERNAL: 749 1.1 cgd src = bi = GETBINTERNAL(h, nxt); 750 1.1 cgd nbytes = NBINTERNAL(bi->ksize); 751 1.1 cgd break; 752 1.1 cgd case P_BLEAF: 753 1.1 cgd src = bl = GETBLEAF(h, nxt); 754 1.1 cgd nbytes = NBLEAF(bl); 755 1.1 cgd break; 756 1.1 cgd case P_RINTERNAL: 757 1.1 cgd src = GETRINTERNAL(h, nxt); 758 1.1 cgd nbytes = NRINTERNAL; 759 1.1 cgd break; 760 1.1 cgd case P_RLEAF: 761 1.1 cgd src = rl = GETRLEAF(h, nxt); 762 1.1 cgd nbytes = NRLEAF(rl); 763 1.1 cgd break; 764 1.1 cgd default: 765 1.1 cgd abort(); 766 1.1 cgd } 767 1.1 cgd ++nxt; 768 1.1 cgd r->linp[off] = r->upper -= nbytes; 769 1.10 christos memmove((char *)(void *)r + r->upper, src, nbytes); 770 1.1 cgd } 771 1.14 christos temp = off * sizeof(indx_t); 772 1.14 christos _DBFIT(temp, indx_t); 773 1.14 christos r->lower += (indx_t)temp; 774 1.1 cgd 775 1.1 cgd /* If the key is being appended to the page, adjust the index. */ 776 1.1 cgd if (skip == top) 777 1.1 cgd r->lower += sizeof(indx_t); 778 1.1 cgd 779 1.1 cgd return (rval); 780 1.1 cgd } 781 1.1 cgd 782 1.1 cgd /* 783 1.1 cgd * BT_PRESERVE -- Mark a chain of pages as used by an internal node. 784 1.1 cgd * 785 1.1 cgd * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the 786 1.1 cgd * record that references them gets deleted. Chains pointed to by internal 787 1.1 cgd * pages never get deleted. This routine marks a chain as pointed to by an 788 1.1 cgd * internal page. 789 1.1 cgd * 790 1.1 cgd * Parameters: 791 1.1 cgd * t: tree 792 1.1 cgd * pg: page number of first page in the chain. 793 1.1 cgd * 794 1.1 cgd * Returns: 795 1.1 cgd * RET_SUCCESS, RET_ERROR. 796 1.1 cgd */ 797 1.1 cgd static int 798 1.14 christos bt_preserve(BTREE *t, pgno_t pg) 799 1.1 cgd { 800 1.1 cgd PAGE *h; 801 1.1 cgd 802 1.22 christos if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL) 803 1.1 cgd return (RET_ERROR); 804 1.1 cgd h->flags |= P_PRESERVE; 805 1.1 cgd mpool_put(t->bt_mp, h, MPOOL_DIRTY); 806 1.1 cgd return (RET_SUCCESS); 807 1.1 cgd } 808 1.1 cgd 809 1.1 cgd /* 810 1.1 cgd * REC_TOTAL -- Return the number of recno entries below a page. 811 1.1 cgd * 812 1.1 cgd * Parameters: 813 1.1 cgd * h: page 814 1.1 cgd * 815 1.1 cgd * Returns: 816 1.1 cgd * The number of recno entries below a page. 817 1.1 cgd * 818 1.1 cgd * XXX 819 1.1 cgd * These values could be set by the bt_psplit routine. The problem is that the 820 1.1 cgd * entry has to be popped off of the stack etc. or the values have to be passed 821 1.1 cgd * all the way back to bt_split/bt_rroot and it's not very clean. 822 1.1 cgd */ 823 1.1 cgd static recno_t 824 1.14 christos rec_total(PAGE *h) 825 1.1 cgd { 826 1.1 cgd recno_t recs; 827 1.1 cgd indx_t nxt, top; 828 1.1 cgd 829 1.1 cgd for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt) 830 1.1 cgd recs += GETRINTERNAL(h, nxt)->nrecs; 831 1.1 cgd return (recs); 832 1.1 cgd } 833