Home | History | Annotate | Line # | Download | only in btree
bt_split.c revision 1.18
      1  1.18     lukem /*	$NetBSD: bt_split.c,v 1.18 2009/02/12 06:41:40 lukem Exp $	*/
      2   1.5       cgd 
      3   1.1       cgd /*-
      4   1.4       cgd  * Copyright (c) 1990, 1993, 1994
      5   1.1       cgd  *	The Regents of the University of California.  All rights reserved.
      6   1.1       cgd  *
      7   1.1       cgd  * This code is derived from software contributed to Berkeley by
      8   1.1       cgd  * Mike Olson.
      9   1.1       cgd  *
     10   1.1       cgd  * Redistribution and use in source and binary forms, with or without
     11   1.1       cgd  * modification, are permitted provided that the following conditions
     12   1.1       cgd  * are met:
     13   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     14   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     15   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     17   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     18  1.13       agc  * 3. Neither the name of the University nor the names of its contributors
     19   1.1       cgd  *    may be used to endorse or promote products derived from this software
     20   1.1       cgd  *    without specific prior written permission.
     21   1.1       cgd  *
     22   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32   1.1       cgd  * SUCH DAMAGE.
     33   1.1       cgd  */
     34   1.1       cgd 
     35  1.17     joerg #if HAVE_NBTOOL_CONFIG_H
     36  1.17     joerg #include "nbtool_config.h"
     37  1.17     joerg #endif
     38  1.17     joerg 
     39   1.7  christos #include <sys/cdefs.h>
     40  1.18     lukem __RCSID("$NetBSD: bt_split.c,v 1.18 2009/02/12 06:41:40 lukem Exp $");
     41   1.1       cgd 
     42   1.8       jtc #include "namespace.h"
     43   1.1       cgd #include <sys/types.h>
     44   1.1       cgd 
     45  1.14  christos #include <assert.h>
     46   1.1       cgd #include <limits.h>
     47   1.1       cgd #include <stdio.h>
     48   1.1       cgd #include <stdlib.h>
     49   1.1       cgd #include <string.h>
     50   1.1       cgd 
     51   1.1       cgd #include <db.h>
     52   1.1       cgd #include "btree.h"
     53   1.1       cgd 
     54  1.14  christos static int	 bt_broot(BTREE *, PAGE *, PAGE *, PAGE *);
     55  1.14  christos static PAGE	*bt_page(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
     56  1.14  christos static int	 bt_preserve(BTREE *, pgno_t);
     57  1.14  christos static PAGE	*bt_psplit(BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t);
     58  1.14  christos static PAGE	*bt_root(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
     59  1.14  christos static int	 bt_rroot(BTREE *, PAGE *, PAGE *, PAGE *);
     60  1.14  christos static recno_t	 rec_total(PAGE *);
     61   1.1       cgd 
     62   1.1       cgd #ifdef STATISTICS
     63  1.15     joerg unsigned long	bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
     64   1.1       cgd #endif
     65   1.1       cgd 
     66   1.1       cgd /*
     67   1.1       cgd  * __BT_SPLIT -- Split the tree.
     68   1.1       cgd  *
     69   1.1       cgd  * Parameters:
     70   1.1       cgd  *	t:	tree
     71   1.1       cgd  *	sp:	page to split
     72   1.1       cgd  *	key:	key to insert
     73   1.1       cgd  *	data:	data to insert
     74   1.1       cgd  *	flags:	BIGKEY/BIGDATA flags
     75   1.1       cgd  *	ilen:	insert length
     76   1.1       cgd  *	skip:	index to leave open
     77   1.1       cgd  *
     78   1.1       cgd  * Returns:
     79   1.1       cgd  *	RET_ERROR, RET_SUCCESS
     80   1.1       cgd  */
     81   1.1       cgd int
     82  1.14  christos __bt_split(BTREE *t, PAGE *sp, const DBT *key, const DBT *data, int flags,
     83  1.15     joerg     size_t ilen, uint32_t argskip)
     84   1.1       cgd {
     85   1.7  christos 	BINTERNAL *bi = NULL;	/* pacify gcc */
     86   1.7  christos 	BLEAF *bl = NULL, *tbl;	/* pacify gcc */
     87   1.1       cgd 	DBT a, b;
     88   1.1       cgd 	EPGNO *parent;
     89   1.1       cgd 	PAGE *h, *l, *r, *lchild, *rchild;
     90   1.1       cgd 	indx_t nxtindex;
     91  1.15     joerg 	uint16_t skip;
     92  1.15     joerg 	uint32_t n, nbytes, nksize = 0; /* pacify gcc */
     93   1.1       cgd 	int parentsplit;
     94   1.1       cgd 	char *dest;
     95   1.1       cgd 
     96   1.1       cgd 	/*
     97   1.1       cgd 	 * Split the page into two pages, l and r.  The split routines return
     98   1.1       cgd 	 * a pointer to the page into which the key should be inserted and with
     99   1.1       cgd 	 * skip set to the offset which should be used.  Additionally, l and r
    100   1.1       cgd 	 * are pinned.
    101   1.1       cgd 	 */
    102   1.4       cgd 	skip = argskip;
    103   1.1       cgd 	h = sp->pgno == P_ROOT ?
    104   1.1       cgd 	    bt_root(t, sp, &l, &r, &skip, ilen) :
    105   1.1       cgd 	    bt_page(t, sp, &l, &r, &skip, ilen);
    106   1.1       cgd 	if (h == NULL)
    107   1.1       cgd 		return (RET_ERROR);
    108   1.1       cgd 
    109   1.1       cgd 	/*
    110   1.1       cgd 	 * Insert the new key/data pair into the leaf page.  (Key inserts
    111   1.1       cgd 	 * always cause a leaf page to split first.)
