bt_split.c revision 1.1 1 /*-
2 * Copyright (c) 1990, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Mike Olson.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #if defined(LIBC_SCCS) && !defined(lint)
38 static char sccsid[] = "@(#)bt_split.c 8.1 (Berkeley) 6/4/93";
39 #endif /* LIBC_SCCS and not lint */
40
41 #include <sys/types.h>
42
43 #define __DBINTERFACE_PRIVATE
44 #include <limits.h>
45 #include <stdio.h>
46 #include <stdlib.h>
47 #include <string.h>
48
49 #include <db.h>
50 #include "btree.h"
51
52 static int bt_broot __P((BTREE *, PAGE *, PAGE *, PAGE *));
53 static PAGE *bt_page
54 __P((BTREE *, PAGE *, PAGE **, PAGE **, u_int *, size_t));
55 static int bt_preserve __P((BTREE *, pgno_t));
56 static PAGE *bt_psplit
57 __P((BTREE *, PAGE *, PAGE *, PAGE *, u_int *, size_t));
58 static PAGE *bt_root
59 __P((BTREE *, PAGE *, PAGE **, PAGE **, u_int *, size_t));
60 static int bt_rroot __P((BTREE *, PAGE *, PAGE *, PAGE *));
61 static recno_t rec_total __P((PAGE *));
62
63 #ifdef STATISTICS
64 u_long bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
65 #endif
66
67 /*
68 * __BT_SPLIT -- Split the tree.
69 *
70 * Parameters:
71 * t: tree
72 * sp: page to split
73 * key: key to insert
74 * data: data to insert
75 * flags: BIGKEY/BIGDATA flags
76 * ilen: insert length
77 * skip: index to leave open
78 *
79 * Returns:
80 * RET_ERROR, RET_SUCCESS
81 */
82 int
83 __bt_split(t, sp, key, data, flags, ilen, skip)
84 BTREE *t;
85 PAGE *sp;
86 const DBT *key, *data;
87 u_long flags;
88 size_t ilen;
89 u_int skip;
90 {
91 BINTERNAL *bi;
92 BLEAF *bl, *tbl;
93 DBT a, b;
94 EPGNO *parent;
95 PAGE *h, *l, *r, *lchild, *rchild;
96 indx_t nxtindex;
97 size_t n, nbytes, nksize;
98 int parentsplit;
99 char *dest;
100
101 /*
102 * Split the page into two pages, l and r. The split routines return
103 * a pointer to the page into which the key should be inserted and with
104 * skip set to the offset which should be used. Additionally, l and r
105 * are pinned.
106 */
107 h = sp->pgno == P_ROOT ?
108 bt_root(t, sp, &l, &r, &skip, ilen) :
109 bt_page(t, sp, &l, &r, &skip, ilen);
110 if (h == NULL)
111 return (RET_ERROR);
112
113 /*
114 * Insert the new key/data pair into the leaf page. (Key inserts
115 * always cause a leaf page to split first.)
116 */
117 h->linp[skip] = h->upper -= ilen;
118 dest = (char *)h + h->upper;
119 if (ISSET(t, R_RECNO))
120 WR_RLEAF(dest, data, flags)
121 else
122 WR_BLEAF(dest, key, data, flags)
123
124 /* If the root page was split, make it look right. */
125 if (sp->pgno == P_ROOT &&
126 (ISSET(t, R_RECNO) ?
127 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
128 goto err2;
129
130 /*
131 * Now we walk the parent page stack -- a LIFO stack of the pages that
132 * were traversed when we searched for the page that split. Each stack
133 * entry is a page number and a page index offset. The offset is for
134 * the page traversed on the search. We've just split a page, so we
135 * have to insert a new key into the parent page.
136 *
137 * If the insert into the parent page causes it to split, may have to
138 * continue splitting all the way up the tree. We stop if the root
139 * splits or the page inserted into didn't have to split to hold the
140 * new key. Some algorithms replace the key for the old page as well
141 * as the new page. We don't, as there's no reason to believe that the
142 * first key on the old page is any better than the key we have, and,
143 * in the case of a key being placed at index 0 causing the split, the
144 * key is unavailable.
145 *
146 * There are a maximum of 5 pages pinned at any time. We keep the left
147 * and right pages pinned while working on the parent. The 5 are the
148 * two children, left parent and right parent (when the parent splits)
149 * and the root page or the overflow key page when calling bt_preserve.
