Home | History | Annotate | Line # | Download | only in btree
bt_split.c revision 1.1.1.2
      1      1.1  cgd /*-
      2  1.1.1.1  cgd  * Copyright (c) 1990, 1993, 1994
      3      1.1  cgd  *	The Regents of the University of California.  All rights reserved.
      4      1.1  cgd  *
      5      1.1  cgd  * This code is derived from software contributed to Berkeley by
      6      1.1  cgd  * Mike Olson.
      7      1.1  cgd  *
      8      1.1  cgd  * Redistribution and use in source and binary forms, with or without
      9      1.1  cgd  * modification, are permitted provided that the following conditions
     10      1.1  cgd  * are met:
     11      1.1  cgd  * 1. Redistributions of source code must retain the above copyright
     12      1.1  cgd  *    notice, this list of conditions and the following disclaimer.
     13      1.1  cgd  * 2. Redistributions in binary form must reproduce the above copyright
     14      1.1  cgd  *    notice, this list of conditions and the following disclaimer in the
     15      1.1  cgd  *    documentation and/or other materials provided with the distribution.
     16      1.1  cgd  * 3. All advertising materials mentioning features or use of this software
     17      1.1  cgd  *    must display the following acknowledgement:
     18      1.1  cgd  *	This product includes software developed by the University of
     19      1.1  cgd  *	California, Berkeley and its contributors.
     20      1.1  cgd  * 4. Neither the name of the University nor the names of its contributors
     21      1.1  cgd  *    may be used to endorse or promote products derived from this software
     22      1.1  cgd  *    without specific prior written permission.
     23      1.1  cgd  *
     24      1.1  cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25      1.1  cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26      1.1  cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27      1.1  cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28      1.1  cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29      1.1  cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30      1.1  cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31      1.1  cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32      1.1  cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33      1.1  cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34      1.1  cgd  * SUCH DAMAGE.
     35      1.1  cgd  */
     36      1.1  cgd 
     37      1.1  cgd #if defined(LIBC_SCCS) && !defined(lint)
     38  1.1.1.2  cgd static char sccsid[] = "@(#)bt_split.c	8.9 (Berkeley) 7/26/94";
     39      1.1  cgd #endif /* LIBC_SCCS and not lint */
     40      1.1  cgd 
     41      1.1  cgd #include <sys/types.h>
     42      1.1  cgd 
     43      1.1  cgd #include <limits.h>
     44      1.1  cgd #include <stdio.h>
     45      1.1  cgd #include <stdlib.h>
     46      1.1  cgd #include <string.h>
     47      1.1  cgd 
     48      1.1  cgd #include <db.h>
     49      1.1  cgd #include "btree.h"
     50      1.1  cgd 
     51      1.1  cgd static int	 bt_broot __P((BTREE *, PAGE *, PAGE *, PAGE *));
     52      1.1  cgd static PAGE	*bt_page
     53  1.1.1.1  cgd 		    __P((BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t));
     54      1.1  cgd static int	 bt_preserve __P((BTREE *, pgno_t));
     55      1.1  cgd static PAGE	*bt_psplit
     56  1.1.1.1  cgd 		    __P((BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t));
     57      1.1  cgd static PAGE	*bt_root
     58  1.1.1.1  cgd 		    __P((BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t));
     59      1.1  cgd static int	 bt_rroot __P((BTREE *, PAGE *, PAGE *, PAGE *));
     60      1.1  cgd static recno_t	 rec_total __P((PAGE *));
     61      1.1  cgd 
     62      1.1  cgd #ifdef STATISTICS
     63      1.1  cgd u_long	bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
     64      1.1  cgd #endif
     65      1.1  cgd 
     66      1.1  cgd /*
     67      1.1  cgd  * __BT_SPLIT -- Split the tree.
     68      1.1  cgd  *
     69      1.1  cgd  * Parameters:
     70      1.1  cgd  *	t:	tree
     71      1.1  cgd  *	sp:	page to split
     72      1.1  cgd  *	key:	key to insert
     73      1.1  cgd  *	data:	data to insert
     74      1.1  cgd  *	flags:	BIGKEY/BIGDATA flags
     75      1.1  cgd  *	ilen:	insert length
     76      1.1  cgd  *	skip:	index to leave open
     77      1.1  cgd  *
     78      1.1  cgd  * Returns:
     79      1.1  cgd  *	RET_ERROR, RET_SUCCESS
     80      1.1  cgd  */
     81      1.1  cgd int
     82  1.1.1.1  cgd __bt_split(t, sp, key, data, flags, ilen, argskip)
     83      1.1  cgd 	BTREE *t;
     84      1.1  cgd 	PAGE *sp;
     85      1.1  cgd 	const DBT *key, *data;
     86  1.1.1.1  cgd 	int flags;
     87      1.1  cgd 	size_t ilen;
     88  1.1.1.1  cgd 	u_int32_t argskip;
     89      1.1  cgd {
     90      1.1  cgd 	BINTERNAL *bi;
     91      1.1  cgd 	BLEAF *bl, *tbl;
     92      1.1  cgd 	DBT a, b;
     93      1.1  cgd 	EPGNO *parent;
     94      1.1  cgd 	PAGE *h, *l, *r, *lchild, *rchild;
     95      1.1  cgd 	indx_t nxtindex;
     96  1.1.1.1  cgd 	u_int16_t skip;
     97  1.1.1.1  cgd 	u_int32_t n, nbytes, nksize;
     98      1.1  cgd 	int parentsplit;
     99      1.1  cgd 	char *dest;
    100      1.1  cgd 
    101      1.1  cgd 	/*
    102      1.1  cgd 	 * Split the page into two pages, l and r.  The split routines return
    103      1.1  cgd 	 * a pointer to the page into which the key should be inserted and with
    104      1.1  cgd 	 * skip set to the offset which should be used.  Additionally, l and r
    105      1.1  cgd 	 * are pinned.