    112   1.1       cgd 	 */
    113  1.14  christos 	_DBFIT(ilen, indx_t);
    114  1.14  christos 	h->upper -= (indx_t)ilen;
    115  1.14  christos 	h->linp[skip] = h->upper;
    116  1.10  christos 	dest = (char *)(void *)h + h->upper;
    117   1.6       cgd 	if (F_ISSET(t, R_RECNO))
    118  1.14  christos 		WR_RLEAF(dest, data, flags);
    119   1.1       cgd 	else
    120  1.14  christos 		WR_BLEAF(dest, key, data, flags);
    121   1.1       cgd 
    122   1.1       cgd 	/* If the root page was split, make it look right. */
    123   1.1       cgd 	if (sp->pgno == P_ROOT &&
    124   1.6       cgd 	    (F_ISSET(t, R_RECNO) ?
    125   1.1       cgd 	    bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
    126   1.1       cgd 		goto err2;
    127   1.1       cgd 
    128   1.1       cgd 	/*
    129   1.1       cgd 	 * Now we walk the parent page stack -- a LIFO stack of the pages that
    130   1.1       cgd 	 * were traversed when we searched for the page that split.  Each stack
    131   1.1       cgd 	 * entry is a page number and a page index offset.  The offset is for
    132   1.1       cgd 	 * the page traversed on the search.  We've just split a page, so we
    133   1.1       cgd 	 * have to insert a new key into the parent page.
    134   1.1       cgd 	 *
    135   1.1       cgd 	 * If the insert into the parent page causes it to split, may have to
    136   1.1       cgd 	 * continue splitting all the way up the tree.  We stop if the root
    137   1.1       cgd 	 * splits or the page inserted into didn't have to split to hold the
    138   1.1       cgd 	 * new key.  Some algorithms replace the key for the old page as well
    139   1.1       cgd 	 * as the new page.  We don't, as there's no reason to believe that the
    140   1.1       cgd 	 * first key on the old page is any better than the key we have, and,
    141   1.1       cgd 	 * in the case of a key being placed at index 0 causing the split, the
    142   1.1       cgd 	 * key is unavailable.
    143   1.1       cgd 	 *
    144   1.1       cgd 	 * There are a maximum of 5 pages pinned at any time.  We keep the left
    145   1.1       cgd 	 * and right pages pinned while working on the parent.   The 5 are the
    146   1.1       cgd 	 * two children, left parent and right parent (when the parent splits)
    147   1.1       cgd 	 * and the root page or the overflow key page when calling bt_preserve.
    148   1.1       cgd 	 * This code must make sure that all pins are released other than the
    149   1.1       cgd 	 * root page or overflow page which is unlocked elsewhere.
    150   1.1       cgd 	 */
    151   1.1       cgd 	while ((parent = BT_POP(t)) != NULL) {
    152   1.1       cgd 		lchild = l;
    153   1.1       cgd 		rchild = r;
    154   1.1       cgd 
    155   1.1       cgd 		/* Get the parent page. */
    156   1.1       cgd 		if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
    157   1.1       cgd 			goto err2;
    158   1.1       cgd 
    159   1.1       cgd 	 	/*
    160   1.1       cgd 		 * The new key goes ONE AFTER the index, because the split
    161   1.1       cgd 		 * was to the right.
    162   1.1       cgd 		 */
    163   1.1       cgd 		skip = parent->index + 1;
    164   1.1       cgd 
    165   1.1       cgd 		/*
    166   1.1       cgd 		 * Calculate the space needed on the parent page.
    167   1.1       cgd 		 *
    168   1.1       cgd 		 * Prefix trees: space hack when inserting into BINTERNAL
    169   1.1       cgd 		 * pages.  Retain only what's needed to distinguish between
    170   1.1       cgd 		 * the new entry and the LAST entry on the page to its left.
    171   1.1       cgd 		 * If the keys compare equal, retain the entire key.  Note,
    172   1.1       cgd 		 * we don't touch overflow keys, and the entire key must be
    173   1.1       cgd 		 * retained for the next-to-left most key on the leftmost
    174   1.1       cgd 		 * page of each level, or the search will fail.  Applicable
    175   1.1       cgd 		 * ONLY to internal pages that have leaf pages as children.
    176   1.1       cgd 		 * Further reduction of the key between pairs of internal
    177   1.1       cgd 		 * pages loses too much information.
    178   1.1       cgd 		 */
    179   1.1       cgd 		switch (rchild->flags & P_TYPE) {
    180   1.1       cgd 		case P_BINTERNAL:
    181   1.1       cgd 			bi = GETBINTERNAL(rchild, 0);
    182   1.1       cgd 			nbytes = NBINTERNAL(bi->ksize);
    183   1.1       cgd 			break;
    184   1.1       cgd 		case P_BLEAF:
    185   1.1       cgd 			bl = GETBLEAF(rchild, 0);
    186   1.1       cgd 			nbytes = NBINTERNAL(bl->ksize);
    187   1.1       cgd 			if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
    188   1.1       cgd 			    (h->prevpg != P_INVALID || skip > 1)) {
    189  1.14  christos 				size_t temp;
    190   1.1       cgd 				tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
    191   1.1       cgd 				a.size = tbl->ksize;
    192   1.1       cgd 				a.data = tbl->bytes;
    193   1.1       cgd 				b.size = bl->ksize;
    194   1.1       cgd 				b.data = bl->bytes;
    195  1.14  christos 				temp = t->bt_pfx(&a, &b);
    196  1.15     joerg 				_DBFIT(temp, uint32_t);
    197  1.15     joerg 				nksize = (uint32_t)temp;
    198   1.1       cgd 				n = NBINTERNAL(nksize);
    199   1.1       cgd 				if (n < nbytes) {
    200   1.1       cgd #ifdef STATISTICS
    201   1.1       cgd 					bt_pfxsaved += nbytes - n;
    202   1.1       cgd #endif
    203   1.1       cgd 					nbytes = n;
    204   1.1       cgd 				} else
    205   1.1       cgd 					nksize = 0;
    206   1.1       cgd 			} else
    207   1.1       cgd 				nksize = 0;
    208   1.1       cgd 			break;
    209   1.1       cgd 		case P_RINTERNAL:
    210   1.1       cgd 		case P_RLEAF:
    211   1.1       cgd 			nbytes = NRINTERNAL;
    212   1.1       cgd 			break;
    213   1.1       cgd 		default:
    214   1.1       cgd 			abort();
    215   1.1       cgd 		}
    216   1.1       cgd 
    217   1.1       cgd 		/* Split the parent page if necessary or shift the indices. */
    218  1.18     lukem 		if ((uint32_t)h->upper - (uint32_t)h->lower < nbytes + sizeof(indx_t)) {
    219   1.1       cgd 			sp = h;
    220   1.1       cgd 			h = h->pgno == P_ROOT ?