150 * This code must make sure that all pins are released other than the
151 * root page or overflow page which is unlocked elsewhere.
152 */
153 while ((parent = BT_POP(t)) != NULL) {
154 lchild = l;
155 rchild = r;
156
157 /* Get the parent page. */
158 if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
159 goto err2;
160
161 /*
162 * The new key goes ONE AFTER the index, because the split
163 * was to the right.
164 */
165 skip = parent->index + 1;
166
167 /*
168 * Calculate the space needed on the parent page.
169 *
170 * Prefix trees: space hack when inserting into BINTERNAL
171 * pages. Retain only what's needed to distinguish between
172 * the new entry and the LAST entry on the page to its left.
173 * If the keys compare equal, retain the entire key. Note,
174 * we don't touch overflow keys, and the entire key must be
175 * retained for the next-to-left most key on the leftmost
176 * page of each level, or the search will fail. Applicable
177 * ONLY to internal pages that have leaf pages as children.
178 * Further reduction of the key between pairs of internal
179 * pages loses too much information.
180 */
181 switch (rchild->flags & P_TYPE) {
182 case P_BINTERNAL:
183 bi = GETBINTERNAL(rchild, 0);
184 nbytes = NBINTERNAL(bi->ksize);
185 break;
186 case P_BLEAF:
187 bl = GETBLEAF(rchild, 0);
188 nbytes = NBINTERNAL(bl->ksize);
189 if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
190 (h->prevpg != P_INVALID || skip > 1)) {
191 tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
192 a.size = tbl->ksize;
193 a.data = tbl->bytes;
194 b.size = bl->ksize;
195 b.data = bl->bytes;
196 nksize = t->bt_pfx(&a, &b);
197 n = NBINTERNAL(nksize);
198 if (n < nbytes) {
199 #ifdef STATISTICS
200 bt_pfxsaved += nbytes - n;
201 #endif
202 nbytes = n;
203 } else
204 nksize = 0;
205 } else
206 nksize = 0;
207 break;
208 case P_RINTERNAL:
209 case P_RLEAF:
210 nbytes = NRINTERNAL;
211 break;
212 default:
213 abort();
214 }
215
216 /* Split the parent page if necessary or shift the indices. */
217 if (h->upper - h->lower < nbytes + sizeof(indx_t)) {
218 sp = h;
219 h = h->pgno == P_ROOT ?
220 bt_root(t, h, &l, &r, &skip, nbytes) :
221 bt_page(t, h, &l, &r, &skip, nbytes);
222 if (h == NULL)
223 goto err1;
224 parentsplit = 1;
225 } else {
226 if (skip < (nxtindex = NEXTINDEX(h)))
227 memmove(h->linp + skip + 1, h->linp + skip,
228 (nxtindex - skip) * sizeof(indx_t));
229 h->lower += sizeof(indx_t);
230 parentsplit = 0;
231 }
232
233 /* Insert the key into the parent page. */
234 switch(rchild->flags & P_TYPE) {
235 case P_BINTERNAL:
236 h->linp[skip] = h->upper -= nbytes;
237 dest = (char *)h + h->linp[skip];
238 memmove(dest, bi, nbytes);
239 ((BINTERNAL *)dest)->pgno = rchild->pgno;
240 break;
241 case P_BLEAF:
242 h->linp[skip] = h->upper -= nbytes;
243 dest = (char *)h + h->linp[skip];
244 WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
245 rchild->pgno, bl->flags & P_BIGKEY);
246 memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
247 if (bl->flags & P_BIGKEY &&
248 bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
249 goto err1;
250 break;
251 case P_RINTERNAL:
252 /*
253 * Update the left page count. If split
254 * added at index 0, fix the correct page.
255 */
256 if (skip > 0)
257 dest = (char *)h + h->linp[skip - 1];
258 else
259 dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
260 ((RINTERNAL *)dest)->nrecs = rec_total(lchild);
261 ((RINTERNAL *)dest)->pgno = lchild->pgno;
262
263 /* Update the right page count. */
264 h->linp[skip] = h->upper -= nbytes;
265 dest = (char *)h + h->linp[skip];
266 ((RINTERNAL *)dest)->nrecs = rec_total(rchild);
267 ((RINTERNAL *)dest)->pgno = rchild->pgno;
268 break;
269 case P_RLEAF:
270 /*
271 * Update the left page count. If split
272 * added at index 0, fix the correct page.