    106      1.1  cgd 	 */
    107  1.1.1.1  cgd 	skip = argskip;
    108      1.1  cgd 	h = sp->pgno == P_ROOT ?
    109      1.1  cgd 	    bt_root(t, sp, &l, &r, &skip, ilen) :
    110      1.1  cgd 	    bt_page(t, sp, &l, &r, &skip, ilen);
    111      1.1  cgd 	if (h == NULL)
    112      1.1  cgd 		return (RET_ERROR);
    113      1.1  cgd 
    114      1.1  cgd 	/*
    115      1.1  cgd 	 * Insert the new key/data pair into the leaf page.  (Key inserts
    116      1.1  cgd 	 * always cause a leaf page to split first.)
    117      1.1  cgd 	 */
    118      1.1  cgd 	h->linp[skip] = h->upper -= ilen;
    119      1.1  cgd 	dest = (char *)h + h->upper;
    120  1.1.1.2  cgd 	if (F_ISSET(t, R_RECNO))
    121      1.1  cgd 		WR_RLEAF(dest, data, flags)
    122      1.1  cgd 	else
    123      1.1  cgd 		WR_BLEAF(dest, key, data, flags)
    124      1.1  cgd 
    125      1.1  cgd 	/* If the root page was split, make it look right. */
    126      1.1  cgd 	if (sp->pgno == P_ROOT &&
    127  1.1.1.2  cgd 	    (F_ISSET(t, R_RECNO) ?
    128      1.1  cgd 	    bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
    129      1.1  cgd 		goto err2;
    130      1.1  cgd 
    131      1.1  cgd 	/*
    132      1.1  cgd 	 * Now we walk the parent page stack -- a LIFO stack of the pages that
    133      1.1  cgd 	 * were traversed when we searched for the page that split.  Each stack
    134      1.1  cgd 	 * entry is a page number and a page index offset.  The offset is for
    135      1.1  cgd 	 * the page traversed on the search.  We've just split a page, so we
    136      1.1  cgd 	 * have to insert a new key into the parent page.
    137      1.1  cgd 	 *
    138      1.1  cgd 	 * If the insert into the parent page causes it to split, may have to
    139      1.1  cgd 	 * continue splitting all the way up the tree.  We stop if the root
    140      1.1  cgd 	 * splits or the page inserted into didn't have to split to hold the
    141      1.1  cgd 	 * new key.  Some algorithms replace the key for the old page as well
    142      1.1  cgd 	 * as the new page.  We don't, as there's no reason to believe that the
    143      1.1  cgd 	 * first key on the old page is any better than the key we have, and,
    144      1.1  cgd 	 * in the case of a key being placed at index 0 causing the split, the
    145      1.1  cgd 	 * key is unavailable.
    146      1.1  cgd 	 *
    147      1.1  cgd 	 * There are a maximum of 5 pages pinned at any time.  We keep the left
    148      1.1  cgd 	 * and right pages pinned while working on the parent.   The 5 are the
    149      1.1  cgd 	 * two children, left parent and right parent (when the parent splits)
    150      1.1  cgd 	 * and the root page or the overflow key page when calling bt_preserve.
    151      1.1  cgd 	 * This code must make sure that all pins are released other than the
    152      1.1  cgd 	 * root page or overflow page which is unlocked elsewhere.
    153      1.1  cgd 	 */
    154      1.1  cgd 	while ((parent = BT_POP(t)) != NULL) {
    155      1.1  cgd 		lchild = l;
    156      1.1  cgd 		rchild = r;
    157      1.1  cgd 
    158      1.1  cgd 		/* Get the parent page. */
    159      1.1  cgd 		if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
    160      1.1  cgd 			goto err2;
    161      1.1  cgd 
    162      1.1  cgd 	 	/*
    163      1.1  cgd 		 * The new key goes ONE AFTER the index, because the split
    164      1.1  cgd 		 * was to the right.
    165      1.1  cgd 		 */
    166      1.1  cgd 		skip = parent->index + 1;
    167      1.1  cgd 
    168      1.1  cgd 		/*
    169      1.1  cgd 		 * Calculate the space needed on the parent page.
    170      1.1  cgd 		 *
    171      1.1  cgd 		 * Prefix trees: space hack when inserting into BINTERNAL
    172      1.1  cgd 		 * pages.  Retain only what's needed to distinguish between
    173      1.1  cgd 		 * the new entry and the LAST entry on the page to its left.
    174      1.1  cgd 		 * If the keys compare equal, retain the entire key.  Note,
    175      1.1  cgd 		 * we don't touch overflow keys, and the entire key must be
    176      1.1  cgd 		 * retained for the next-to-left most key on the leftmost
    177      1.1  cgd 		 * page of each level, or the search will fail.  Applicable
    178      1.1  cgd 		 * ONLY to internal pages that have leaf pages as children.
    179      1.1  cgd 		 * Further reduction of the key between pairs of internal
    180      1.1  cgd 		 * pages loses too much information.