    221   1.1       cgd 			    bt_root(t, h, &l, &r, &skip, nbytes) :
    222   1.1       cgd 			    bt_page(t, h, &l, &r, &skip, nbytes);
    223   1.1       cgd 			if (h == NULL)
    224   1.1       cgd 				goto err1;
    225   1.1       cgd 			parentsplit = 1;
    226   1.1       cgd 		} else {
    227   1.1       cgd 			if (skip < (nxtindex = NEXTINDEX(h)))
    228   1.1       cgd 				memmove(h->linp + skip + 1, h->linp + skip,
    229   1.1       cgd 				    (nxtindex - skip) * sizeof(indx_t));
    230   1.1       cgd 			h->lower += sizeof(indx_t);
    231   1.1       cgd 			parentsplit = 0;
    232   1.1       cgd 		}
    233   1.1       cgd 
    234   1.1       cgd 		/* Insert the key into the parent page. */
    235   1.6       cgd 		switch (rchild->flags & P_TYPE) {
    236   1.1       cgd 		case P_BINTERNAL:
    237   1.1       cgd 			h->linp[skip] = h->upper -= nbytes;
    238  1.10  christos 			dest = (char *)(void *)h + h->linp[skip];
    239   1.1       cgd 			memmove(dest, bi, nbytes);
    240  1.10  christos 			((BINTERNAL *)(void *)dest)->pgno = rchild->pgno;
    241   1.1       cgd 			break;
    242   1.1       cgd 		case P_BLEAF:
    243   1.1       cgd 			h->linp[skip] = h->upper -= nbytes;
    244  1.10  christos 			dest = (char *)(void *)h + h->linp[skip];
    245   1.1       cgd 			WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
    246   1.1       cgd 			    rchild->pgno, bl->flags & P_BIGKEY);
    247   1.1       cgd 			memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
    248   1.1       cgd 			if (bl->flags & P_BIGKEY &&
    249  1.10  christos 			    bt_preserve(t, *(pgno_t *)(void *)bl->bytes) ==
    250  1.10  christos 			    RET_ERROR)
    251   1.1       cgd 				goto err1;
    252   1.1       cgd 			break;
    253   1.1       cgd 		case P_RINTERNAL:
    254   1.1       cgd 			/*
    255   1.1       cgd 			 * Update the left page count.  If split
    256   1.1       cgd 			 * added at index 0, fix the correct page.
    257   1.1       cgd 			 */
    258   1.1       cgd 			if (skip > 0)
    259  1.10  christos 				dest = (char *)(void *)h + h->linp[skip - 1];
    260   1.1       cgd 			else
    261  1.10  christos 				dest = (char *)(void *)l + l->linp[NEXTINDEX(l) - 1];
    262  1.10  christos 			((RINTERNAL *)(void *)dest)->nrecs = rec_total(lchild);
    263  1.10  christos 			((RINTERNAL *)(void *)dest)->pgno = lchild->pgno;
    264   1.1       cgd 
    265   1.1       cgd 			/* Update the right page count. */
    266   1.1       cgd 			h->linp[skip] = h->upper -= nbytes;
    267  1.10  christos 			dest = (char *)(void *)h + h->linp[skip];
    268  1.10  christos 			((RINTERNAL *)(void *)dest)->nrecs = rec_total(rchild);
    269  1.10  christos 			((RINTERNAL *)(void *)dest)->pgno = rchild->pgno;
    270   1.1       cgd 			break;
    271   1.1       cgd 		case P_RLEAF:
    272   1.1       cgd 			/*
    273   1.1       cgd 			 * Update the left page count.  If split
    274   1.1       cgd 			 * added at index 0, fix the correct page.
    275   1.1       cgd 			 */
    276   1.1       cgd 			if (skip > 0)
    277  1.10  christos 				dest = (char *)(void *)h + h->linp[skip - 1];
    278   1.1       cgd 			else
    279  1.10  christos 				dest = (char *)(void *)l + l->linp[NEXTINDEX(l) - 1];
    280  1.10  christos 			((RINTERNAL *)(void *)dest)->nrecs = NEXTINDEX(lchild);
    281  1.10  christos 			((RINTERNAL *)(void *)dest)->pgno = lchild->pgno;
    282   1.1       cgd 
    283   1.1       cgd 			/* Update the right page count. */
    284   1.1       cgd 			h->linp[skip] = h->upper -= nbytes;
    285  1.10  christos 			dest = (char *)(void *)h + h->linp[skip];
    286  1.10  christos 			((RINTERNAL *)(void *)dest)->nrecs = NEXTINDEX(rchild);
    287  1.10  christos 			((RINTERNAL *)(void *)dest)->pgno = rchild->pgno;
    288   1.1       cgd 			break;
    289   1.1       cgd 		default:
    290   1.1       cgd 			abort();
    291   1.1       cgd 		}
    292   1.1       cgd 
    293   1.1       cgd 		/* Unpin the held pages. */
    294   1.1       cgd 		if (!parentsplit) {
    295   1.1       cgd 			mpool_put(t->bt_mp, h, MPOOL_DIRTY);
    296   1.1       cgd 			break;
    297   1.1       cgd 		}
    298   1.1       cgd 
    299   1.1       cgd 		/* If the root page was split, make it look right. */
    300   1.1       cgd 		if (sp->pgno == P_ROOT &&
    301   1.6       cgd 		    (F_ISSET(t, R_RECNO) ?
