bt_split.c revision 1.4 1 1.1 cgd /*-
2 1.4 cgd * Copyright (c) 1990, 1993, 1994
3 1.1 cgd * The Regents of the University of California. All rights reserved.
4 1.1 cgd *
5 1.1 cgd * This code is derived from software contributed to Berkeley by
6 1.1 cgd * Mike Olson.
7 1.1 cgd *
8 1.1 cgd * Redistribution and use in source and binary forms, with or without
9 1.1 cgd * modification, are permitted provided that the following conditions
10 1.1 cgd * are met:
11 1.1 cgd * 1. Redistributions of source code must retain the above copyright
12 1.1 cgd * notice, this list of conditions and the following disclaimer.
13 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer in the
15 1.1 cgd * documentation and/or other materials provided with the distribution.
16 1.1 cgd * 3. All advertising materials mentioning features or use of this software
17 1.1 cgd * must display the following acknowledgement:
18 1.1 cgd * This product includes software developed by the University of
19 1.1 cgd * California, Berkeley and its contributors.
20 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
21 1.1 cgd * may be used to endorse or promote products derived from this software
22 1.1 cgd * without specific prior written permission.
23 1.1 cgd *
24 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 cgd * SUCH DAMAGE.
35 1.1 cgd */
36 1.1 cgd
37 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
38 1.4 cgd static char sccsid[] = "@(#)bt_split.c 8.6 (Berkeley) 6/16/94";
39 1.1 cgd #endif /* LIBC_SCCS and not lint */
40 1.1 cgd
41 1.1 cgd #include <sys/types.h>
42 1.1 cgd
43 1.1 cgd #include <limits.h>
44 1.1 cgd #include <stdio.h>
45 1.1 cgd #include <stdlib.h>
46 1.1 cgd #include <string.h>
47 1.1 cgd
48 1.1 cgd #include <db.h>
49 1.1 cgd #include "btree.h"
50 1.1 cgd
51 1.1 cgd static int bt_broot __P((BTREE *, PAGE *, PAGE *, PAGE *));
52 1.1 cgd static PAGE *bt_page
53 1.4 cgd __P((BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t));
54 1.1 cgd static int bt_preserve __P((BTREE *, pgno_t));
55 1.1 cgd static PAGE *bt_psplit
56 1.4 cgd __P((BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t));
57 1.1 cgd static PAGE *bt_root
58 1.4 cgd __P((BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t));
59 1.1 cgd static int bt_rroot __P((BTREE *, PAGE *, PAGE *, PAGE *));
60 1.1 cgd static recno_t rec_total __P((PAGE *));
61 1.1 cgd
62 1.1 cgd #ifdef STATISTICS
63 1.1 cgd u_long bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
64 1.1 cgd #endif
65 1.1 cgd
66 1.1 cgd /*
67 1.1 cgd * __BT_SPLIT -- Split the tree.
68 1.1 cgd *
69 1.1 cgd * Parameters:
70 1.1 cgd * t: tree
71 1.1 cgd * sp: page to split
72 1.1 cgd * key: key to insert
73 1.1 cgd * data: data to insert
74 1.1 cgd * flags: BIGKEY/BIGDATA flags
75 1.1 cgd * ilen: insert length
76 1.1 cgd * skip: index to leave open
77 1.1 cgd *
78 1.1 cgd * Returns:
79 1.1 cgd * RET_ERROR, RET_SUCCESS
80 1.1 cgd */
81 1.1 cgd int
82 1.4 cgd __bt_split(t, sp, key, data, flags, ilen, argskip)
83 1.1 cgd BTREE *t;
84 1.1 cgd PAGE *sp;
85 1.1 cgd const DBT *key, *data;
86 1.4 cgd int flags;
87 1.1 cgd size_t ilen;
88 1.4 cgd u_int32_t argskip;
89 1.1 cgd {
90 1.1 cgd BINTERNAL *bi;
91 1.1 cgd BLEAF *bl, *tbl;
92 1.1 cgd DBT a, b;
93 1.1 cgd EPGNO *parent;
94 1.1 cgd PAGE *h, *l, *r, *lchild, *rchild;
95 1.1 cgd indx_t nxtindex;
96 1.4 cgd u_int16_t skip;
97 1.4 cgd u_int32_t n, nbytes, nksize;
98 1.1 cgd int parentsplit;
99 1.1 cgd char *dest;
100 1.1 cgd
101 1.1 cgd /*
102 1.1 cgd * Split the page into two pages, l and r. The split routines return
103 1.1 cgd * a pointer to the page into which the key should be inserted and with
104 1.1 cgd * skip set to the offset which should be used. Additionally, l and r
105 1.1 cgd * are pinned.
106 1.1 cgd */
107 1.4 cgd skip = argskip;
108 1.1 cgd h = sp->pgno == P_ROOT ?
109 1.1 cgd bt_root(t, sp, &l, &r, &skip, ilen) :
110 1.1 cgd bt_page(t, sp, &l, &r, &skip, ilen);
111 1.1 cgd if (h == NULL)
112 1.1 cgd return (RET_ERROR);
113 1.1 cgd
114 1.1 cgd /*
115 1.1 cgd * Insert the new key/data pair into the leaf page. (Key inserts
116 1.1 cgd * always cause a leaf page to split first.)