    181      1.1  cgd 		 */
    182      1.1  cgd 		switch (rchild->flags & P_TYPE) {
    183      1.1  cgd 		case P_BINTERNAL:
    184      1.1  cgd 			bi = GETBINTERNAL(rchild, 0);
    185      1.1  cgd 			nbytes = NBINTERNAL(bi->ksize);
    186      1.1  cgd 			break;
    187      1.1  cgd 		case P_BLEAF:
    188      1.1  cgd 			bl = GETBLEAF(rchild, 0);
    189      1.1  cgd 			nbytes = NBINTERNAL(bl->ksize);
    190      1.1  cgd 			if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
    191      1.1  cgd 			    (h->prevpg != P_INVALID || skip > 1)) {
    192      1.1  cgd 				tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
    193      1.1  cgd 				a.size = tbl->ksize;
    194      1.1  cgd 				a.data = tbl->bytes;
    195      1.1  cgd 				b.size = bl->ksize;
    196      1.1  cgd 				b.data = bl->bytes;
    197      1.1  cgd 				nksize = t->bt_pfx(&a, &b);
    198      1.1  cgd 				n = NBINTERNAL(nksize);
    199      1.1  cgd 				if (n < nbytes) {
    200      1.1  cgd #ifdef STATISTICS
    201      1.1  cgd 					bt_pfxsaved += nbytes - n;
    202      1.1  cgd #endif
    203      1.1  cgd 					nbytes = n;
    204      1.1  cgd 				} else
    205      1.1  cgd 					nksize = 0;
    206      1.1  cgd 			} else
    207      1.1  cgd 				nksize = 0;
    208      1.1  cgd 			break;
    209      1.1  cgd 		case P_RINTERNAL:
    210      1.1  cgd 		case P_RLEAF:
    211      1.1  cgd 			nbytes = NRINTERNAL;
    212      1.1  cgd 			break;
    213      1.1  cgd 		default:
    214      1.1  cgd 			abort();
    215      1.1  cgd 		}
    216      1.1  cgd 
    217      1.1  cgd 		/* Split the parent page if necessary or shift the indices. */
    218      1.1  cgd 		if (h->upper - h->lower < nbytes + sizeof(indx_t)) {
    219      1.1  cgd 			sp = h;
    220      1.1  cgd 			h = h->pgno == P_ROOT ?
    221      1.1  cgd 			    bt_root(t, h, &l, &r, &skip, nbytes) :
    222      1.1  cgd 			    bt_page(t, h, &l, &r, &skip, nbytes);
    223      1.1  cgd 			if (h == NULL)
    224      1.1  cgd 				goto err1;
    225      1.1  cgd 			parentsplit = 1;
    226      1.1  cgd 		} else {
    227      1.1  cgd 			if (skip < (nxtindex = NEXTINDEX(h)))
    228      1.1  cgd 				memmove(h->linp + skip + 1, h->linp + skip,
    229      1.1  cgd 				    (nxtindex - skip) * sizeof(indx_t));
    230      1.1  cgd 			h->lower += sizeof(indx_t);
    231      1.1  cgd 			parentsplit = 0;
    232      1.1  cgd 		}
    233      1.1  cgd 
    234      1.1  cgd 		/* Insert the key into the parent page. */
    235  1.1.1.2  cgd 		switch (rchild->flags & P_TYPE) {
    236      1.1  cgd 		case P_BINTERNAL:
    237      1.1  cgd 			h->linp[skip] = h->upper -= nbytes;
    238      1.1  cgd 			dest = (char *)h + h->linp[skip];
    239      1.1  cgd 			memmove(dest, bi, nbytes);
    240      1.1  cgd 			((BINTERNAL *)dest)->pgno = rchild->pgno;
    241      1.1  cgd 			break;
    242      1.1  cgd 		case P_BLEAF:
    243      1.1  cgd 			h->linp[skip] = h->upper -= nbytes;
    244      1.1  cgd 			dest = (char *)h + h->linp[skip];
    245      1.1  cgd 			WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
    246      1.1  cgd 			    rchild->pgno, bl->flags & P_BIGKEY);
    247      1.1  cgd 			memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
    248      1.1  cgd 			if (bl->flags & P_BIGKEY &&
    249      1.1  cgd 			    bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
    250      1.1  cgd 				goto err1;
    251      1.1  cgd 			break;
    252      1.1  cgd 		case P_RINTERNAL:
    253      1.1  cgd 			/*
    254      1.1  cgd 			 * Update the left page count.  If split
    255      1.1  cgd 			 * added at index 0, fix the correct page.
    256      1.1  cgd 			 */
    257      1.1  cgd 			if (skip > 0)
    258      1.1  cgd 				dest = (char *)h + h->linp[skip - 1];
    259      1.1  cgd 			else
    260      1.1  cgd 				dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
    261      1.1  cgd 			((RINTERNAL *)dest)->nrecs = rec_total(lchild);
    262      1.1  cgd 			((RINTERNAL *)dest)->pgno = lchild->pgno;
    263      1.1  cgd 
    264      1.1  cgd 			/* Update the right page count. */
    265      1.1  cgd 			h->linp[skip] = h->upper -= nbytes;
    266      1.1  cgd 			dest = (char *)h + h->linp[skip];
    267      1.1  cgd 			((RINTERNAL *)dest)->nrecs = rec_total(rchild);
    268      1.1  cgd 			((RINTERNAL *)dest)->pgno = rchild->pgno;
    269      1.1  cgd 			break;
    270      1.1  cgd 		case P_RLEAF:
    271      1.1  cgd 			/*
    272      1.1  cgd 			 * Update the left page count.  If split
    273      1.1  cgd 			 * added at index 0, fix the correct page.
    274      1.1  cgd 			 */
    275      1.1  cgd 			if (skip > 0)
    276      1.1  cgd 				dest = (char *)h + h->linp[skip - 1];
    277      1.1  cgd 			else
    278      1.1  cgd 				dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
    279      1.1  cgd 			((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild);
    280      1.1  cgd 			((RINTERNAL *)dest)->pgno = lchild->pgno;
    281      1.1  cgd 
    282      1.1  cgd 			/* Update the right page count. */
    283      1.1  cgd 			h->linp[skip] = h->upper -= nbytes;
    284      1.1  cgd 			dest = (char *)h + h->linp[skip];
    285      1.1  cgd 			((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild);
    286      1.1  cgd 			((RINTERNAL *)dest)->pgno = rchild->pgno;
    287      1.1  cgd 			break;
    288      1.1  cgd 		default:
    289      1.1  cgd 			abort();
    290      1.1  cgd 		}
    291      1.1  cgd 
    292      1.1  cgd 		/* Unpin the held pages. */
    293      1.1  cgd 		if (!parentsplit) {
    294      1.1  cgd 			mpool_put(t->bt_mp, h, MPOOL_DIRTY);
    295      1.1  cgd 			break;
    296      1.1  cgd 		}
    297      1.1  cgd 
    298      1.1  cgd 		/* If the root page was split, make it look right. */
    299      1.1  cgd 		if (sp->pgno == P_ROOT &&
    300  1.1.1.2  cgd 		    (F_ISSET(t, R_RECNO) ?
