bt_split.c revision 1.16 1 /* $NetBSD: bt_split.c,v 1.16 2008/09/10 17:52:35 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Olson.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __RCSID("$NetBSD: bt_split.c,v 1.16 2008/09/10 17:52:35 joerg Exp $");
37
38 #include "namespace.h"
39 #include <sys/types.h>
40
41 #include <assert.h>
42 #include <limits.h>
43 #include <stdio.h>
44 #include <stdlib.h>
45 #include <string.h>
46
47 #include <db.h>
48 #include "btree.h"
49
50 static int bt_broot(BTREE *, PAGE *, PAGE *, PAGE *);
51 static PAGE *bt_page(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
52 static int bt_preserve(BTREE *, pgno_t);
53 static PAGE *bt_psplit(BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t);
54 static PAGE *bt_root(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
55 static int bt_rroot(BTREE *, PAGE *, PAGE *, PAGE *);
56 static recno_t rec_total(PAGE *);
57
58 #ifdef STATISTICS
59 unsigned long bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
60 #endif
61
62 /*
63 * __BT_SPLIT -- Split the tree.
64 *
65 * Parameters:
66 * t: tree
67 * sp: page to split
68 * key: key to insert
69 * data: data to insert
70 * flags: BIGKEY/BIGDATA flags
71 * ilen: insert length
72 * skip: index to leave open
73 *
74 * Returns:
75 * RET_ERROR, RET_SUCCESS
76 */
77 int
78 __bt_split(BTREE *t, PAGE *sp, const DBT *key, const DBT *data, int flags,
79 size_t ilen, uint32_t argskip)
80 {
81 BINTERNAL *bi = NULL; /* pacify gcc */
82 BLEAF *bl = NULL, *tbl; /* pacify gcc */
83 DBT a, b;
84 EPGNO *parent;
85 PAGE *h, *l, *r, *lchild, *rchild;
86 indx_t nxtindex;
87 uint16_t skip;
88 uint32_t n, nbytes, nksize = 0; /* pacify gcc */
89 int parentsplit;
90 char *dest;
91
92 /*
93 * Split the page into two pages, l and r. The split routines return
94 * a pointer to the page into which the key should be inserted and with
95 * skip set to the offset which should be used. Additionally, l and r
96 * are pinned.
97 */
98 skip = argskip;
99 h = sp->pgno == P_ROOT ?
100 bt_root(t, sp, &l, &r, &skip, ilen) :
101 bt_page(t, sp, &l, &r, &skip, ilen);
102 if (h == NULL)
103 return (RET_ERROR);
104
105 /*
106 * Insert the new key/data pair into the leaf page. (Key inserts
107 * always cause a leaf page to split first.)
108 */
109 _DBFIT(ilen, indx_t);
110 h->upper -= (indx_t)ilen;
111 h->linp[skip] = h->upper;
112 dest = (char *)(void *)h + h->upper;
113 if (F_ISSET(t, R_RECNO))
114 WR_RLEAF(dest, data, flags);
115 else
116 WR_BLEAF(dest, key, data, flags);
117
118 /* If the root page was split, make it look right. */
119 if (sp->pgno == P_ROOT &&
120 (F_ISSET(t, R_RECNO) ?
121 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
122 goto err2;
123
124 /*
125 * Now we walk the parent page stack -- a LIFO stack of the pages that
126 * were traversed when we searched for the page that split. Each stack
127 * entry is a page number and a page index offset. The offset is for
128 * the page traversed on the search. We've just split a page, so we
129 * have to insert a new key into the parent page.
130 *
131 * If the insert into the parent page causes it to split, may have to
132 * continue splitting all the way up the tree. We stop if the root
133 * splits or the page inserted into didn't have to split to hold the
134 * new key. Some algorithms replace the key for the old page as well
135 * as the new page. We don't, as there's no reason to believe that the
136 * first key on the old page is any better than the key we have, and,
137 * in the case of a key being placed at index 0 causing the split, the
138 * key is unavailable.
139 *
140 * There are a maximum of 5 pages pinned at any time. We keep the left
141 * and right pages pinned while working on the parent. The 5 are the
142 * two children, left parent and right parent (when the parent splits)
143 * and the root page or the overflow key page when calling bt_preserve.
144 * This code must make sure that all pins are released other than the
145 * root page or overflow page which is unlocked elsewhere.