117 1.1 cgd */
118 1.1 cgd h->linp[skip] = h->upper -= ilen;
119 1.1 cgd dest = (char *)h + h->upper;
120 1.1 cgd if (ISSET(t, R_RECNO))
121 1.1 cgd WR_RLEAF(dest, data, flags)
122 1.1 cgd else
123 1.1 cgd WR_BLEAF(dest, key, data, flags)
124 1.1 cgd
125 1.1 cgd /* If the root page was split, make it look right. */
126 1.1 cgd if (sp->pgno == P_ROOT &&
127 1.1 cgd (ISSET(t, R_RECNO) ?
128 1.1 cgd bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
129 1.1 cgd goto err2;
130 1.1 cgd
131 1.1 cgd /*
132 1.1 cgd * Now we walk the parent page stack -- a LIFO stack of the pages that
133 1.1 cgd * were traversed when we searched for the page that split. Each stack
134 1.1 cgd * entry is a page number and a page index offset. The offset is for
135 1.1 cgd * the page traversed on the search. We've just split a page, so we
136 1.1 cgd * have to insert a new key into the parent page.
137 1.1 cgd *
138 1.1 cgd * If the insert into the parent page causes it to split, may have to
139 1.1 cgd * continue splitting all the way up the tree. We stop if the root
140 1.1 cgd * splits or the page inserted into didn't have to split to hold the
141 1.1 cgd * new key. Some algorithms replace the key for the old page as well
142 1.1 cgd * as the new page. We don't, as there's no reason to believe that the
143 1.1 cgd * first key on the old page is any better than the key we have, and,
144 1.1 cgd * in the case of a key being placed at index 0 causing the split, the
145 1.1 cgd * key is unavailable.
146 1.1 cgd *
147 1.1 cgd * There are a maximum of 5 pages pinned at any time. We keep the left
148 1.1 cgd * and right pages pinned while working on the parent. The 5 are the
149 1.1 cgd * two children, left parent and right parent (when the parent splits)
150 1.1 cgd * and the root page or the overflow key page when calling bt_preserve.
151 1.1 cgd * This code must make sure that all pins are released other than the
152 1.1 cgd * root page or overflow page which is unlocked elsewhere.
153 1.1 cgd */
154 1.1 cgd while ((parent = BT_POP(t)) != NULL) {
155 1.1 cgd lchild = l;
156 1.1 cgd rchild = r;
157 1.1 cgd
158 1.1 cgd /* Get the parent page. */
159 1.1 cgd if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
160 1.1 cgd goto err2;
161 1.1 cgd
162 1.1 cgd /*
163 1.1 cgd * The new key goes ONE AFTER the index, because the split
164 1.1 cgd * was to the right.
165 1.1 cgd */
166 1.1 cgd skip = parent->index + 1;
167 1.1 cgd
168 1.1 cgd /*
169 1.1 cgd * Calculate the space needed on the parent page.
170 1.1 cgd *
171 1.1 cgd * Prefix trees: space hack when inserting into BINTERNAL
172 1.1 cgd * pages. Retain only what's needed to distinguish between
173 1.1 cgd * the new entry and the LAST entry on the page to its left.
174 1.1 cgd * If the keys compare equal, retain the entire key. Note,
175 1.1 cgd * we don't touch overflow keys, and the entire key must be
176 1.1 cgd * retained for the next-to-left most key on the leftmost
177 1.1 cgd * page of each level, or the search will fail. Applicable
178 1.1 cgd * ONLY to internal pages that have leaf pages as children.
179 1.1 cgd * Further reduction of the key between pairs of internal
180 1.1 cgd * pages loses too much information.
181 1.1 cgd */
182 1.1 cgd switch (rchild->flags & P_TYPE) {
183 1.1 cgd case P_BINTERNAL:
184 1.1 cgd bi = GETBINTERNAL(rchild, 0);
185 1.1 cgd nbytes = NBINTERNAL(bi->ksize);
186 1.1 cgd break;
187 1.1 cgd case P_BLEAF:
188 1.1 cgd bl = GETBLEAF(rchild, 0);
189 1.1 cgd nbytes = NBINTERNAL(bl->ksize);
190 1.1 cgd if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
191 1.1 cgd (h->prevpg != P_INVALID || skip > 1)) {
192 1.1 cgd tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
193 1.1 cgd a.size = tbl->ksize;
194 1.1 cgd a.data = tbl->bytes;
195 1.1 cgd b.size = bl->ksize;
196 1.1 cgd b.data = bl->bytes;
197 1.1 cgd nksize = t->bt_pfx(&a, &b);
198 1.1 cgd n = NBINTERNAL(nksize);
199 1.1 cgd if (n < nbytes) {
200 1.1 cgd #ifdef STATISTICS
201 1.1 cgd bt_pfxsaved += nbytes - n;
202 1.1 cgd #endif
203 1.1 cgd nbytes = n;
204 1.1 cgd } else
205 1.1 cgd nksize = 0;
206 1.1 cgd } else
207 1.1 cgd nksize = 0;
208 1.1 cgd break;
209 1.1 cgd case P_RINTERNAL:
210 1.1 cgd case P_RLEAF:
211 1.1 cgd nbytes = NRINTERNAL;
212 1.1 cgd break;
213 1.1 cgd default:
214 1.1 cgd abort();
215 1.1 cgd }
216 1.1 cgd
217 1.1 cgd /* Split the parent page if necessary or shift the indices. */
218 1.1 cgd if (h->upper - h->lower < nbytes + sizeof(indx_t)) {
219 1.1 cgd sp = h;
220 1.1 cgd h = h->pgno == P_ROOT ?