    301      1.1  cgd 		    bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
    302      1.1  cgd 			goto err1;
    303      1.1  cgd 
    304      1.1  cgd 		mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
    305      1.1  cgd 		mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
    306      1.1  cgd 	}
    307      1.1  cgd 
    308      1.1  cgd 	/* Unpin the held pages. */
    309      1.1  cgd 	mpool_put(t->bt_mp, l, MPOOL_DIRTY);
    310      1.1  cgd 	mpool_put(t->bt_mp, r, MPOOL_DIRTY);
    311      1.1  cgd 
    312      1.1  cgd 	/* Clear any pages left on the stack. */
    313      1.1  cgd 	return (RET_SUCCESS);
    314      1.1  cgd 
    315      1.1  cgd 	/*
    316      1.1  cgd 	 * If something fails in the above loop we were already walking back
    317      1.1  cgd 	 * up the tree and the tree is now inconsistent.  Nothing much we can
    318      1.1  cgd 	 * do about it but release any memory we're holding.
    319      1.1  cgd 	 */
    320      1.1  cgd err1:	mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
    321      1.1  cgd 	mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
    322      1.1  cgd 
    323      1.1  cgd err2:	mpool_put(t->bt_mp, l, 0);
    324      1.1  cgd 	mpool_put(t->bt_mp, r, 0);
    325      1.1  cgd 	__dbpanic(t->bt_dbp);
    326      1.1  cgd 	return (RET_ERROR);
    327      1.1  cgd }
    328      1.1  cgd 
    329      1.1  cgd /*
    330      1.1  cgd  * BT_PAGE -- Split a non-root page of a btree.
    331      1.1  cgd  *
    332      1.1  cgd  * Parameters:
    333      1.1  cgd  *	t:	tree
    334      1.1  cgd  *	h:	root page
    335      1.1  cgd  *	lp:	pointer to left page pointer
    336      1.1  cgd  *	rp:	pointer to right page pointer
    337      1.1  cgd  *	skip:	pointer to index to leave open
    338      1.1  cgd  *	ilen:	insert length
    339      1.1  cgd  *
    340      1.1  cgd  * Returns:
    341      1.1  cgd  *	Pointer to page in which to insert or NULL on error.
    342      1.1  cgd  */
    343      1.1  cgd static PAGE *
    344      1.1  cgd bt_page(t, h, lp, rp, skip, ilen)
    345      1.1  cgd 	BTREE *t;
    346      1.1  cgd 	PAGE *h, **lp, **rp;
    347  1.1.1.1  cgd 	indx_t *skip;
    348      1.1  cgd 	size_t ilen;
    349      1.1  cgd {
    350      1.1  cgd 	PAGE *l, *r, *tp;
    351      1.1  cgd 	pgno_t npg;
    352      1.1  cgd 
    353      1.1  cgd #ifdef STATISTICS
    354      1.1  cgd 	++bt_split;
    355      1.1  cgd #endif
    356      1.1  cgd 	/* Put the new right page for the split into place. */
    357      1.1  cgd 	if ((r = __bt_new(t, &npg)) == NULL)
    358      1.1  cgd 		return (NULL);
    359      1.1  cgd 	r->pgno = npg;
    360      1.1  cgd 	r->lower = BTDATAOFF;
    361      1.1  cgd 	r->upper = t->bt_psize;
    362      1.1  cgd 	r->nextpg = h->nextpg;
    363      1.1  cgd 	r->prevpg = h->pgno;
    364      1.1  cgd 	r->flags = h->flags & P_TYPE;
    365      1.1  cgd 
    366      1.1  cgd 	/*
    367      1.1  cgd 	 * If we're splitting the last page on a level because we're appending
    368      1.1  cgd 	 * a key to it (skip is NEXTINDEX()), it's likely that the data is
    369      1.1  cgd 	 * sorted.  Adding an empty page on the side of the level is less work
    370      1.1  cgd 	 * and can push the fill factor much higher than normal.  If we're
    371      1.1  cgd 	 * wrong it's no big deal, we'll just do the split the right way next
    372      1.1  cgd 	 * time.  It may look like it's equally easy to do a similar hack for
    373      1.1  cgd 	 * reverse sorted data, that is, split the tree left, but it's not.
    374      1.1  cgd 	 * Don't even try.
    375      1.1  cgd 	 */
    376      1.1  cgd 	if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
    377      1.1  cgd #ifdef STATISTICS
    378      1.1  cgd 		++bt_sortsplit;
    379      1.1  cgd #endif
    380      1.1  cgd 		h->nextpg = r->pgno;
    381      1.1  cgd 		r->lower = BTDATAOFF + sizeof(indx_t);
    382      1.1  cgd 		*skip = 0;
    383      1.1  cgd 		*lp = h;
    384      1.1  cgd 		*rp = r;
    385      1.1  cgd 		return (r);
    386      1.1  cgd 	}
    387      1.1  cgd 
    388      1.1  cgd 	/* Put the new left page for the split into place. */
    389  1.1.1.1  cgd 	if ((l = (PAGE *)malloc(t->bt_psize)) == NULL) {
    390      1.1  cgd 		mpool_put(t->bt_mp, r, 0);
    391      1.1  cgd 		return (NULL);
    392      1.1  cgd 	}
    393  1.1.1.2  cgd #ifdef PURIFY
    394  1.1.1.2  cgd 	memset(l, 0xff, t->bt_psize);
    395  1.1.1.2  cgd #endif
    396      1.1  cgd 	l->pgno = h->pgno;
    397      1.1  cgd 	l->nextpg = r->pgno;
    398      1.1  cgd 	l->prevpg = h->prevpg;
    399      1.1  cgd 	l->lower = BTDATAOFF;
    400      1.1  cgd 	l->upper = t->bt_psize;
    401      1.1  cgd 	l->flags = h->flags & P_TYPE;
    402      1.1  cgd 
    403      1.1  cgd 	/* Fix up the previous pointer of the page after the split page. */
    404      1.1  cgd 	if (h->nextpg != P_INVALID) {
    405      1.1  cgd 		if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
    406      1.1  cgd 			free(l);
    407      1.1  cgd 			/* XXX mpool_free(t->bt_mp, r->pgno); */
    408      1.1  cgd 			return (NULL);
    409      1.1  cgd 		}
    410      1.1  cgd 		tp->prevpg = r->pgno;
    411  1.1.1.2  cgd 		mpool_put(t->bt_mp, tp, MPOOL_DIRTY);
    412      1.1  cgd 	}
    413      1.1  cgd 
    414      1.1  cgd 	/*
    415      1.1  cgd 	 * Split right.  The key/data pairs aren't sorted in the btree page so
    416      1.1  cgd 	 * it's simpler to copy the data from the split page onto two new pages
    417      1.1  cgd 	 * instead of copying half the data to the right page and compacting
    418      1.1  cgd 	 * the left page in place.  Since the left page can't change, we have
    419      1.1  cgd 	 * to swap the original and the allocated left page after the split.