146 */
147 while ((parent = BT_POP(t)) != NULL) {
148 lchild = l;
149 rchild = r;
150
151 /* Get the parent page. */
152 if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
153 goto err2;
154
155 /*
156 * The new key goes ONE AFTER the index, because the split
157 * was to the right.
158 */
159 skip = parent->index + 1;
160
161 /*
162 * Calculate the space needed on the parent page.
163 *
164 * Prefix trees: space hack when inserting into BINTERNAL
165 * pages. Retain only what's needed to distinguish between
166 * the new entry and the LAST entry on the page to its left.
167 * If the keys compare equal, retain the entire key. Note,
168 * we don't touch overflow keys, and the entire key must be
169 * retained for the next-to-left most key on the leftmost
170 * page of each level, or the search will fail. Applicable
171 * ONLY to internal pages that have leaf pages as children.
172 * Further reduction of the key between pairs of internal
173 * pages loses too much information.
174 */
175 switch (rchild->flags & P_TYPE) {
176 case P_BINTERNAL:
177 bi = GETBINTERNAL(rchild, 0);
178 nbytes = NBINTERNAL(bi->ksize);
179 break;
180 case P_BLEAF:
181 bl = GETBLEAF(rchild, 0);
182 nbytes = NBINTERNAL(bl->ksize);
183 if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
184 (h->prevpg != P_INVALID || skip > 1)) {
185 size_t temp;
186 tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
187 a.size = tbl->ksize;
188 a.data = tbl->bytes;
189 b.size = bl->ksize;
190 b.data = bl->bytes;
191 temp = t->bt_pfx(&a, &b);
192 _DBFIT(temp, uint32_t);
193 nksize = (uint32_t)temp;
194 n = NBINTERNAL(nksize);
195 if (n < nbytes) {
196 #ifdef STATISTICS
197 bt_pfxsaved += nbytes - n;
198 #endif
199 nbytes = n;
200 } else
201 nksize = 0;
202 } else
203 nksize = 0;
204 break;
205 case P_RINTERNAL:
206 case P_RLEAF:
207 nbytes = NRINTERNAL;
208 break;
209 default:
210 abort();
211 }
212
213 /* Split the parent page if necessary or shift the indices. */
214 if (h->upper - h->lower < nbytes + sizeof(indx_t)) {
215 sp = h;
216 h = h->pgno == P_ROOT ?
217 bt_root(t, h, &l, &r, &skip, nbytes) :
218 bt_page(t, h, &l, &r, &skip, nbytes);
219 if (h == NULL)
220 goto err1;
221 parentsplit = 1;
222 } else {
223 if (skip < (nxtindex = NEXTINDEX(h)))
224 memmove(h->linp + skip + 1, h->linp + skip,
225 (nxtindex - skip) * sizeof(indx_t));
226 h->lower += sizeof(indx_t);
227 parentsplit = 0;
228 }
229
230 /* Insert the key into the parent page. */
231 switch (rchild->flags & P_TYPE) {
232 case P_BINTERNAL:
233 h->linp[skip] = h->upper -= nbytes;
234 dest = (char *)(void *)h + h->linp[skip];
235 memmove(dest, bi, nbytes);
236 ((BINTERNAL *)(void *)dest)->pgno = rchild->pgno;
237 break;
238 case P_BLEAF:
239 h->linp[skip] = h->upper -= nbytes;
240 dest = (char *)(void *)h + h->linp[skip];
241 WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
242 rchild->pgno, bl->flags & P_BIGKEY);
243 memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
244 if (bl->flags & P_BIGKEY &&
245 bt_preserve(t, *(pgno_t *)(void *)bl->bytes) ==
246 RET_ERROR)
247 goto err1;
248 break;
249 case P_RINTERNAL:
250 /*
251 * Update the left page count. If split
252 * added at index 0, fix the correct page.