221 1.1 cgd bt_root(t, h, &l, &r, &skip, nbytes) :
222 1.1 cgd bt_page(t, h, &l, &r, &skip, nbytes);
223 1.1 cgd if (h == NULL)
224 1.1 cgd goto err1;
225 1.1 cgd parentsplit = 1;
226 1.1 cgd } else {
227 1.1 cgd if (skip < (nxtindex = NEXTINDEX(h)))
228 1.1 cgd memmove(h->linp + skip + 1, h->linp + skip,
229 1.1 cgd (nxtindex - skip) * sizeof(indx_t));
230 1.1 cgd h->lower += sizeof(indx_t);
231 1.1 cgd parentsplit = 0;
232 1.1 cgd }
233 1.1 cgd
234 1.1 cgd /* Insert the key into the parent page. */
235 1.1 cgd switch(rchild->flags & P_TYPE) {
236 1.1 cgd case P_BINTERNAL:
237 1.1 cgd h->linp[skip] = h->upper -= nbytes;
238 1.1 cgd dest = (char *)h + h->linp[skip];
239 1.1 cgd memmove(dest, bi, nbytes);
240 1.1 cgd ((BINTERNAL *)dest)->pgno = rchild->pgno;
241 1.1 cgd break;
242 1.1 cgd case P_BLEAF:
243 1.1 cgd h->linp[skip] = h->upper -= nbytes;
244 1.1 cgd dest = (char *)h + h->linp[skip];
245 1.1 cgd WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
246 1.1 cgd rchild->pgno, bl->flags & P_BIGKEY);
247 1.1 cgd memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
248 1.1 cgd if (bl->flags & P_BIGKEY &&
249 1.1 cgd bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
250 1.1 cgd goto err1;
251 1.1 cgd break;
252 1.1 cgd case P_RINTERNAL:
253 1.1 cgd /*
254 1.1 cgd * Update the left page count. If split
255 1.1 cgd * added at index 0, fix the correct page.
256 1.1 cgd */
257 1.1 cgd if (skip > 0)
258 1.1 cgd dest = (char *)h + h->linp[skip - 1];
259 1.1 cgd else
260 1.1 cgd dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
261 1.1 cgd ((RINTERNAL *)dest)->nrecs = rec_total(lchild);
262 1.1 cgd ((RINTERNAL *)dest)->pgno = lchild->pgno;
263 1.1 cgd
264 1.1 cgd /* Update the right page count. */
265 1.1 cgd h->linp[skip] = h->upper -= nbytes;
266 1.1 cgd dest = (char *)h + h->linp[skip];
267 1.1 cgd ((RINTERNAL *)dest)->nrecs = rec_total(rchild);
268 1.1 cgd ((RINTERNAL *)dest)->pgno = rchild->pgno;
269 1.1 cgd break;
270 1.1 cgd case P_RLEAF:
271 1.1 cgd /*
272 1.1 cgd * Update the left page count. If split
273 1.1 cgd * added at index 0, fix the correct page.
274 1.1 cgd */
275 1.1 cgd if (skip > 0)
276 1.1 cgd dest = (char *)h + h->linp[skip - 1];
277 1.1 cgd else
278 1.1 cgd dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
279 1.1 cgd ((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild);
280 1.1 cgd ((RINTERNAL *)dest)->pgno = lchild->pgno;
281 1.1 cgd
282 1.1 cgd /* Update the right page count. */
283 1.1 cgd h->linp[skip] = h->upper -= nbytes;
284 1.1 cgd dest = (char *)h + h->linp[skip];
285 1.1 cgd ((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild);
286 1.1 cgd ((RINTERNAL *)dest)->pgno = rchild->pgno;
287 1.1 cgd break;
288 1.1 cgd default:
289 1.1 cgd abort();
290 1.1 cgd }
291 1.1 cgd
292 1.1 cgd /* Unpin the held pages. */
293 1.1 cgd if (!parentsplit) {
294 1.1 cgd mpool_put(t->bt_mp, h, MPOOL_DIRTY);
295 1.1 cgd break;
296 1.1 cgd }
297 1.1 cgd
298 1.1 cgd /* If the root page was split, make it look right. */
299 1.1 cgd if (sp->pgno == P_ROOT &&
300 1.1 cgd (ISSET(t, R_RECNO) ?