    420      1.1  cgd 	 */
    421      1.1  cgd 	tp = bt_psplit(t, h, l, r, skip, ilen);
    422      1.1  cgd 
    423      1.1  cgd 	/* Move the new left page onto the old left page. */
    424      1.1  cgd 	memmove(h, l, t->bt_psize);
    425      1.1  cgd 	if (tp == l)
    426      1.1  cgd 		tp = h;
    427      1.1  cgd 	free(l);
    428      1.1  cgd 
    429      1.1  cgd 	*lp = h;
    430      1.1  cgd 	*rp = r;
    431      1.1  cgd 	return (tp);
    432      1.1  cgd }
    433      1.1  cgd 
    434      1.1  cgd /*
    435      1.1  cgd  * BT_ROOT -- Split the root page of a btree.
    436      1.1  cgd  *
    437      1.1  cgd  * Parameters:
    438      1.1  cgd  *	t:	tree
    439      1.1  cgd  *	h:	root page
    440      1.1  cgd  *	lp:	pointer to left page pointer
    441      1.1  cgd  *	rp:	pointer to right page pointer
    442      1.1  cgd  *	skip:	pointer to index to leave open
    443      1.1  cgd  *	ilen:	insert length
    444      1.1  cgd  *
    445      1.1  cgd  * Returns:
    446      1.1  cgd  *	Pointer to page in which to insert or NULL on error.
    447      1.1  cgd  */
    448      1.1  cgd static PAGE *
    449      1.1  cgd bt_root(t, h, lp, rp, skip, ilen)
    450      1.1  cgd 	BTREE *t;
    451      1.1  cgd 	PAGE *h, **lp, **rp;
    452  1.1.1.1  cgd 	indx_t *skip;
    453      1.1  cgd 	size_t ilen;
    454      1.1  cgd {
    455      1.1  cgd 	PAGE *l, *r, *tp;
    456      1.1  cgd 	pgno_t lnpg, rnpg;
    457      1.1  cgd 
    458      1.1  cgd #ifdef STATISTICS
    459      1.1  cgd 	++bt_split;
    460      1.1  cgd 	++bt_rootsplit;
    461      1.1  cgd #endif
    462      1.1  cgd 	/* Put the new left and right pages for the split into place. */
    463      1.1  cgd 	if ((l = __bt_new(t, &lnpg)) == NULL ||
    464      1.1  cgd 	    (r = __bt_new(t, &rnpg)) == NULL)
    465      1.1  cgd 		return (NULL);
    466      1.1  cgd 	l->pgno = lnpg;
    467      1.1  cgd 	r->pgno = rnpg;
    468      1.1  cgd 	l->nextpg = r->pgno;
    469      1.1  cgd 	r->prevpg = l->pgno;
    470      1.1  cgd 	l->prevpg = r->nextpg = P_INVALID;
    471      1.1  cgd 	l->lower = r->lower = BTDATAOFF;
    472      1.1  cgd 	l->upper = r->upper = t->bt_psize;
    473      1.1  cgd 	l->flags = r->flags = h->flags & P_TYPE;
    474      1.1  cgd 
    475      1.1  cgd 	/* Split the root page. */
    476      1.1  cgd 	tp = bt_psplit(t, h, l, r, skip, ilen);
    477      1.1  cgd 
    478      1.1  cgd 	*lp = l;
    479      1.1  cgd 	*rp = r;
    480      1.1  cgd 	return (tp);
    481      1.1  cgd }
    482      1.1  cgd 
    483      1.1  cgd /*
    484      1.1  cgd  * BT_RROOT -- Fix up the recno root page after it has been split.
    485      1.1  cgd  *
    486      1.1  cgd  * Parameters:
    487      1.1  cgd  *	t:	tree
    488      1.1  cgd  *	h:	root page
    489      1.1  cgd  *	l:	left page
    490      1.1  cgd  *	r:	right page
    491      1.1  cgd  *
    492      1.1  cgd  * Returns:
    493      1.1  cgd  *	RET_ERROR, RET_SUCCESS
    494      1.1  cgd  */
    495      1.1  cgd static int
    496      1.1  cgd bt_rroot(t, h, l, r)
    497      1.1  cgd 	BTREE *t;
    498      1.1  cgd 	PAGE *h, *l, *r;
    499      1.1  cgd {
    500      1.1  cgd 	char *dest;
    501      1.1  cgd 
    502      1.1  cgd 	/* Insert the left and right keys, set the header information. */
    503      1.1  cgd 	h->linp[0] = h->upper = t->bt_psize - NRINTERNAL;
    504      1.1  cgd 	dest = (char *)h + h->upper;
    505      1.1  cgd 	WR_RINTERNAL(dest,
    506      1.1  cgd 	    l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
    507      1.1  cgd 
    508      1.1  cgd 	h->linp[1] = h->upper -= NRINTERNAL;
    509      1.1  cgd 	dest = (char *)h + h->upper;
    510      1.1  cgd 	WR_RINTERNAL(dest,
    511      1.1  cgd 	    r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
    512      1.1  cgd 
    513      1.1  cgd 	h->lower = BTDATAOFF + 2 * sizeof(indx_t);
    514      1.1  cgd 
    515      1.1  cgd 	/* Unpin the root page, set to recno internal page. */
    516      1.1  cgd 	h->flags &= ~P_TYPE;
    517      1.1  cgd 	h->flags |= P_RINTERNAL;
    518      1.1  cgd 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
    519      1.1  cgd 
    520      1.1  cgd 	return (RET_SUCCESS);
    521      1.1  cgd }
    522      1.1  cgd 
    523      1.1  cgd /*
    524      1.1  cgd  * BT_BROOT -- Fix up the btree root page after it has been split.