273 */
274 if (skip > 0)
275 dest = (char *)h + h->linp[skip - 1];
276 else
277 dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
278 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild);
279 ((RINTERNAL *)dest)->pgno = lchild->pgno;
280
281 /* Update the right page count. */
282 h->linp[skip] = h->upper -= nbytes;
283 dest = (char *)h + h->linp[skip];
284 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild);
285 ((RINTERNAL *)dest)->pgno = rchild->pgno;
286 break;
287 default:
288 abort();
289 }
290
291 /* Unpin the held pages. */
292 if (!parentsplit) {
293 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
294 break;
295 }
296
297 /* If the root page was split, make it look right. */
298 if (sp->pgno == P_ROOT &&
299 (ISSET(t, R_RECNO) ?
300 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
301 goto err1;
302
303 mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
304 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
305 }
306
307 /* Unpin the held pages. */
308 mpool_put(t->bt_mp, l, MPOOL_DIRTY);
309 mpool_put(t->bt_mp, r, MPOOL_DIRTY);
310
311 /* Clear any pages left on the stack. */
312 return (RET_SUCCESS);
313
314 /*
315 * If something fails in the above loop we were already walking back
316 * up the tree and the tree is now inconsistent. Nothing much we can
317 * do about it but release any memory we're holding.
318 */
319 err1: mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
320 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
321
322 err2: mpool_put(t->bt_mp, l, 0);
323 mpool_put(t->bt_mp, r, 0);
324 __dbpanic(t->bt_dbp);
325 return (RET_ERROR);
326 }
327
328 /*
329 * BT_PAGE -- Split a non-root page of a btree.
330 *
331 * Parameters:
332 * t: tree
333 * h: root page
334 * lp: pointer to left page pointer
335 * rp: pointer to right page pointer
336 * skip: pointer to index to leave open
337 * ilen: insert length
338 *
339 * Returns:
340 * Pointer to page in which to insert or NULL on error.
341 */
342 static PAGE *
343 bt_page(t, h, lp, rp, skip, ilen)
344 BTREE *t;
345 PAGE *h, **lp, **rp;
346 u_int *skip;
347 size_t ilen;
348 {
349 PAGE *l, *r, *tp;
350 pgno_t npg;
351
352 #ifdef STATISTICS
353 ++bt_split;
354 #endif
355 /* Put the new right page for the split into place. */
356 if ((r = __bt_new(t, &npg)) == NULL)
357 return (NULL);
358 r->pgno = npg;
359 r->lower = BTDATAOFF;
360 r->upper = t->bt_psize;
361 r->nextpg = h->nextpg;
362 r->prevpg = h->pgno;
363 r->flags = h->flags & P_TYPE;
364
365 /*
366 * If we're splitting the last page on a level because we're appending
367 * a key to it (skip is NEXTINDEX()), it's likely that the data is
368 * sorted. Adding an empty page on the side of the level is less work
369 * and can push the fill factor much higher than normal. If we're
370 * wrong it's no big deal, we'll just do the split the right way next
371 * time. It may look like it's equally easy to do a similar hack for
372 * reverse sorted data, that is, split the tree left, but it's not.
373 * Don't even try.
374 */
375 if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
376 #ifdef STATISTICS
377 ++bt_sortsplit;
378 #endif
379 h->nextpg = r->pgno;
380 r->lower = BTDATAOFF + sizeof(indx_t);
381 *skip = 0;
382 *lp = h;
383 *rp = r;
384 return (r);
385 }
386
387 /* Put the new left page for the split into place. */
388 if ((l = malloc(t->bt_psize)) == NULL) {
389 mpool_put(t->bt_mp, r, 0);
390 return (NULL);
391 }
392 l->pgno = h->pgno;
393 l->nextpg = r->pgno;
394 l->prevpg = h->prevpg;
395 l->lower = BTDATAOFF;
396 l->upper = t->bt_psize;
397 l->flags = h->flags & P_TYPE;
398
399 /* Fix up the previous pointer of the page after the split page. */
400 if (h->nextpg != P_INVALID) {
401 if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
402 free(l);
403 /* XXX mpool_free(t->bt_mp, r->pgno); */
404 return (NULL);
405 }
406 tp->prevpg = r->pgno;
407 mpool_put(t->bt_mp, tp, 0);
408 }
409
410 /*
411 * Split right. The key/data pairs aren't sorted in the btree page so
412 * it's simpler to copy the data from the split page onto two new pages
413 * instead of copying half the data to the right page and compacting
414 * the left page in place. Since the left page can't change, we have
415 * to swap the original and the allocated left page after the split.