301 1.1 cgd bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
302 1.1 cgd goto err1;
303 1.1 cgd
304 1.1 cgd mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
305 1.1 cgd mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
306 1.1 cgd }
307 1.1 cgd
308 1.1 cgd /* Unpin the held pages. */
309 1.1 cgd mpool_put(t->bt_mp, l, MPOOL_DIRTY);
310 1.1 cgd mpool_put(t->bt_mp, r, MPOOL_DIRTY);
311 1.1 cgd
312 1.1 cgd /* Clear any pages left on the stack. */
313 1.1 cgd return (RET_SUCCESS);
314 1.1 cgd
315 1.1 cgd /*
316 1.1 cgd * If something fails in the above loop we were already walking back
317 1.1 cgd * up the tree and the tree is now inconsistent. Nothing much we can
318 1.1 cgd * do about it but release any memory we're holding.
319 1.1 cgd */
320 1.1 cgd err1: mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
321 1.1 cgd mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
322 1.1 cgd
323 1.1 cgd err2: mpool_put(t->bt_mp, l, 0);
324 1.1 cgd mpool_put(t->bt_mp, r, 0);
325 1.1 cgd __dbpanic(t->bt_dbp);
326 1.1 cgd return (RET_ERROR);
327 1.1 cgd }
328 1.1 cgd
329 1.1 cgd /*
330 1.1 cgd * BT_PAGE -- Split a non-root page of a btree.
331 1.1 cgd *
332 1.1 cgd * Parameters:
333 1.1 cgd * t: tree
334 1.1 cgd * h: root page
335 1.1 cgd * lp: pointer to left page pointer
336 1.1 cgd * rp: pointer to right page pointer
337 1.1 cgd * skip: pointer to index to leave open
338 1.1 cgd * ilen: insert length
339 1.1 cgd *
340 1.1 cgd * Returns:
341 1.1 cgd * Pointer to page in which to insert or NULL on error.
342 1.1 cgd */
343 1.1 cgd static PAGE *
344 1.1 cgd bt_page(t, h, lp, rp, skip, ilen)
345 1.1 cgd BTREE *t;
346 1.1 cgd PAGE *h, **lp, **rp;
347 1.4 cgd indx_t *skip;
348 1.1 cgd size_t ilen;
349 1.1 cgd {
350 1.1 cgd PAGE *l, *r, *tp;
351 1.1 cgd pgno_t npg;
352 1.1 cgd
353 1.1 cgd #ifdef STATISTICS
354 1.1 cgd ++bt_split;
355 1.1 cgd #endif
356 1.1 cgd /* Put the new right page for the split into place. */
357 1.1 cgd if ((r = __bt_new(t, &npg)) == NULL)
358 1.1 cgd return (NULL);
359 1.1 cgd r->pgno = npg;
360 1.1 cgd r->lower = BTDATAOFF;
361 1.1 cgd r->upper = t->bt_psize;
362 1.1 cgd r->nextpg = h->nextpg;
363 1.1 cgd r->prevpg = h->pgno;
364 1.1 cgd r->flags = h->flags & P_TYPE;
365 1.1 cgd
366 1.1 cgd /*
367 1.1 cgd * If we're splitting the last page on a level because we're appending
368 1.1 cgd * a key to it (skip is NEXTINDEX()), it's likely that the data is
369 1.1 cgd * sorted. Adding an empty page on the side of the level is less work
370 1.1 cgd * and can push the fill factor much higher than normal. If we're
371 1.1 cgd * wrong it's no big deal, we'll just do the split the right way next
372 1.1 cgd * time. It may look like it's equally easy to do a similar hack for
373 1.1 cgd * reverse sorted data, that is, split the tree left, but it's not.
374 1.1 cgd * Don't even try.
375 1.1 cgd */
376 1.1 cgd if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
377 1.1 cgd #ifdef STATISTICS
378 1.1 cgd ++bt_sortsplit;
379 1.1 cgd #endif
380 1.1 cgd h->nextpg = r->pgno;
381 1.1 cgd r->lower = BTDATAOFF + sizeof(indx_t);
382 1.1 cgd *skip = 0;
383 1.1 cgd *lp = h;
384 1.1 cgd *rp = r;
385 1.1 cgd return (r);
386 1.1 cgd }
387 1.1 cgd
388 1.1 cgd /* Put the new left page for the split into place. */
389 1.4 cgd if ((l = (PAGE *)malloc(t->bt_psize)) == NULL) {
390 1.1 cgd mpool_put(t->bt_mp, r, 0);
391 1.1 cgd return (NULL);
392 1.1 cgd }
393 1.1 cgd l->pgno = h->pgno;
394 1.1 cgd l->nextpg = r->pgno;
395 1.1 cgd l->prevpg = h->prevpg;
396 1.1 cgd l->lower = BTDATAOFF;
397 1.1 cgd l->upper = t->bt_psize;
398 1.1 cgd l->flags = h->flags & P_TYPE;
399 1.1 cgd
400 1.1 cgd /* Fix up the previous pointer of the page after the split page. */
401 1.1 cgd if (h->nextpg != P_INVALID) {
402 1.1 cgd if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
403 1.1 cgd free(l);
404 1.1 cgd /* XXX mpool_free(t->bt_mp, r->pgno); */
405 1.1 cgd return (NULL);
406 1.1 cgd }
407 1.1 cgd tp->prevpg = r->pgno;
408 1.1 cgd mpool_put(t->bt_mp, tp, 0);
409 1.1 cgd }
410 1.1 cgd
411 1.1 cgd /*
412 1.1 cgd * Split right. The key/data pairs aren't sorted in the btree page so
413 1.1 cgd * it's simpler to copy the data from the split page onto two new pages
414 1.1 cgd * instead of copying half the data to the right page and compacting
415 1.1 cgd * the left page in place. Since the left page can't change, we have
416 1.1 cgd * to swap the original and the allocated left page after the split.