    525      1.1  cgd  *
    526      1.1  cgd  * Parameters:
    527      1.1  cgd  *	t:	tree
    528      1.1  cgd  *	h:	root page
    529      1.1  cgd  *	l:	left page
    530      1.1  cgd  *	r:	right page
    531      1.1  cgd  *
    532      1.1  cgd  * Returns:
    533      1.1  cgd  *	RET_ERROR, RET_SUCCESS
    534      1.1  cgd  */
    535      1.1  cgd static int
    536      1.1  cgd bt_broot(t, h, l, r)
    537      1.1  cgd 	BTREE *t;
    538      1.1  cgd 	PAGE *h, *l, *r;
    539      1.1  cgd {
    540      1.1  cgd 	BINTERNAL *bi;
    541      1.1  cgd 	BLEAF *bl;
    542  1.1.1.1  cgd 	u_int32_t nbytes;
    543      1.1  cgd 	char *dest;
    544      1.1  cgd 
    545      1.1  cgd 	/*
    546      1.1  cgd 	 * If the root page was a leaf page, change it into an internal page.
    547      1.1  cgd 	 * We copy the key we split on (but not the key's data, in the case of
    548      1.1  cgd 	 * a leaf page) to the new root page.
    549      1.1  cgd 	 *
    550      1.1  cgd 	 * The btree comparison code guarantees that the left-most key on any
    551      1.1  cgd 	 * level of the tree is never used, so it doesn't need to be filled in.
    552      1.1  cgd 	 */
    553      1.1  cgd 	nbytes = NBINTERNAL(0);
    554      1.1  cgd 	h->linp[0] = h->upper = t->bt_psize - nbytes;
    555      1.1  cgd 	dest = (char *)h + h->upper;
    556      1.1  cgd 	WR_BINTERNAL(dest, 0, l->pgno, 0);
    557      1.1  cgd 
    558  1.1.1.2  cgd 	switch (h->flags & P_TYPE) {
    559      1.1  cgd 	case P_BLEAF:
    560      1.1  cgd 		bl = GETBLEAF(r, 0);
    561      1.1  cgd 		nbytes = NBINTERNAL(bl->ksize);
    562      1.1  cgd 		h->linp[1] = h->upper -= nbytes;
    563      1.1  cgd 		dest = (char *)h + h->upper;
    564      1.1  cgd 		WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
    565      1.1  cgd 		memmove(dest, bl->bytes, bl->ksize);
    566      1.1  cgd 
    567      1.1  cgd 		/*
    568      1.1  cgd 		 * If the key is on an overflow page, mark the overflow chain
    569      1.1  cgd 		 * so it isn't deleted when the leaf copy of the key is deleted.
    570      1.1  cgd 		 */
    571      1.1  cgd 		if (bl->flags & P_BIGKEY &&
    572      1.1  cgd 		    bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
    573      1.1  cgd 			return (RET_ERROR);
    574      1.1  cgd 		break;
    575      1.1  cgd 	case P_BINTERNAL:
    576      1.1  cgd 		bi = GETBINTERNAL(r, 0);
    577      1.1  cgd 		nbytes = NBINTERNAL(bi->ksize);
    578      1.1  cgd 		h->linp[1] = h->upper -= nbytes;
    579      1.1  cgd 		dest = (char *)h + h->upper;
    580      1.1  cgd 		memmove(dest, bi, nbytes);
    581      1.1  cgd 		((BINTERNAL *)dest)->pgno = r->pgno;
    582      1.1  cgd 		break;
    583      1.1  cgd 	default:
    584      1.1  cgd 		abort();
    585      1.1  cgd 	}
    586      1.1  cgd 
    587      1.1  cgd 	/* There are two keys on the page. */
    588      1.1  cgd 	h->lower = BTDATAOFF + 2 * sizeof(indx_t);
    589      1.1  cgd 
    590      1.1  cgd 	/* Unpin the root page, set to btree internal page. */
    591      1.1  cgd 	h->flags &= ~P_TYPE;
    592      1.1  cgd 	h->flags |= P_BINTERNAL;
    593      1.1  cgd 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
    594      1.1  cgd 
    595      1.1  cgd 	return (RET_SUCCESS);
    596      1.1  cgd }
    597      1.1  cgd 
    598      1.1  cgd /*
    599      1.1  cgd  * BT_PSPLIT -- Do the real work of splitting the page.
    600      1.1  cgd  *
    601      1.1  cgd  * Parameters:
    602      1.1  cgd  *	t:	tree
    603      1.1  cgd  *	h:	page to be split
    604      1.1  cgd  *	l:	page to put lower half of data
    605      1.1  cgd  *	r:	page to put upper half of data
    606      1.1  cgd  *	pskip:	pointer to index to leave open
    607      1.1  cgd  *	ilen:	insert length
    608      1.1  cgd  *
    609      1.1  cgd  * Returns:
    610      1.1  cgd  *	Pointer to page in which to insert.