253 */
254 if (skip > 0)
255 dest = (char *)(void *)h + h->linp[skip - 1];
256 else
257 dest = (char *)(void *)l + l->linp[NEXTINDEX(l) - 1];
258 ((RINTERNAL *)(void *)dest)->nrecs = rec_total(lchild);
259 ((RINTERNAL *)(void *)dest)->pgno = lchild->pgno;
260
261 /* Update the right page count. */
262 h->linp[skip] = h->upper -= nbytes;
263 dest = (char *)(void *)h + h->linp[skip];
264 ((RINTERNAL *)(void *)dest)->nrecs = rec_total(rchild);
265 ((RINTERNAL *)(void *)dest)->pgno = rchild->pgno;
266 break;
267 case P_RLEAF:
268 /*
269 * Update the left page count. If split
270 * added at index 0, fix the correct page.
271 */
272 if (skip > 0)
273 dest = (char *)(void *)h + h->linp[skip - 1];
274 else
275 dest = (char *)(void *)l + l->linp[NEXTINDEX(l) - 1];
276 ((RINTERNAL *)(void *)dest)->nrecs = NEXTINDEX(lchild);
277 ((RINTERNAL *)(void *)dest)->pgno = lchild->pgno;
278
279 /* Update the right page count. */
280 h->linp[skip] = h->upper -= nbytes;
281 dest = (char *)(void *)h + h->linp[skip];
282 ((RINTERNAL *)(void *)dest)->nrecs = NEXTINDEX(rchild);
283 ((RINTERNAL *)(void *)dest)->pgno = rchild->pgno;
284 break;
285 default:
286 abort();
287 }
288
289 /* Unpin the held pages. */
290 if (!parentsplit) {
291 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
292 break;
293 }
294
295 /* If the root page was split, make it look right. */
296 if (sp->pgno == P_ROOT &&
297 (F_ISSET(t, R_RECNO) ?
298 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
299 goto err1;
300
301 mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
302 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
303 }
304
305 /* Unpin the held pages. */
306 mpool_put(t->bt_mp, l, MPOOL_DIRTY);
307 mpool_put(t->bt_mp, r, MPOOL_DIRTY);
308
309 /* Clear any pages left on the stack. */
310 return (RET_SUCCESS);
311
312 /*
313 * If something fails in the above loop we were already walking back
314 * up the tree and the tree is now inconsistent. Nothing much we can
315 * do about it but release any memory we're holding.
316 */
317 err1: mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
318 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
319
320 err2: mpool_put(t->bt_mp, l, 0);
321 mpool_put(t->bt_mp, r, 0);
322 __dbpanic(t->bt_dbp);
323 return (RET_ERROR);
324 }
325
326 /*
327 * BT_PAGE -- Split a non-root page of a btree.
328 *
329 * Parameters:
330 * t: tree
331 * h: root page
332 * lp: pointer to left page pointer
333 * rp: pointer to right page pointer
334 * skip: pointer to index to leave open
335 * ilen: insert length
336 *
337 * Returns:
338 * Pointer to page in which to insert or NULL on error.
339 */
340 static PAGE *
341 bt_page(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen)
342 {
343 PAGE *l, *r, *tp;
344 pgno_t npg;
345
346 #ifdef STATISTICS
347 ++bt_split;
348 #endif
349 /* Put the new right page for the split into place. */
350 if ((r = __bt_new(t, &npg)) == NULL)
351 return (NULL);
352 r->pgno = npg;
353 r->lower = BTDATAOFF;
354 r->upper = t->bt_psize;
355 r->nextpg = h->nextpg;
356 r->prevpg = h->pgno;
357 r->flags = h->flags & P_TYPE;
358
359 /*
360 * If we're splitting the last page on a level because we're appending
361 * a key to it (skip is NEXTINDEX()), it's likely that the data is
362 * sorted. Adding an empty page on the side of the level is less work
363 * and can push the fill factor much higher than normal. If we're
364 * wrong it's no big deal, we'll just do the split the right way next
365 * time. It may look like it's equally easy to do a similar hack for
366 * reverse sorted data, that is, split the tree left, but it's not.
367 * Don't even try.