    302   1.1       cgd 		    bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
    303   1.1       cgd 			goto err1;
    304   1.1       cgd 
    305   1.1       cgd 		mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
    306   1.1       cgd 		mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
    307   1.1       cgd 	}
    308   1.1       cgd 
    309   1.1       cgd 	/* Unpin the held pages. */
    310   1.1       cgd 	mpool_put(t->bt_mp, l, MPOOL_DIRTY);
    311   1.1       cgd 	mpool_put(t->bt_mp, r, MPOOL_DIRTY);
    312   1.1       cgd 
    313   1.1       cgd 	/* Clear any pages left on the stack. */
    314   1.1       cgd 	return (RET_SUCCESS);
    315   1.1       cgd 
    316   1.1       cgd 	/*
    317   1.1       cgd 	 * If something fails in the above loop we were already walking back
    318   1.1       cgd 	 * up the tree and the tree is now inconsistent.  Nothing much we can
    319   1.1       cgd 	 * do about it but release any memory we're holding.
    320   1.1       cgd 	 */
    321   1.1       cgd err1:	mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
    322   1.1       cgd 	mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
    323   1.1       cgd 
    324   1.1       cgd err2:	mpool_put(t->bt_mp, l, 0);
    325   1.1       cgd 	mpool_put(t->bt_mp, r, 0);
    326   1.1       cgd 	__dbpanic(t->bt_dbp);
    327   1.1       cgd 	return (RET_ERROR);
    328   1.1       cgd }
    329   1.1       cgd 
    330   1.1       cgd /*
    331   1.1       cgd  * BT_PAGE -- Split a non-root page of a btree.
    332   1.1       cgd  *
    333   1.1       cgd  * Parameters:
    334   1.1       cgd  *	t:	tree
    335   1.1       cgd  *	h:	root page
    336   1.1       cgd  *	lp:	pointer to left page pointer
    337   1.1       cgd  *	rp:	pointer to right page pointer
    338   1.1       cgd  *	skip:	pointer to index to leave open
    339   1.1       cgd  *	ilen:	insert length
    340   1.1       cgd  *
    341   1.1       cgd  * Returns:
    342   1.1       cgd  *	Pointer to page in which to insert or NULL on error.
    343   1.1       cgd  */
    344   1.1       cgd static PAGE *
    345  1.14  christos bt_page(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen)
    346   1.1       cgd {
    347   1.1       cgd 	PAGE *l, *r, *tp;
    348   1.1       cgd 	pgno_t npg;
    349   1.1       cgd 
    350   1.1       cgd #ifdef STATISTICS
    351   1.1       cgd 	++bt_split;
    352   1.1       cgd #endif
    353   1.1       cgd 	/* Put the new right page for the split into place. */
    354   1.1       cgd 	if ((r = __bt_new(t, &npg)) == NULL)
    355   1.1       cgd 		return (NULL);
    356   1.1       cgd 	r->pgno = npg;
    357   1.1       cgd 	r->lower = BTDATAOFF;
    358   1.1       cgd 	r->upper = t->bt_psize;
    359   1.1       cgd 	r->nextpg = h->nextpg;
    360   1.1       cgd 	r->prevpg = h->pgno;
    361   1.1       cgd 	r->flags = h->flags & P_TYPE;
    362   1.1       cgd 
    363   1.1       cgd 	/*
    364   1.1       cgd 	 * If we're splitting the last page on a level because we're appending
    365   1.1       cgd 	 * a key to it (skip is NEXTINDEX()), it's likely that the data is
    366   1.1       cgd 	 * sorted.  Adding an empty page on the side of the level is less work
    367   1.1       cgd 	 * and can push the fill factor much higher than normal.  If we're
    368   1.1       cgd 	 * wrong it's no big deal, we'll just do the split the right way next
    369   1.1       cgd 	 * time.  It may look like it's equally easy to do a similar hack for
    370   1.1       cgd 	 * reverse sorted data, that is, split the tree left, but it's not.
    371   1.1       cgd 	 * Don't even try.
    372   1.1       cgd 	 */
    373   1.1       cgd 	if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
    374   1.1       cgd #ifdef STATISTICS
    375   1.1       cgd 		++bt_sortsplit;
    376   1.1       cgd #endif
    377   1.1       cgd 		h->nextpg = r->pgno;
    378   1.1       cgd 		r->lower = BTDATAOFF + sizeof(indx_t);
    379   1.1       cgd 		*skip = 0;
    380   1.1       cgd 		*lp = h;
    381   1.1       cgd 		*rp = r;
    382   1.1       cgd 		return (r);
    383   1.1       cgd 	}
    384   1.1       cgd 
    385   1.1       cgd 	/* Put the new left page for the split into place. */
    386   1.4       cgd 	if ((l = (PAGE *)malloc(t->bt_psize)) == NULL) {
    387   1.1       cgd 		mpool_put(t->bt_mp, r, 0);
    388   1.1       cgd 		return (NULL);
    389   1.1       cgd 	}
    390   1.6       cgd #ifdef PURIFY
    391   1.6       cgd 	memset(l, 0xff, t->bt_psize);
    392   1.6       cgd #endif
    393   1.1       cgd 	l->pgno = h->pgno;
    394   1.1       cgd 	l->nextpg = r->pgno;
    395   1.1       cgd 	l->prevpg = h->prevpg;
    396   1.1       cgd 	l->lower = BTDATAOFF;
    397   1.1       cgd 	l->upper = t->bt_psize;
    398   1.1       cgd 	l->flags = h->flags & P_TYPE;
    399   1.1       cgd 
    400   1.1       cgd 	/* Fix up the previous pointer of the page after the split page. */
    401   1.1       cgd 	if (h->nextpg != P_INVALID) {
    402   1.1       cgd 		if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
    403   1.1       cgd 			free(l);
    404   1.1       cgd 			/* XXX mpool_free(t->bt_mp, r->pgno); */
    405   1.1       cgd 			return (NULL);
    406   1.1       cgd 		}
    407   1.1       cgd 		tp->prevpg = r->pgno;
    408   1.6       cgd 		mpool_put(t->bt_mp, tp, MPOOL_DIRTY);
    409   1.1       cgd 	}
    410   1.1       cgd 
    411   1.1       cgd 	/*
    412   1.1       cgd 	 * Split right.  The key/data pairs aren't sorted in the btree page so
    413   1.1       cgd 	 * it's simpler to copy the data from the split page onto two new pages
    414   1.1       cgd 	 * instead of copying half the data to the right page and compacting
    415   1.1       cgd 	 * the left page in place.  Since the left page can't change, we have
    416   1.1       cgd 	 * to swap the original and the allocated left page after the split.