    611      1.1  cgd  */
    612      1.1  cgd static PAGE *
    613      1.1  cgd bt_psplit(t, h, l, r, pskip, ilen)
    614      1.1  cgd 	BTREE *t;
    615      1.1  cgd 	PAGE *h, *l, *r;
    616  1.1.1.1  cgd 	indx_t *pskip;
    617      1.1  cgd 	size_t ilen;
    618      1.1  cgd {
    619      1.1  cgd 	BINTERNAL *bi;
    620      1.1  cgd 	BLEAF *bl;
    621  1.1.1.2  cgd 	CURSOR *c;
    622      1.1  cgd 	RLEAF *rl;
    623      1.1  cgd 	PAGE *rval;
    624      1.1  cgd 	void *src;
    625      1.1  cgd 	indx_t full, half, nxt, off, skip, top, used;
    626  1.1.1.1  cgd 	u_int32_t nbytes;
    627      1.1  cgd 	int bigkeycnt, isbigkey;
    628      1.1  cgd 
    629      1.1  cgd 	/*
    630      1.1  cgd 	 * Split the data to the left and right pages.  Leave the skip index
    631      1.1  cgd 	 * open.  Additionally, make some effort not to split on an overflow
    632      1.1  cgd 	 * key.  This makes internal page processing faster and can save
    633      1.1  cgd 	 * space as overflow keys used by internal pages are never deleted.
    634      1.1  cgd 	 */
    635      1.1  cgd 	bigkeycnt = 0;
    636      1.1  cgd 	skip = *pskip;
    637      1.1  cgd 	full = t->bt_psize - BTDATAOFF;
    638      1.1  cgd 	half = full / 2;
    639      1.1  cgd 	used = 0;
    640      1.1  cgd 	for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
    641      1.1  cgd 		if (skip == off) {
    642      1.1  cgd 			nbytes = ilen;
    643      1.1  cgd 			isbigkey = 0;		/* XXX: not really known. */
    644      1.1  cgd 		} else
    645      1.1  cgd 			switch (h->flags & P_TYPE) {
    646      1.1  cgd 			case P_BINTERNAL:
    647      1.1  cgd 				src = bi = GETBINTERNAL(h, nxt);
    648      1.1  cgd 				nbytes = NBINTERNAL(bi->ksize);
    649      1.1  cgd 				isbigkey = bi->flags & P_BIGKEY;
    650      1.1  cgd 				break;
    651      1.1  cgd 			case P_BLEAF:
    652      1.1  cgd 				src = bl = GETBLEAF(h, nxt);
    653      1.1  cgd 				nbytes = NBLEAF(bl);
    654      1.1  cgd 				isbigkey = bl->flags & P_BIGKEY;
    655      1.1  cgd 				break;
    656      1.1  cgd 			case P_RINTERNAL:
    657      1.1  cgd 				src = GETRINTERNAL(h, nxt);
    658      1.1  cgd 				nbytes = NRINTERNAL;
    659      1.1  cgd 				isbigkey = 0;
    660      1.1  cgd 				break;
    661      1.1  cgd 			case P_RLEAF:
    662      1.1  cgd 				src = rl = GETRLEAF(h, nxt);
    663      1.1  cgd 				nbytes = NRLEAF(rl);
    664      1.1  cgd 				isbigkey = 0;
    665      1.1  cgd 				break;
    666      1.1  cgd 			default:
    667      1.1  cgd 				abort();
    668      1.1  cgd 			}
    669      1.1  cgd 
    670      1.1  cgd 		/*
    671      1.1  cgd 		 * If the key/data pairs are substantial fractions of the max
    672      1.1  cgd 		 * possible size for the page, it's possible to get situations
    673      1.1  cgd 		 * where we decide to try and copy too much onto the left page.
    674      1.1  cgd 		 * Make sure that doesn't happen.
    675      1.1  cgd 		 */
    676      1.1  cgd 		if (skip <= off && used + nbytes >= full) {
    677      1.1  cgd 			--off;
    678      1.1  cgd 			break;
    679      1.1  cgd 		}
    680      1.1  cgd 
    681      1.1  cgd 		/* Copy the key/data pair, if not the skipped index. */
    682      1.1  cgd 		if (skip != off) {
    683      1.1  cgd 			++nxt;
    684      1.1  cgd 
    685      1.1  cgd 			l->linp[off] = l->upper -= nbytes;
    686      1.1  cgd 			memmove((char *)l + l->upper, src, nbytes);
    687      1.1  cgd 		}
    688      1.1  cgd 
    689      1.1  cgd 		used += nbytes;
    690      1.1  cgd 		if (used >= half) {
    691      1.1  cgd 			if (!isbigkey || bigkeycnt == 3)
    692      1.1  cgd 				break;
    693      1.1  cgd 			else
    694      1.1  cgd 				++bigkeycnt;
    695      1.1  cgd 		}
    696      1.1  cgd 	}
    697      1.1  cgd 
    698      1.1  cgd 	/*
    699      1.1  cgd 	 * Off is the last offset that's valid for the left page.
    700      1.1  cgd 	 * Nxt is the first offset to be placed on the right page.
    701      1.1  cgd 	 */
    702      1.1  cgd 	l->lower += (off + 1) * sizeof(indx_t);
    703      1.1  cgd 
    704      1.1  cgd 	/*
    705      1.1  cgd 	 * If splitting the page that the cursor was on, the cursor has to be
    706      1.1  cgd 	 * adjusted to point to the same record as before the split.  If the
    707      1.1  cgd 	 * cursor is at or past the skipped slot, the cursor is incremented by
    708      1.1  cgd 	 * one.  If the cursor is on the right page, it is decremented by the
    709      1.1  cgd 	 * number of records split to the left page.