416 */
417 tp = bt_psplit(t, h, l, r, skip, ilen);
418
419 /* Move the new left page onto the old left page. */
420 memmove(h, l, t->bt_psize);
421 if (tp == l)
422 tp = h;
423 free(l);
424
425 *lp = h;
426 *rp = r;
427 return (tp);
428 }
429
430 /*
431 * BT_ROOT -- Split the root page of a btree.
432 *
433 * Parameters:
434 * t: tree
435 * h: root page
436 * lp: pointer to left page pointer
437 * rp: pointer to right page pointer
438 * skip: pointer to index to leave open
439 * ilen: insert length
440 *
441 * Returns:
442 * Pointer to page in which to insert or NULL on error.
443 */
444 static PAGE *
445 bt_root(t, h, lp, rp, skip, ilen)
446 BTREE *t;
447 PAGE *h, **lp, **rp;
448 u_int *skip;
449 size_t ilen;
450 {
451 PAGE *l, *r, *tp;
452 pgno_t lnpg, rnpg;
453
454 #ifdef STATISTICS
455 ++bt_split;
456 ++bt_rootsplit;
457 #endif
458 /* Put the new left and right pages for the split into place. */
459 if ((l = __bt_new(t, &lnpg)) == NULL ||
460 (r = __bt_new(t, &rnpg)) == NULL)
461 return (NULL);
462 l->pgno = lnpg;
463 r->pgno = rnpg;
464 l->nextpg = r->pgno;
465 r->prevpg = l->pgno;
466 l->prevpg = r->nextpg = P_INVALID;
467 l->lower = r->lower = BTDATAOFF;
468 l->upper = r->upper = t->bt_psize;
469 l->flags = r->flags = h->flags & P_TYPE;
470
471 /* Split the root page. */
472 tp = bt_psplit(t, h, l, r, skip, ilen);
473
474 *lp = l;
475 *rp = r;
476 return (tp);
477 }
478
479 /*
480 * BT_RROOT -- Fix up the recno root page after it has been split.
481 *
482 * Parameters:
483 * t: tree
484 * h: root page
485 * l: left page
486 * r: right page
487 *
488 * Returns:
489 * RET_ERROR, RET_SUCCESS
490 */
491 static int
492 bt_rroot(t, h, l, r)
493 BTREE *t;
494 PAGE *h, *l, *r;
495 {
496 char *dest;
497
498 /* Insert the left and right keys, set the header information. */
499 h->linp[0] = h->upper = t->bt_psize - NRINTERNAL;
500 dest = (char *)h + h->upper;
501 WR_RINTERNAL(dest,
502 l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
503
504 h->linp[1] = h->upper -= NRINTERNAL;
505 dest = (char *)h + h->upper;
506 WR_RINTERNAL(dest,
507 r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
508
509 h->lower = BTDATAOFF + 2 * sizeof(indx_t);
510
511 /* Unpin the root page, set to recno internal page. */
512 h->flags &= ~P_TYPE;
513 h->flags |= P_RINTERNAL;
514 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
515
516 return (RET_SUCCESS);
517 }
518
519 /*
520 * BT_BROOT -- Fix up the btree root page after it has been split.
521 *
522 * Parameters:
523 * t: tree
524 * h: root page
525 * l: left page
526 * r: right page
527 *
528 * Returns:
529 * RET_ERROR, RET_SUCCESS
530 */
531 static int
532 bt_broot(t, h, l, r)
533 BTREE *t;
534 PAGE *h, *l, *r;
535 {
536 BINTERNAL *bi;
537 BLEAF *bl;
538 size_t nbytes;
539 char *dest;
540
541 /*
542 * If the root page was a leaf page, change it into an internal page.
543 * We copy the key we split on (but not the key's data, in the case of
544 * a leaf page) to the new root page.
545 *
546 * The btree comparison code guarantees that the left-most key on any
547 * level of the tree is never used, so it doesn't need to be filled in.