    417   1.1       cgd 	 */
    418   1.1       cgd 	tp = bt_psplit(t, h, l, r, skip, ilen);
    419   1.1       cgd 
    420   1.1       cgd 	/* Move the new left page onto the old left page. */
    421   1.1       cgd 	memmove(h, l, t->bt_psize);
    422   1.1       cgd 	if (tp == l)
    423   1.1       cgd 		tp = h;
    424   1.1       cgd 	free(l);
    425   1.1       cgd 
    426   1.1       cgd 	*lp = h;
    427   1.1       cgd 	*rp = r;
    428   1.1       cgd 	return (tp);
    429   1.1       cgd }
    430   1.1       cgd 
    431   1.1       cgd /*
    432   1.1       cgd  * BT_ROOT -- Split the root page of a btree.
    433   1.1       cgd  *
    434   1.1       cgd  * Parameters:
    435   1.1       cgd  *	t:	tree
    436   1.1       cgd  *	h:	root page
    437   1.1       cgd  *	lp:	pointer to left page pointer
    438   1.1       cgd  *	rp:	pointer to right page pointer
    439   1.1       cgd  *	skip:	pointer to index to leave open
    440   1.1       cgd  *	ilen:	insert length
    441   1.1       cgd  *
    442   1.1       cgd  * Returns:
    443   1.1       cgd  *	Pointer to page in which to insert or NULL on error.
    444   1.1       cgd  */
    445   1.1       cgd static PAGE *
    446  1.14  christos bt_root(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen)
    447   1.1       cgd {
    448   1.1       cgd 	PAGE *l, *r, *tp;
    449   1.1       cgd 	pgno_t lnpg, rnpg;
    450   1.1       cgd 
    451   1.1       cgd #ifdef STATISTICS
    452   1.1       cgd 	++bt_split;
    453   1.1       cgd 	++bt_rootsplit;
    454   1.1       cgd #endif
    455   1.1       cgd 	/* Put the new left and right pages for the split into place. */
    456   1.1       cgd 	if ((l = __bt_new(t, &lnpg)) == NULL ||
    457   1.1       cgd 	    (r = __bt_new(t, &rnpg)) == NULL)
    458   1.1       cgd 		return (NULL);
    459   1.1       cgd 	l->pgno = lnpg;
    460   1.1       cgd 	r->pgno = rnpg;
    461   1.1       cgd 	l->nextpg = r->pgno;
    462   1.1       cgd 	r->prevpg = l->pgno;
    463   1.1       cgd 	l->prevpg = r->nextpg = P_INVALID;
    464   1.1       cgd 	l->lower = r->lower = BTDATAOFF;
    465   1.1       cgd 	l->upper = r->upper = t->bt_psize;
    466   1.1       cgd 	l->flags = r->flags = h->flags & P_TYPE;
    467   1.1       cgd 
    468   1.1       cgd 	/* Split the root page. */
    469   1.1       cgd 	tp = bt_psplit(t, h, l, r, skip, ilen);
    470   1.1       cgd 
    471   1.1       cgd 	*lp = l;
    472   1.1       cgd 	*rp = r;
    473   1.1       cgd 	return (tp);
    474   1.1       cgd }
    475   1.1       cgd 
    476   1.1       cgd /*
    477   1.1       cgd  * BT_RROOT -- Fix up the recno root page after it has been split.
    478   1.1       cgd  *
    479   1.1       cgd  * Parameters:
    480   1.1       cgd  *	t:	tree
    481   1.1       cgd  *	h:	root page
    482   1.1       cgd  *	l:	left page
    483   1.1       cgd  *	r:	right page
    484   1.1       cgd  *
    485   1.1       cgd  * Returns:
    486   1.1       cgd  *	RET_ERROR, RET_SUCCESS
    487   1.1       cgd  */
    488   1.1       cgd static int
    489  1.14  christos bt_rroot(BTREE *t, PAGE *h, PAGE *l, PAGE *r)
    490   1.1       cgd {
    491   1.1       cgd 	char *dest;
    492  1.15     joerg 	uint32_t sz;
    493  1.14  christos 	size_t temp;
    494  1.14  christos 
    495  1.14  christos 	temp = t->bt_psize - NRINTERNAL;
    496  1.15     joerg 	_DBFIT(temp, uint32_t);
    497  1.15     joerg 	sz = (uint32_t)temp;
    498   1.1       cgd 
    499   1.1       cgd 	/* Insert the left and right keys, set the header information. */
    500  1.14  christos 	_DBFIT(sz, indx_t);
    501  1.14  christos 	h->linp[0] = h->upper = (indx_t)sz;
    502  1.10  christos 	dest = (char *)(void *)h + h->upper;
    503   1.1       cgd 	WR_RINTERNAL(dest,
    504   1.1       cgd 	    l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
    505   1.1       cgd 
    506   1.1       cgd 	h->linp[1] = h->upper -= NRINTERNAL;
    507  1.10  christos 	dest = (char *)(void *)h + h->upper;
    508   1.1       cgd 	WR_RINTERNAL(dest,
    509   1.1       cgd 	    r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
    510   1.1       cgd 
    511   1.1       cgd 	h->lower = BTDATAOFF + 2 * sizeof(indx_t);
    512   1.1       cgd 
    513   1.1       cgd 	/* Unpin the root page, set to recno internal page. */
    514   1.1       cgd 	h->flags &= ~P_TYPE;
    515   1.1       cgd 	h->flags |= P_RINTERNAL;
    516   1.1       cgd 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
    517   1.1       cgd 
    518   1.1       cgd 	return (RET_SUCCESS);
    519   1.1       cgd }
    520   1.1       cgd 
    521   1.1       cgd /*
    522   1.1       cgd  * BT_BROOT -- Fix up the btree root page after it has been split.