    710      1.1  cgd 	 */
    711  1.1.1.2  cgd 	c = &t->bt_cursor;
    712  1.1.1.2  cgd 	if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) {
    713  1.1.1.2  cgd 		if (c->pg.index >= skip)
    714  1.1.1.2  cgd 			++c->pg.index;
    715  1.1.1.2  cgd 		if (c->pg.index < nxt)			/* Left page. */
    716  1.1.1.2  cgd 			c->pg.pgno = l->pgno;
    717      1.1  cgd 		else {					/* Right page. */
    718  1.1.1.2  cgd 			c->pg.pgno = r->pgno;
    719  1.1.1.2  cgd 			c->pg.index -= nxt;
    720      1.1  cgd 		}
    721      1.1  cgd 	}
    722      1.1  cgd 
    723      1.1  cgd 	/*
    724      1.1  cgd 	 * If the skipped index was on the left page, just return that page.
    725      1.1  cgd 	 * Otherwise, adjust the skip index to reflect the new position on
    726      1.1  cgd 	 * the right page.
    727      1.1  cgd 	 */
    728      1.1  cgd 	if (skip <= off) {
    729      1.1  cgd 		skip = 0;
    730      1.1  cgd 		rval = l;
    731      1.1  cgd 	} else {
    732      1.1  cgd 		rval = r;
    733      1.1  cgd 		*pskip -= nxt;
    734      1.1  cgd 	}
    735      1.1  cgd 
    736      1.1  cgd 	for (off = 0; nxt < top; ++off) {
    737      1.1  cgd 		if (skip == nxt) {
    738      1.1  cgd 			++off;
    739      1.1  cgd 			skip = 0;
    740      1.1  cgd 		}
    741      1.1  cgd 		switch (h->flags & P_TYPE) {
    742      1.1  cgd 		case P_BINTERNAL:
    743      1.1  cgd 			src = bi = GETBINTERNAL(h, nxt);
    744      1.1  cgd 			nbytes = NBINTERNAL(bi->ksize);
    745      1.1  cgd 			break;
    746      1.1  cgd 		case P_BLEAF:
    747      1.1  cgd 			src = bl = GETBLEAF(h, nxt);
    748      1.1  cgd 			nbytes = NBLEAF(bl);
    749      1.1  cgd 			break;
    750      1.1  cgd 		case P_RINTERNAL:
    751      1.1  cgd 			src = GETRINTERNAL(h, nxt);
    752      1.1  cgd 			nbytes = NRINTERNAL;
    753      1.1  cgd 			break;
    754      1.1  cgd 		case P_RLEAF:
    755      1.1  cgd 			src = rl = GETRLEAF(h, nxt);
    756      1.1  cgd 			nbytes = NRLEAF(rl);
    757      1.1  cgd 			break;
    758      1.1  cgd 		default:
    759      1.1  cgd 			abort();
    760      1.1  cgd 		}
    761      1.1  cgd 		++nxt;
    762      1.1  cgd 		r->linp[off] = r->upper -= nbytes;
    763      1.1  cgd 		memmove((char *)r + r->upper, src, nbytes);
    764      1.1  cgd 	}
    765      1.1  cgd 	r->lower += off * sizeof(indx_t);
    766      1.1  cgd 
    767      1.1  cgd 	/* If the key is being appended to the page, adjust the index. */
    768      1.1  cgd 	if (skip == top)
    769      1.1  cgd 		r->lower += sizeof(indx_t);
    770      1.1  cgd 
    771      1.1  cgd 	return (rval);
    772      1.1  cgd }
    773      1.1  cgd 
    774      1.1  cgd /*
    775      1.1  cgd  * BT_PRESERVE -- Mark a chain of pages as used by an internal node.
    776      1.1  cgd  *
    777      1.1  cgd  * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
    778      1.1  cgd  * record that references them gets deleted.  Chains pointed to by internal
    779      1.1  cgd  * pages never get deleted.  This routine marks a chain as pointed to by an
    780      1.1  cgd  * internal page.
    781      1.1  cgd  *
    782      1.1  cgd  * Parameters:
    783      1.1  cgd  *	t:	tree
    784      1.1  cgd  *	pg:	page number of first page in the chain.
    785      1.1  cgd  *
    786      1.1  cgd  * Returns:
    787      1.1  cgd  *	RET_SUCCESS, RET_ERROR.
    788      1.1  cgd  */
    789      1.1  cgd static int
    790      1.1  cgd bt_preserve(t, pg)
    791      1.1  cgd 	BTREE *t;
    792      1.1  cgd 	pgno_t pg;
    793      1.1  cgd {
    794      1.1  cgd 	PAGE *h;
    795      1.1  cgd 
    796      1.1  cgd 	if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    797      1.1  cgd 		return (RET_ERROR);
    798      1.1  cgd 	h->flags |= P_PRESERVE;
    799      1.1  cgd 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
    800      1.1  cgd 	return (RET_SUCCESS);
    801      1.1  cgd }
    802      1.1  cgd 
    803      1.1  cgd /*
    804      1.1  cgd  * REC_TOTAL -- Return the number of recno entries below a page.
    805      1.1  cgd  *
    806      1.1  cgd  * Parameters:
    807      1.1  cgd  *	h:	page
    808      1.1  cgd  *
    809      1.1  cgd  * Returns:
    810      1.1  cgd  *	The number of recno entries below a page.
    811      1.1  cgd  *
    812      1.1  cgd  * XXX
    813      1.1  cgd  * These values could be set by the bt_psplit routine.  The problem is that the
    814      1.1  cgd  * entry has to be popped off of the stack etc. or the values have to be passed
    815      1.1  cgd  * all the way back to bt_split/bt_rroot and it's not very clean.
    816      1.1  cgd  */
    817      1.1  cgd static recno_t
    818      1.1  cgd rec_total(h)
    819      1.1  cgd 	PAGE *h;
    820      1.1  cgd {
    821      1.1  cgd 	recno_t recs;
    822      1.1  cgd 	indx_t nxt, top;
    823      1.1  cgd 
    824      1.1  cgd 	for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
    825      1.1  cgd 		recs += GETRINTERNAL(h, nxt)->nrecs;
    826      1.1  cgd 	return (recs);
    827      1.1  cgd }
    828