548 */
549 nbytes = NBINTERNAL(0);
550 h->linp[0] = h->upper = t->bt_psize - nbytes;
551 dest = (char *)h + h->upper;
552 WR_BINTERNAL(dest, 0, l->pgno, 0);
553
554 switch(h->flags & P_TYPE) {
555 case P_BLEAF:
556 bl = GETBLEAF(r, 0);
557 nbytes = NBINTERNAL(bl->ksize);
558 h->linp[1] = h->upper -= nbytes;
559 dest = (char *)h + h->upper;
560 WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
561 memmove(dest, bl->bytes, bl->ksize);
562
563 /*
564 * If the key is on an overflow page, mark the overflow chain
565 * so it isn't deleted when the leaf copy of the key is deleted.
566 */
567 if (bl->flags & P_BIGKEY &&
568 bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
569 return (RET_ERROR);
570 break;
571 case P_BINTERNAL:
572 bi = GETBINTERNAL(r, 0);
573 nbytes = NBINTERNAL(bi->ksize);
574 h->linp[1] = h->upper -= nbytes;
575 dest = (char *)h + h->upper;
576 memmove(dest, bi, nbytes);
577 ((BINTERNAL *)dest)->pgno = r->pgno;
578 break;
579 default:
580 abort();
581 }
582
583 /* There are two keys on the page. */
584 h->lower = BTDATAOFF + 2 * sizeof(indx_t);
585
586 /* Unpin the root page, set to btree internal page. */
587 h->flags &= ~P_TYPE;
588 h->flags |= P_BINTERNAL;
589 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
590
591 return (RET_SUCCESS);
592 }
593
594 /*
595 * BT_PSPLIT -- Do the real work of splitting the page.
596 *
597 * Parameters:
598 * t: tree
599 * h: page to be split
600 * l: page to put lower half of data
601 * r: page to put upper half of data
602 * pskip: pointer to index to leave open
603 * ilen: insert length
604 *
605 * Returns:
606 * Pointer to page in which to insert.
607 */
608 static PAGE *
609 bt_psplit(t, h, l, r, pskip, ilen)
610 BTREE *t;
611 PAGE *h, *l, *r;
612 u_int *pskip;
613 size_t ilen;
614 {
615 BINTERNAL *bi;
616 BLEAF *bl;
617 RLEAF *rl;
618 EPGNO *c;
619 PAGE *rval;
620 void *src;
621 indx_t full, half, nxt, off, skip, top, used;
622 size_t nbytes;
623 int bigkeycnt, isbigkey;
624
625 /*
626 * Split the data to the left and right pages. Leave the skip index
627 * open. Additionally, make some effort not to split on an overflow
628 * key. This makes internal page processing faster and can save
629 * space as overflow keys used by internal pages are never deleted.
630 */
631 bigkeycnt = 0;
632 skip = *pskip;
633 full = t->bt_psize - BTDATAOFF;
634 half = full / 2;
635 used = 0;
636 for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
637 if (skip == off) {
638 nbytes = ilen;
639 isbigkey = 0; /* XXX: not really known. */
640 } else
641 switch (h->flags & P_TYPE) {
642 case P_BINTERNAL:
643 src = bi = GETBINTERNAL(h, nxt);
644 nbytes = NBINTERNAL(bi->ksize);
645 isbigkey = bi->flags & P_BIGKEY;
646 break;
647 case P_BLEAF:
648 src = bl = GETBLEAF(h, nxt);
649 nbytes = NBLEAF(bl);
650 isbigkey = bl->flags & P_BIGKEY;
651 break;
652 case P_RINTERNAL:
653 src = GETRINTERNAL(h, nxt);
654 nbytes = NRINTERNAL;
655 isbigkey = 0;
656 break;
657 case P_RLEAF:
658 src = rl = GETRLEAF(h, nxt);
659 nbytes = NRLEAF(rl);
660 isbigkey = 0;
661 break;
662 default:
663 abort();
664 }
665
666 /*
667 * If the key/data pairs are substantial fractions of the max
668 * possible size for the page, it's possible to get situations
669 * where we decide to try and copy too much onto the left page.
670 * Make sure that doesn't happen.