    523   1.1       cgd  *
    524   1.1       cgd  * Parameters:
    525   1.1       cgd  *	t:	tree
    526   1.1       cgd  *	h:	root page
    527   1.1       cgd  *	l:	left page
    528   1.1       cgd  *	r:	right page
    529   1.1       cgd  *
    530   1.1       cgd  * Returns:
    531   1.1       cgd  *	RET_ERROR, RET_SUCCESS
    532   1.1       cgd  */
    533   1.1       cgd static int
    534  1.14  christos bt_broot(BTREE *t, PAGE *h, PAGE *l, PAGE *r)
    535   1.1       cgd {
    536   1.7  christos 	BINTERNAL *bi = NULL;	/* pacify gcc */
    537   1.1       cgd 	BLEAF *bl;
    538  1.15     joerg 	uint32_t nbytes;
    539   1.1       cgd 	char *dest;
    540   1.1       cgd 
    541   1.1       cgd 	/*
    542   1.1       cgd 	 * If the root page was a leaf page, change it into an internal page.
    543   1.1       cgd 	 * We copy the key we split on (but not the key's data, in the case of
    544   1.1       cgd 	 * a leaf page) to the new root page.
    545   1.1       cgd 	 *
    546   1.1       cgd 	 * The btree comparison code guarantees that the left-most key on any
    547   1.1       cgd 	 * level of the tree is never used, so it doesn't need to be filled in.
    548   1.1       cgd 	 */
    549   1.1       cgd 	nbytes = NBINTERNAL(0);
    550   1.1       cgd 	h->linp[0] = h->upper = t->bt_psize - nbytes;
    551  1.10  christos 	dest = (char *)(void *)h + h->upper;
    552   1.1       cgd 	WR_BINTERNAL(dest, 0, l->pgno, 0);
    553   1.1       cgd 
    554   1.6       cgd 	switch (h->flags & P_TYPE) {
    555   1.1       cgd 	case P_BLEAF:
    556   1.1       cgd 		bl = GETBLEAF(r, 0);
    557   1.1       cgd 		nbytes = NBINTERNAL(bl->ksize);
    558   1.1       cgd 		h->linp[1] = h->upper -= nbytes;
    559  1.10  christos 		dest = (char *)(void *)h + h->upper;
    560   1.1       cgd 		WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
    561   1.1       cgd 		memmove(dest, bl->bytes, bl->ksize);
    562   1.1       cgd 
    563   1.1       cgd 		/*
    564   1.1       cgd 		 * If the key is on an overflow page, mark the overflow chain
    565   1.1       cgd 		 * so it isn't deleted when the leaf copy of the key is deleted.
    566   1.1       cgd 		 */
    567   1.1       cgd 		if (bl->flags & P_BIGKEY &&
    568  1.10  christos 		    bt_preserve(t, *(pgno_t *)(void *)bl->bytes) == RET_ERROR)
    569   1.1       cgd 			return (RET_ERROR);
    570   1.1       cgd 		break;
    571   1.1       cgd 	case P_BINTERNAL:
    572   1.1       cgd 		bi = GETBINTERNAL(r, 0);
    573   1.1       cgd 		nbytes = NBINTERNAL(bi->ksize);
    574   1.1       cgd 		h->linp[1] = h->upper -= nbytes;
    575  1.10  christos 		dest = (char *)(void *)h + h->upper;
    576   1.1       cgd 		memmove(dest, bi, nbytes);
    577  1.10  christos 		((BINTERNAL *)(void *)dest)->pgno = r->pgno;
    578   1.1       cgd 		break;
    579   1.1       cgd 	default:
    580   1.1       cgd 		abort();
    581   1.1       cgd 	}
    582   1.1       cgd 
    583   1.1       cgd 	/* There are two keys on the page. */
    584   1.1       cgd 	h->lower = BTDATAOFF + 2 * sizeof(indx_t);
    585   1.1       cgd 
    586   1.1       cgd 	/* Unpin the root page, set to btree internal page. */
    587   1.1       cgd 	h->flags &= ~P_TYPE;
    588   1.1       cgd 	h->flags |= P_BINTERNAL;
    589   1.1       cgd 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
    590   1.1       cgd 
    591   1.1       cgd 	return (RET_SUCCESS);
    592   1.1       cgd }
    593   1.1       cgd 
    594   1.1       cgd /*
    595   1.1       cgd  * BT_PSPLIT -- Do the real work of splitting the page.
    596   1.1       cgd  *
    597   1.1       cgd  * Parameters:
    598   1.1       cgd  *	t:	tree
    599   1.1       cgd  *	h:	page to be split
    600   1.1       cgd  *	l:	page to put lower half of data
    601   1.1       cgd  *	r:	page to put upper half of data
    602   1.1       cgd  *	pskip:	pointer to index to leave open
    603   1.1       cgd  *	ilen:	insert length
    604   1.1       cgd  *
    605   1.1       cgd  * Returns:
    606   1.1       cgd  *	Pointer to page in which to insert.