368 */
369 if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
370 #ifdef STATISTICS
371 ++bt_sortsplit;
372 #endif
373 h->nextpg = r->pgno;
374 r->lower = BTDATAOFF + sizeof(indx_t);
375 *skip = 0;
376 *lp = h;
377 *rp = r;
378 return (r);
379 }
380
381 /* Put the new left page for the split into place. */
382 if ((l = (PAGE *)malloc(t->bt_psize)) == NULL) {
383 mpool_put(t->bt_mp, r, 0);
384 return (NULL);
385 }
386 #ifdef PURIFY
387 memset(l, 0xff, t->bt_psize);
388 #endif
389 l->pgno = h->pgno;
390 l->nextpg = r->pgno;
391 l->prevpg = h->prevpg;
392 l->lower = BTDATAOFF;
393 l->upper = t->bt_psize;
394 l->flags = h->flags & P_TYPE;
395
396 /* Fix up the previous pointer of the page after the split page. */
397 if (h->nextpg != P_INVALID) {
398 if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
399 free(l);
400 /* XXX mpool_free(t->bt_mp, r->pgno); */
401 return (NULL);
402 }
403 tp->prevpg = r->pgno;
404 mpool_put(t->bt_mp, tp, MPOOL_DIRTY);
405 }
406
407 /*
408 * Split right. The key/data pairs aren't sorted in the btree page so
409 * it's simpler to copy the data from the split page onto two new pages
410 * instead of copying half the data to the right page and compacting
411 * the left page in place. Since the left page can't change, we have
412 * to swap the original and the allocated left page after the split.
413 */
414 tp = bt_psplit(t, h, l, r, skip, ilen);
415
416 /* Move the new left page onto the old left page. */
417 memmove(h, l, t->bt_psize);
418 if (tp == l)
419 tp = h;
420 free(l);
421
422 *lp = h;
423 *rp = r;
424 return (tp);
425 }
426
427 /*
428 * BT_ROOT -- Split the root page of a btree.
429 *
430 * Parameters:
431 * t: tree
432 * h: root page
433 * lp: pointer to left page pointer
434 * rp: pointer to right page pointer
435 * skip: pointer to index to leave open
436 * ilen: insert length
437 *
438 * Returns:
439 * Pointer to page in which to insert or NULL on error.
440 */
441 static PAGE *
442 bt_root(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen)
443 {
444 PAGE *l, *r, *tp;
445 pgno_t lnpg, rnpg;
446
447 #ifdef STATISTICS
448 ++bt_split;
449 ++bt_rootsplit;
450 #endif
451 /* Put the new left and right pages for the split into place. */
452 if ((l = __bt_new(t, &lnpg)) == NULL ||
453 (r = __bt_new(t, &rnpg)) == NULL)
454 return (NULL);
455 l->pgno = lnpg;
456 r->pgno = rnpg;
457 l->nextpg = r->pgno;
458 r->prevpg = l->pgno;
459 l->prevpg = r->nextpg = P_INVALID;
460 l->lower = r->lower = BTDATAOFF;
461 l->upper = r->upper = t->bt_psize;
462 l->flags = r->flags = h->flags & P_TYPE;
463
464 /* Split the root page. */
465 tp = bt_psplit(t, h, l, r, skip, ilen);
466
467 *lp = l;
468 *rp = r;
469 return (tp);
470 }
471
472 /*
473 * BT_RROOT -- Fix up the recno root page after it has been split.
474 *
475 * Parameters:
476 * t: tree
477 * h: root page
478 * l: left page
479 * r: right page
480 *
481 * Returns:
482 * RET_ERROR, RET_SUCCESS
483 */
484 static int
485 bt_rroot(BTREE *t, PAGE *h, PAGE *l, PAGE *r)
486 {
487 char *dest;
488 uint32_t sz;
489 size_t temp;
490
491 temp = t->bt_psize - NRINTERNAL;
492 _DBFIT(temp, uint32_t);
493 sz = (uint32_t)temp;
494
495 /* Insert the left and right keys, set the header information. */
496 _DBFIT(sz, indx_t);
497 h->linp[0] = h->upper = (indx_t)sz;
498 dest = (char *)(void *)h + h->upper;
499 WR_RINTERNAL(dest,
500 l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
501
502 h->linp[1] = h->upper -= NRINTERNAL;
503 dest = (char *)(void *)h + h->upper;
504 WR_RINTERNAL(dest,
505 r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
506
507 h->lower = BTDATAOFF + 2 * sizeof(indx_t);
508
509 /* Unpin the root page, set to recno internal page. */
510 h->flags &= ~P_TYPE;
511 h->flags |= P_RINTERNAL;
512 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
513
514 return (RET_SUCCESS);
515 }
516
517 /*
518 * BT_BROOT -- Fix up the btree root page after it has been split.