417 1.1 cgd */
418 1.1 cgd tp = bt_psplit(t, h, l, r, skip, ilen);
419 1.1 cgd
420 1.1 cgd /* Move the new left page onto the old left page. */
421 1.1 cgd memmove(h, l, t->bt_psize);
422 1.1 cgd if (tp == l)
423 1.1 cgd tp = h;
424 1.1 cgd free(l);
425 1.1 cgd
426 1.1 cgd *lp = h;
427 1.1 cgd *rp = r;
428 1.1 cgd return (tp);
429 1.1 cgd }
430 1.1 cgd
431 1.1 cgd /*
432 1.1 cgd * BT_ROOT -- Split the root page of a btree.
433 1.1 cgd *
434 1.1 cgd * Parameters:
435 1.1 cgd * t: tree
436 1.1 cgd * h: root page
437 1.1 cgd * lp: pointer to left page pointer
438 1.1 cgd * rp: pointer to right page pointer
439 1.1 cgd * skip: pointer to index to leave open
440 1.1 cgd * ilen: insert length
441 1.1 cgd *
442 1.1 cgd * Returns:
443 1.1 cgd * Pointer to page in which to insert or NULL on error.
444 1.1 cgd */
445 1.1 cgd static PAGE *
446 1.1 cgd bt_root(t, h, lp, rp, skip, ilen)
447 1.1 cgd BTREE *t;
448 1.1 cgd PAGE *h, **lp, **rp;
449 1.4 cgd indx_t *skip;
450 1.1 cgd size_t ilen;
451 1.1 cgd {
452 1.1 cgd PAGE *l, *r, *tp;
453 1.1 cgd pgno_t lnpg, rnpg;
454 1.1 cgd
455 1.1 cgd #ifdef STATISTICS
456 1.1 cgd ++bt_split;
457 1.1 cgd ++bt_rootsplit;
458 1.1 cgd #endif
459 1.1 cgd /* Put the new left and right pages for the split into place. */
460 1.1 cgd if ((l = __bt_new(t, &lnpg)) == NULL ||
461 1.1 cgd (r = __bt_new(t, &rnpg)) == NULL)
462 1.1 cgd return (NULL);
463 1.1 cgd l->pgno = lnpg;
464 1.1 cgd r->pgno = rnpg;
465 1.1 cgd l->nextpg = r->pgno;
466 1.1 cgd r->prevpg = l->pgno;
467 1.1 cgd l->prevpg = r->nextpg = P_INVALID;
468 1.1 cgd l->lower = r->lower = BTDATAOFF;
469 1.1 cgd l->upper = r->upper = t->bt_psize;
470 1.1 cgd l->flags = r->flags = h->flags & P_TYPE;
471 1.1 cgd
472 1.1 cgd /* Split the root page. */
473 1.1 cgd tp = bt_psplit(t, h, l, r, skip, ilen);
474 1.1 cgd
475 1.1 cgd *lp = l;
476 1.1 cgd *rp = r;
477 1.1 cgd return (tp);
478 1.1 cgd }
479 1.1 cgd
480 1.1 cgd /*
481 1.1 cgd * BT_RROOT -- Fix up the recno root page after it has been split.
482 1.1 cgd *
483 1.1 cgd * Parameters:
484 1.1 cgd * t: tree
485 1.1 cgd * h: root page
486 1.1 cgd * l: left page
487 1.1 cgd * r: right page
488 1.1 cgd *
489 1.1 cgd * Returns:
490 1.1 cgd * RET_ERROR, RET_SUCCESS
491 1.1 cgd */
492 1.1 cgd static int
493 1.1 cgd bt_rroot(t, h, l, r)
494 1.1 cgd BTREE *t;
495 1.1 cgd PAGE *h, *l, *r;
496 1.1 cgd {
497 1.1 cgd char *dest;
498 1.1 cgd
499 1.1 cgd /* Insert the left and right keys, set the header information. */
500 1.1 cgd h->linp[0] = h->upper = t->bt_psize - NRINTERNAL;
501 1.1 cgd dest = (char *)h + h->upper;
502 1.1 cgd WR_RINTERNAL(dest,
503 1.1 cgd l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
504 1.1 cgd
505 1.1 cgd h->linp[1] = h->upper -= NRINTERNAL;
506 1.1 cgd dest = (char *)h + h->upper;
507 1.1 cgd WR_RINTERNAL(dest,
508 1.1 cgd r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
509 1.1 cgd
510 1.1 cgd h->lower = BTDATAOFF + 2 * sizeof(indx_t);
511 1.1 cgd
512 1.1 cgd /* Unpin the root page, set to recno internal page. */
513 1.1 cgd h->flags &= ~P_TYPE;
514 1.1 cgd h->flags |= P_RINTERNAL;
515 1.1 cgd mpool_put(t->bt_mp, h, MPOOL_DIRTY);
516 1.1 cgd
517 1.1 cgd return (RET_SUCCESS);
518 1.1 cgd }
519 1.1 cgd
520 1.1 cgd /*
521 1.1 cgd * BT_BROOT -- Fix up the btree root page after it has been split.