    607   1.1       cgd  */
    608   1.1       cgd static PAGE *
    609  1.14  christos bt_psplit(BTREE *t, PAGE *h, PAGE *l, PAGE *r, indx_t *pskip, size_t ilen)
    610   1.1       cgd {
    611   1.1       cgd 	BINTERNAL *bi;
    612   1.1       cgd 	BLEAF *bl;
    613   1.6       cgd 	CURSOR *c;
    614   1.1       cgd 	RLEAF *rl;
    615   1.1       cgd 	PAGE *rval;
    616   1.7  christos 	void *src = NULL;	/* pacify gcc */
    617   1.1       cgd 	indx_t full, half, nxt, off, skip, top, used;
    618  1.15     joerg 	uint32_t nbytes;
    619  1.14  christos 	size_t temp;
    620   1.1       cgd 	int bigkeycnt, isbigkey;
    621   1.1       cgd 
    622   1.1       cgd 	/*
    623   1.1       cgd 	 * Split the data to the left and right pages.  Leave the skip index
    624   1.1       cgd 	 * open.  Additionally, make some effort not to split on an overflow
    625   1.1       cgd 	 * key.  This makes internal page processing faster and can save
    626   1.1       cgd 	 * space as overflow keys used by internal pages are never deleted.
    627   1.1       cgd 	 */
    628   1.1       cgd 	bigkeycnt = 0;
    629   1.1       cgd 	skip = *pskip;
    630  1.14  christos 	temp = t->bt_psize - BTDATAOFF;
    631  1.14  christos 	_DBFIT(temp, indx_t);
    632  1.14  christos 	full = (indx_t)temp;
    633   1.1       cgd 	half = full / 2;
    634   1.1       cgd 	used = 0;
    635   1.1       cgd 	for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
    636   1.1       cgd 		if (skip == off) {
    637  1.15     joerg 			_DBFIT(ilen, uint32_t);
    638  1.15     joerg 			nbytes = (uint32_t)ilen;
    639   1.1       cgd 			isbigkey = 0;		/* XXX: not really known. */
    640   1.1       cgd 		} else
    641   1.1       cgd 			switch (h->flags & P_TYPE) {
    642   1.1       cgd 			case P_BINTERNAL:
    643   1.1       cgd 				src = bi = GETBINTERNAL(h, nxt);
    644   1.1       cgd 				nbytes = NBINTERNAL(bi->ksize);
    645   1.1       cgd 				isbigkey = bi->flags & P_BIGKEY;
    646   1.1       cgd 				break;
    647   1.1       cgd 			case P_BLEAF:
    648   1.1       cgd 				src = bl = GETBLEAF(h, nxt);
    649   1.1       cgd 				nbytes = NBLEAF(bl);
    650   1.1       cgd 				isbigkey = bl->flags & P_BIGKEY;
    651   1.1       cgd 				break;
    652   1.1       cgd 			case P_RINTERNAL:
    653   1.1       cgd 				src = GETRINTERNAL(h, nxt);
    654   1.1       cgd 				nbytes = NRINTERNAL;
    655   1.1       cgd 				isbigkey = 0;
    656   1.1       cgd 				break;
    657   1.1       cgd 			case P_RLEAF:
    658   1.1       cgd 				src = rl = GETRLEAF(h, nxt);
    659   1.1       cgd 				nbytes = NRLEAF(rl);
    660   1.1       cgd 				isbigkey = 0;
    661   1.1       cgd 				break;
    662   1.1       cgd 			default:
    663   1.1       cgd 				abort();
    664   1.1       cgd 			}
    665   1.1       cgd 
    666   1.1       cgd 		/*
    667   1.1       cgd 		 * If the key/data pairs are substantial fractions of the max
    668   1.1       cgd 		 * possible size for the page, it's possible to get situations
    669   1.1       cgd 		 * where we decide to try and copy too much onto the left page.
    670   1.1       cgd 		 * Make sure that doesn't happen.
    671   1.1       cgd 		 */
    672   1.9        is 		if ((skip <= off && used + nbytes + sizeof(indx_t) >= full) ||
    673   1.9        is 		    nxt == top - 1) {
    674   1.1       cgd 			--off;
    675   1.1       cgd 			break;
    676   1.1       cgd 		}
    677   1.1       cgd 
    678   1.1       cgd 		/* Copy the key/data pair, if not the skipped index. */
    679   1.1       cgd 		if (skip != off) {
    680   1.1       cgd 			++nxt;
    681   1.1       cgd 
    682   1.1       cgd 			l->linp[off] = l->upper -= nbytes;
    683  1.10  christos 			memmove((char *)(void *)l + l->upper, src, nbytes);
    684   1.1       cgd 		}
    685   1.1       cgd 
    686  1.14  christos 		temp = nbytes + sizeof(indx_t);
    687  1.14  christos 		_DBFIT(temp, indx_t);
    688  1.14  christos 		used += (indx_t)temp;
    689   1.1       cgd 		if (used >= half) {
    690   1.1       cgd 			if (!isbigkey || bigkeycnt == 3)
    691   1.1       cgd 				break;
    692   1.1       cgd 			else
    693   1.1       cgd 				++bigkeycnt;
    694   1.1       cgd 		}
    695   1.1       cgd 	}
    696   1.1       cgd 
    697   1.1       cgd 	/*
    698   1.1       cgd 	 * Off is the last offset that's valid for the left page.
    699   1.1       cgd 	 * Nxt is the first offset to be placed on the right page.
    700   1.1       cgd 	 */
    701  1.14  christos 	temp = (off + 1) * sizeof(indx_t);
    702  1.14  christos 	_DBFIT(temp, indx_t);
    703  1.14  christos 	l->lower += (indx_t)temp;
    704   1.1       cgd 
    705   1.1       cgd 	/*
    706   1.1       cgd 	 * If splitting the page that the cursor was on, the cursor has to be
    707   1.1       cgd 	 * adjusted to point to the same record as before the split.  If the
    708   1.1       cgd 	 * cursor is at or past the skipped slot, the cursor is incremented by
    709   1.1       cgd 	 * one.  If the cursor is on the right page, it is decremented by the
    710   1.1       cgd 	 * number of records split to the left page.