671 */
672 if (skip <= off && used + nbytes >= full) {
673 --off;
674 break;
675 }
676
677 /* Copy the key/data pair, if not the skipped index. */
678 if (skip != off) {
679 ++nxt;
680
681 l->linp[off] = l->upper -= nbytes;
682 memmove((char *)l + l->upper, src, nbytes);
683 }
684
685 used += nbytes;
686 if (used >= half) {
687 if (!isbigkey || bigkeycnt == 3)
688 break;
689 else
690 ++bigkeycnt;
691 }
692 }
693
694 /*
695 * Off is the last offset that's valid for the left page.
696 * Nxt is the first offset to be placed on the right page.
697 */
698 l->lower += (off + 1) * sizeof(indx_t);
699
700 /*
701 * If splitting the page that the cursor was on, the cursor has to be
702 * adjusted to point to the same record as before the split. If the
703 * cursor is at or past the skipped slot, the cursor is incremented by
704 * one. If the cursor is on the right page, it is decremented by the
705 * number of records split to the left page.
706 *
707 * Don't bother checking for the B_SEQINIT flag, the page number will
708 * be P_INVALID.
709 */
710 c = &t->bt_bcursor;
711 if (c->pgno == h->pgno) {
712 if (c->index >= skip)
713 ++c->index;
714 if (c->index < nxt) /* Left page. */
715 c->pgno = l->pgno;
716 else { /* Right page. */
717 c->pgno = r->pgno;
718 c->index -= nxt;
719 }
720 }
721
722 /*
723 * If the skipped index was on the left page, just return that page.
724 * Otherwise, adjust the skip index to reflect the new position on
725 * the right page.
726 */
727 if (skip <= off) {
728 skip = 0;
729 rval = l;
730 } else {
731 rval = r;
732 *pskip -= nxt;
733 }
734
735 for (off = 0; nxt < top; ++off) {
736 if (skip == nxt) {
737 ++off;
738 skip = 0;
739 }
740 switch (h->flags & P_TYPE) {
741 case P_BINTERNAL:
742 src = bi = GETBINTERNAL(h, nxt);
743 nbytes = NBINTERNAL(bi->ksize);
744 break;
745 case P_BLEAF:
746 src = bl = GETBLEAF(h, nxt);
747 nbytes = NBLEAF(bl);
748 break;
749 case P_RINTERNAL:
750 src = GETRINTERNAL(h, nxt);
751 nbytes = NRINTERNAL;
752 break;
753 case P_RLEAF:
754 src = rl = GETRLEAF(h, nxt);
755 nbytes = NRLEAF(rl);
756 break;
757 default:
758 abort();
759 }
760 ++nxt;
761 r->linp[off] = r->upper -= nbytes;
762 memmove((char *)r + r->upper, src, nbytes);
763 }
764 r->lower += off * sizeof(indx_t);
765
766 /* If the key is being appended to the page, adjust the index. */
767 if (skip == top)
768 r->lower += sizeof(indx_t);
769
770 return (rval);
771 }
772
773 /*
774 * BT_PRESERVE -- Mark a chain of pages as used by an internal node.
775 *
776 * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
777 * record that references them gets deleted. Chains pointed to by internal
778 * pages never get deleted. This routine marks a chain as pointed to by an
779 * internal page.
780 *
781 * Parameters:
782 * t: tree
783 * pg: page number of first page in the chain.
784 *
785 * Returns:
786 * RET_SUCCESS, RET_ERROR.
787 */
788 static int
789 bt_preserve(t, pg)
790 BTREE *t;
791 pgno_t pg;
792 {
793 PAGE *h;
794
795 if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
796 return (RET_ERROR);
797 h->flags |= P_PRESERVE;
798 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
799 return (RET_SUCCESS);
800 }
801
802 /*
803 * REC_TOTAL -- Return the number of recno entries below a page.
804 *
805 * Parameters:
806 * h: page
807 *
808 * Returns:
809 * The number of recno entries below a page.
810 *
811 * XXX
812 * These values could be set by the bt_psplit routine. The problem is that the
813 * entry has to be popped off of the stack etc. or the values have to be passed
814 * all the way back to bt_split/bt_rroot and it's not very clean.
815 */
816 static recno_t
817 rec_total(h)
818 PAGE *h;
819 {
820 recno_t recs;
821 indx_t nxt, top;
822
823 for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
824 recs += GETRINTERNAL(h, nxt)->nrecs;
825 return (recs);
826 }
827