522 1.1 cgd *
523 1.1 cgd * Parameters:
524 1.1 cgd * t: tree
525 1.1 cgd * h: root page
526 1.1 cgd * l: left page
527 1.1 cgd * r: right page
528 1.1 cgd *
529 1.1 cgd * Returns:
530 1.1 cgd * RET_ERROR, RET_SUCCESS
531 1.1 cgd */
532 1.1 cgd static int
533 1.1 cgd bt_broot(t, h, l, r)
534 1.1 cgd BTREE *t;
535 1.1 cgd PAGE *h, *l, *r;
536 1.1 cgd {
537 1.1 cgd BINTERNAL *bi;
538 1.1 cgd BLEAF *bl;
539 1.4 cgd u_int32_t nbytes;
540 1.1 cgd char *dest;
541 1.1 cgd
542 1.1 cgd /*
543 1.1 cgd * If the root page was a leaf page, change it into an internal page.
544 1.1 cgd * We copy the key we split on (but not the key's data, in the case of
545 1.1 cgd * a leaf page) to the new root page.
546 1.1 cgd *
547 1.1 cgd * The btree comparison code guarantees that the left-most key on any
548 1.1 cgd * level of the tree is never used, so it doesn't need to be filled in.
549 1.1 cgd */
550 1.1 cgd nbytes = NBINTERNAL(0);
551 1.1 cgd h->linp[0] = h->upper = t->bt_psize - nbytes;
552 1.1 cgd dest = (char *)h + h->upper;
553 1.1 cgd WR_BINTERNAL(dest, 0, l->pgno, 0);
554 1.1 cgd
555 1.1 cgd switch(h->flags & P_TYPE) {
556 1.1 cgd case P_BLEAF:
557 1.1 cgd bl = GETBLEAF(r, 0);
558 1.1 cgd nbytes = NBINTERNAL(bl->ksize);
559 1.1 cgd h->linp[1] = h->upper -= nbytes;
560 1.1 cgd dest = (char *)h + h->upper;
561 1.1 cgd WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
562 1.1 cgd memmove(dest, bl->bytes, bl->ksize);
563 1.1 cgd
564 1.1 cgd /*
565 1.1 cgd * If the key is on an overflow page, mark the overflow chain
566 1.1 cgd * so it isn't deleted when the leaf copy of the key is deleted.
567 1.1 cgd */
568 1.1 cgd if (bl->flags & P_BIGKEY &&
569 1.1 cgd bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
570 1.1 cgd return (RET_ERROR);
571 1.1 cgd break;
572 1.1 cgd case P_BINTERNAL:
573 1.1 cgd bi = GETBINTERNAL(r, 0);
574 1.1 cgd nbytes = NBINTERNAL(bi->ksize);
575 1.1 cgd h->linp[1] = h->upper -= nbytes;
576 1.1 cgd dest = (char *)h + h->upper;
577 1.1 cgd memmove(dest, bi, nbytes);
578 1.1 cgd ((BINTERNAL *)dest)->pgno = r->pgno;
579 1.1 cgd break;
580 1.1 cgd default:
581 1.1 cgd abort();
582 1.1 cgd }
583 1.1 cgd
584 1.1 cgd /* There are two keys on the page. */
585 1.1 cgd h->lower = BTDATAOFF + 2 * sizeof(indx_t);
586 1.1 cgd
587 1.1 cgd /* Unpin the root page, set to btree internal page. */
588 1.1 cgd h->flags &= ~P_TYPE;
589 1.1 cgd h->flags |= P_BINTERNAL;
590 1.1 cgd mpool_put(t->bt_mp, h, MPOOL_DIRTY);
591 1.1 cgd
592 1.1 cgd return (RET_SUCCESS);
593 1.1 cgd }
594 1.1 cgd
595 1.1 cgd /*
596 1.1 cgd * BT_PSPLIT -- Do the real work of splitting the page.
597 1.1 cgd *
598 1.1 cgd * Parameters:
599 1.1 cgd * t: tree
600 1.1 cgd * h: page to be split
601 1.1 cgd * l: page to put lower half of data
602 1.1 cgd * r: page to put upper half of data
603 1.1 cgd * pskip: pointer to index to leave open
604 1.1 cgd * ilen: insert length
605 1.1 cgd *
606 1.1 cgd * Returns:
607 1.1 cgd * Pointer to page in which to insert.