    711   1.1       cgd 	 */
    712   1.6       cgd 	c = &t->bt_cursor;
    713   1.6       cgd 	if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) {
    714   1.6       cgd 		if (c->pg.index >= skip)
    715   1.6       cgd 			++c->pg.index;
    716   1.6       cgd 		if (c->pg.index < nxt)			/* Left page. */
    717   1.6       cgd 			c->pg.pgno = l->pgno;
    718   1.1       cgd 		else {					/* Right page. */
    719   1.6       cgd 			c->pg.pgno = r->pgno;
    720   1.6       cgd 			c->pg.index -= nxt;
    721   1.1       cgd 		}
    722   1.1       cgd 	}
    723   1.1       cgd 
    724   1.1       cgd 	/*
    725   1.1       cgd 	 * If the skipped index was on the left page, just return that page.
    726   1.1       cgd 	 * Otherwise, adjust the skip index to reflect the new position on
    727   1.1       cgd 	 * the right page.
    728   1.1       cgd 	 */
    729   1.1       cgd 	if (skip <= off) {
    730  1.12   mycroft 		skip = MAX_PAGE_OFFSET;
    731   1.1       cgd 		rval = l;
    732   1.1       cgd 	} else {
    733   1.1       cgd 		rval = r;
    734   1.1       cgd 		*pskip -= nxt;
    735   1.1       cgd 	}
    736   1.1       cgd 
    737   1.1       cgd 	for (off = 0; nxt < top; ++off) {
    738   1.1       cgd 		if (skip == nxt) {
    739   1.1       cgd 			++off;
    740  1.12   mycroft 			skip = MAX_PAGE_OFFSET;
    741   1.1       cgd 		}
    742   1.1       cgd 		switch (h->flags & P_TYPE) {
    743   1.1       cgd 		case P_BINTERNAL:
    744   1.1       cgd 			src = bi = GETBINTERNAL(h, nxt);
    745   1.1       cgd 			nbytes = NBINTERNAL(bi->ksize);
    746   1.1       cgd 			break;
    747   1.1       cgd 		case P_BLEAF:
    748   1.1       cgd 			src = bl = GETBLEAF(h, nxt);
    749   1.1       cgd 			nbytes = NBLEAF(bl);
    750   1.1       cgd 			break;
    751   1.1       cgd 		case P_RINTERNAL:
    752   1.1       cgd 			src = GETRINTERNAL(h, nxt);
    753   1.1       cgd 			nbytes = NRINTERNAL;
    754   1.1       cgd 			break;
    755   1.1       cgd 		case P_RLEAF:
    756   1.1       cgd 			src = rl = GETRLEAF(h, nxt);
    757   1.1       cgd 			nbytes = NRLEAF(rl);
    758   1.1       cgd 			break;
    759   1.1       cgd 		default:
    760   1.1       cgd 			abort();
    761   1.1       cgd 		}
    762   1.1       cgd 		++nxt;
    763   1.1       cgd 		r->linp[off] = r->upper -= nbytes;
    764  1.10  christos 		memmove((char *)(void *)r + r->upper, src, nbytes);
    765   1.1       cgd 	}
    766  1.14  christos 	temp = off * sizeof(indx_t);
    767  1.14  christos 	_DBFIT(temp, indx_t);
    768  1.14  christos 	r->lower += (indx_t)temp;
    769   1.1       cgd 
    770   1.1       cgd 	/* If the key is being appended to the page, adjust the index. */
    771   1.1       cgd 	if (skip == top)
    772   1.1       cgd 		r->lower += sizeof(indx_t);
    773   1.1       cgd 
    774   1.1       cgd 	return (rval);
    775   1.1       cgd }
    776   1.1       cgd 
    777   1.1       cgd /*
    778   1.1       cgd  * BT_PRESERVE -- Mark a chain of pages as used by an internal node.
    779   1.1       cgd  *
    780   1.1       cgd  * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
    781   1.1       cgd  * record that references them gets deleted.  Chains pointed to by internal
    782   1.1       cgd  * pages never get deleted.  This routine marks a chain as pointed to by an
    783   1.1       cgd  * internal page.
    784   1.1       cgd  *
    785   1.1       cgd  * Parameters:
    786   1.1       cgd  *	t:	tree
    787   1.1       cgd  *	pg:	page number of first page in the chain.
    788   1.1       cgd  *
    789   1.1       cgd  * Returns:
    790   1.1       cgd  *	RET_SUCCESS, RET_ERROR.
    791   1.1       cgd  */
    792   1.1       cgd static int
    793  1.14  christos bt_preserve(BTREE *t, pgno_t pg)
    794   1.1       cgd {
    795   1.1       cgd 	PAGE *h;
    796   1.1       cgd 
    797   1.1       cgd 	if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    798   1.1       cgd 		return (RET_ERROR);
    799   1.1       cgd 	h->flags |= P_PRESERVE;
    800   1.1       cgd 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
    801   1.1       cgd 	return (RET_SUCCESS);
    802   1.1       cgd }
    803   1.1       cgd 
    804   1.1       cgd /*
    805   1.1       cgd  * REC_TOTAL -- Return the number of recno entries below a page.
    806   1.1       cgd  *
    807   1.1       cgd  * Parameters:
    808   1.1       cgd  *	h:	page
    809   1.1       cgd  *
    810   1.1       cgd  * Returns:
    811   1.1       cgd  *	The number of recno entries below a page.
    812   1.1       cgd  *
    813   1.1       cgd  * XXX
    814   1.1       cgd  * These values could be set by the bt_psplit routine.  The problem is that the
    815   1.1       cgd  * entry has to be popped off of the stack etc. or the values have to be passed
    816   1.1       cgd  * all the way back to bt_split/bt_rroot and it's not very clean.
    817   1.1       cgd  */
    818   1.1       cgd static recno_t
    819  1.14  christos rec_total(PAGE *h)
    820   1.1       cgd {
    821   1.1       cgd 	recno_t recs;
    822   1.1       cgd 	indx_t nxt, top;
    823   1.1       cgd 
    824   1.1       cgd 	for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
    825   1.1       cgd 		recs += GETRINTERNAL(h, nxt)->nrecs;
    826   1.1       cgd 	return (recs);
    827   1.1       cgd }
    828