608 1.1 cgd */
609 1.1 cgd static PAGE *
610 1.1 cgd bt_psplit(t, h, l, r, pskip, ilen)
611 1.1 cgd BTREE *t;
612 1.1 cgd PAGE *h, *l, *r;
613 1.4 cgd indx_t *pskip;
614 1.1 cgd size_t ilen;
615 1.1 cgd {
616 1.1 cgd BINTERNAL *bi;
617 1.1 cgd BLEAF *bl;
618 1.1 cgd RLEAF *rl;
619 1.1 cgd EPGNO *c;
620 1.1 cgd PAGE *rval;
621 1.1 cgd void *src;
622 1.1 cgd indx_t full, half, nxt, off, skip, top, used;
623 1.4 cgd u_int32_t nbytes;
624 1.1 cgd int bigkeycnt, isbigkey;
625 1.1 cgd
626 1.1 cgd /*
627 1.1 cgd * Split the data to the left and right pages. Leave the skip index
628 1.1 cgd * open. Additionally, make some effort not to split on an overflow
629 1.1 cgd * key. This makes internal page processing faster and can save
630 1.1 cgd * space as overflow keys used by internal pages are never deleted.
631 1.1 cgd */
632 1.1 cgd bigkeycnt = 0;
633 1.1 cgd skip = *pskip;
634 1.1 cgd full = t->bt_psize - BTDATAOFF;
635 1.1 cgd half = full / 2;
636 1.1 cgd used = 0;
637 1.1 cgd for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
638 1.1 cgd if (skip == off) {
639 1.1 cgd nbytes = ilen;
640 1.1 cgd isbigkey = 0; /* XXX: not really known. */
641 1.1 cgd } else
642 1.1 cgd switch (h->flags & P_TYPE) {
643 1.1 cgd case P_BINTERNAL:
644 1.1 cgd src = bi = GETBINTERNAL(h, nxt);
645 1.1 cgd nbytes = NBINTERNAL(bi->ksize);
646 1.1 cgd isbigkey = bi->flags & P_BIGKEY;
647 1.1 cgd break;
648 1.1 cgd case P_BLEAF:
649 1.1 cgd src = bl = GETBLEAF(h, nxt);
650 1.1 cgd nbytes = NBLEAF(bl);
651 1.1 cgd isbigkey = bl->flags & P_BIGKEY;
652 1.1 cgd break;
653 1.1 cgd case P_RINTERNAL:
654 1.1 cgd src = GETRINTERNAL(h, nxt);
655 1.1 cgd nbytes = NRINTERNAL;
656 1.1 cgd isbigkey = 0;
657 1.1 cgd break;
658 1.1 cgd case P_RLEAF:
659 1.1 cgd src = rl = GETRLEAF(h, nxt);
660 1.1 cgd nbytes = NRLEAF(rl);
661 1.1 cgd isbigkey = 0;
662 1.1 cgd break;
663 1.1 cgd default:
664 1.1 cgd abort();
665 1.1 cgd }
666 1.1 cgd
667 1.1 cgd /*
668 1.1 cgd * If the key/data pairs are substantial fractions of the max
669 1.1 cgd * possible size for the page, it's possible to get situations
670 1.1 cgd * where we decide to try and copy too much onto the left page.
671 1.1 cgd * Make sure that doesn't happen.
672 1.1 cgd */
673 1.1 cgd if (skip <= off && used + nbytes >= full) {
674 1.1 cgd --off;
675 1.1 cgd break;
676 1.1 cgd }
677 1.1 cgd
678 1.1 cgd /* Copy the key/data pair, if not the skipped index. */
679 1.1 cgd if (skip != off) {
680 1.1 cgd ++nxt;
681 1.1 cgd
682 1.1 cgd l->linp[off] = l->upper -= nbytes;
683 1.1 cgd memmove((char *)l + l->upper, src, nbytes);
684 1.1 cgd }
685 1.1 cgd
686 1.1 cgd used += nbytes;
687 1.1 cgd if (used >= half) {
688 1.1 cgd if (!isbigkey || bigkeycnt == 3)
689 1.1 cgd break;
690 1.1 cgd else
691 1.1 cgd ++bigkeycnt;
692 1.1 cgd }
693 1.1 cgd }
694 1.1 cgd
695 1.1 cgd /*
696 1.1 cgd * Off is the last offset that's valid for the left page.
697 1.1 cgd * Nxt is the first offset to be placed on the right page.
698 1.1 cgd */
699 1.1 cgd l->lower += (off + 1) * sizeof(indx_t);
700 1.1 cgd
701 1.1 cgd /*
702 1.1 cgd * If splitting the page that the cursor was on, the cursor has to be
703 1.1 cgd * adjusted to point to the same record as before the split. If the
704 1.1 cgd * cursor is at or past the skipped slot, the cursor is incremented by
705 1.1 cgd * one. If the cursor is on the right page, it is decremented by the
706 1.1 cgd * number of records split to the left page.
707 1.1 cgd *
708 1.1 cgd * Don't bother checking for the B_SEQINIT flag, the page number will
709 1.1 cgd * be P_INVALID.
710 1.1 cgd */
711 1.1 cgd c = &t->bt_bcursor;
712 1.1 cgd if (c->pgno == h->pgno) {
713 1.1 cgd if (c->index >= skip)
714 1.1 cgd ++c->index;
715 1.1 cgd if (c->index < nxt) /* Left page. */
716 1.1 cgd c->pgno = l->pgno;
717 1.1 cgd else { /* Right page. */
718 1.1 cgd c->pgno = r->pgno;
719 1.1 cgd c->index -= nxt;
720 1.1 cgd }
721 1.1 cgd }
722 1.1 cgd
723 1.1 cgd /*
724 1.1 cgd * If the skipped index was on the left page, just return that page.
725 1.1 cgd * Otherwise, adjust the skip index to reflect the new position on
726 1.1 cgd * the right page.
727 1.1 cgd */
728 1.1 cgd if (skip <= off) {
729 1.1 cgd skip = 0;
730 1.1 cgd rval = l;
731 1.1 cgd } else {
732 1.1 cgd rval = r;
733 1.1 cgd *pskip -= nxt;
734 1.1 cgd }
735 1.1 cgd
736 1.1 cgd for (off = 0; nxt < top; ++off) {
737 1.1 cgd if (skip == nxt) {
738 1.1 cgd ++off;
739 1.1 cgd skip = 0;
740 1.1 cgd }
741 1.1 cgd switch (h->flags & P_TYPE) {
742 1.1 cgd case P_BINTERNAL:
743 1.1 cgd src = bi = GETBINTERNAL(h, nxt);
744 1.1 cgd nbytes = NBINTERNAL(bi->ksize);
745 1.1 cgd break;
746 1.1 cgd case P_BLEAF:
747 1.1 cgd src = bl = GETBLEAF(h, nxt);
748 1.1 cgd nbytes = NBLEAF(bl);
749 1.1 cgd break;
750 1.1 cgd case P_RINTERNAL:
751 1.1 cgd src = GETRINTERNAL(h, nxt);
752 1.1 cgd nbytes = NRINTERNAL;
753 1.1 cgd break;
754 1.1 cgd case P_RLEAF:
755 1.1 cgd src = rl = GETRLEAF(h, nxt);
756 1.1 cgd nbytes = NRLEAF(rl);
757 1.1 cgd break;
758 1.1 cgd default:
759 1.1 cgd abort();
760 1.1 cgd }
761 1.1 cgd ++nxt;
762 1.1 cgd r->linp[off] = r->upper -= nbytes;
763 1.1 cgd memmove((char *)r + r->upper, src, nbytes);
764 1.1 cgd }
765 1.1 cgd r->lower += off * sizeof(indx_t);
766 1.1 cgd
767 1.1 cgd /* If the key is being appended to the page, adjust the index. */
768 1.1 cgd if (skip == top)
769 1.1 cgd r->lower += sizeof(indx_t);
770 1.1 cgd
771 1.1 cgd return (rval);
772 1.1 cgd }
773 1.1 cgd
774 1.1 cgd /*
775 1.1 cgd * BT_PRESERVE -- Mark a chain of pages as used by an internal node.
776 1.1 cgd *
777 1.1 cgd * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
778 1.1 cgd * record that references them gets deleted. Chains pointed to by internal
779 1.1 cgd * pages never get deleted. This routine marks a chain as pointed to by an
780 1.1 cgd * internal page.
781 1.1 cgd *
782 1.1 cgd * Parameters:
783 1.1 cgd * t: tree
784 1.1 cgd * pg: page number of first page in the chain.
785 1.1 cgd *
786 1.1 cgd * Returns:
787 1.1 cgd * RET_SUCCESS, RET_ERROR.
788 1.1 cgd */
789 1.1 cgd static int
790 1.1 cgd bt_preserve(t, pg)
791 1.1 cgd BTREE *t;
792 1.1 cgd pgno_t pg;
793 1.1 cgd {
794 1.1 cgd PAGE *h;
795 1.1 cgd
796 1.1 cgd if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
797 1.1 cgd return (RET_ERROR);
798 1.1 cgd h->flags |= P_PRESERVE;
799 1.1 cgd mpool_put(t->bt_mp, h, MPOOL_DIRTY);
800 1.1 cgd return (RET_SUCCESS);
801 1.1 cgd }
802 1.1 cgd
803 1.1 cgd /*
804 1.1 cgd * REC_TOTAL -- Return the number of recno entries below a page.
805 1.1 cgd *
806 1.1 cgd * Parameters:
807 1.1 cgd * h: page
808 1.1 cgd *
809 1.1 cgd * Returns:
810 1.1 cgd * The number of recno entries below a page.
811 1.1 cgd *
812 1.1 cgd * XXX
813 1.1 cgd * These values could be set by the bt_psplit routine. The problem is that the
814 1.1 cgd * entry has to be popped off of the stack etc. or the values have to be passed
815 1.1 cgd * all the way back to bt_split/bt_rroot and it's not very clean.
816 1.1 cgd */
817 1.1 cgd static recno_t
818 1.1 cgd rec_total(h)
819 1.1 cgd PAGE *h;
820 1.1 cgd {
821 1.1 cgd recno_t recs;
822 1.1 cgd indx_t nxt, top;
823 1.1 cgd
824 1.1 cgd for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
825 1.1 cgd recs += GETRINTERNAL(h, nxt)->nrecs;
826 1.1 cgd return (recs);
827 1.1 cgd }
828