519 *
520 * Parameters:
521 * t: tree
522 * h: root page
523 * l: left page
524 * r: right page
525 *
526 * Returns:
527 * RET_ERROR, RET_SUCCESS
528 */
529 static int
530 bt_broot(BTREE *t, PAGE *h, PAGE *l, PAGE *r)
531 {
532 BINTERNAL *bi = NULL; /* pacify gcc */
533 BLEAF *bl;
534 uint32_t nbytes;
535 char *dest;
536
537 /*
538 * If the root page was a leaf page, change it into an internal page.
539 * We copy the key we split on (but not the key's data, in the case of
540 * a leaf page) to the new root page.
541 *
542 * The btree comparison code guarantees that the left-most key on any
543 * level of the tree is never used, so it doesn't need to be filled in.
544 */
545 nbytes = NBINTERNAL(0);
546 h->linp[0] = h->upper = t->bt_psize - nbytes;
547 dest = (char *)(void *)h + h->upper;
548 WR_BINTERNAL(dest, 0, l->pgno, 0);
549
550 switch (h->flags & P_TYPE) {
551 case P_BLEAF:
552 bl = GETBLEAF(r, 0);
553 nbytes = NBINTERNAL(bl->ksize);
554 h->linp[1] = h->upper -= nbytes;
555 dest = (char *)(void *)h + h->upper;
556 WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
557 memmove(dest, bl->bytes, bl->ksize);
558
559 /*
560 * If the key is on an overflow page, mark the overflow chain
561 * so it isn't deleted when the leaf copy of the key is deleted.
562 */
563 if (bl->flags & P_BIGKEY &&
564 bt_preserve(t, *(pgno_t *)(void *)bl->bytes) == RET_ERROR)
565 return (RET_ERROR);
566 break;
567 case P_BINTERNAL:
568 bi = GETBINTERNAL(r, 0);
569 nbytes = NBINTERNAL(bi->ksize);
570 h->linp[1] = h->upper -= nbytes;
571 dest = (char *)(void *)h + h->upper;
572 memmove(dest, bi, nbytes);
573 ((BINTERNAL *)(void *)dest)->pgno = r->pgno;
574 break;
575 default:
576 abort();
577 }
578
579 /* There are two keys on the page. */
580 h->lower = BTDATAOFF + 2 * sizeof(indx_t);
581
582 /* Unpin the root page, set to btree internal page. */
583 h->flags &= ~P_TYPE;
584 h->flags |= P_BINTERNAL;
585 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
586
587 return (RET_SUCCESS);
588 }
589
590 /*
591 * BT_PSPLIT -- Do the real work of splitting the page.
592 *
593 * Parameters:
594 * t: tree
595 * h: page to be split
596 * l: page to put lower half of data
597 * r: page to put upper half of data
598 * pskip: pointer to index to leave open
599 * ilen: insert length
600 *
601 * Returns:
602 * Pointer to page in which to insert.
603 */
604 static PAGE *
605 bt_psplit(BTREE *t, PAGE *h, PAGE *l, PAGE *r, indx_t *pskip, size_t ilen)
606 {
607 BINTERNAL *bi;
608 BLEAF *bl;
609 CURSOR *c;
610 RLEAF *rl;
611 PAGE *rval;
612 void *src = NULL; /* pacify gcc */
613 indx_t full, half, nxt, off, skip, top, used;
614 uint32_t nbytes;
615 size_t temp;
616 int bigkeycnt, isbigkey;
617
618 /*
619 * Split the data to the left and right pages. Leave the skip index
620 * open. Additionally, make some effort not to split on an overflow
621 * key. This makes internal page processing faster and can save
622 * space as overflow keys used by internal pages are never deleted.
623 */
624 bigkeycnt = 0;
625 skip = *pskip;
626 temp = t->bt_psize - BTDATAOFF;
627 _DBFIT(temp, indx_t);
628 full = (indx_t)temp;
629 half = full / 2;
630 used = 0;
631 for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
632 if (skip == off) {
633 _DBFIT(ilen, uint32_t);
634 nbytes = (uint32_t)ilen;
635 isbigkey = 0; /* XXX: not really known. */
636 } else
637 switch (h->flags & P_TYPE) {
638 case P_BINTERNAL:
639 src = bi = GETBINTERNAL(h, nxt);
640 nbytes = NBINTERNAL(bi->ksize);
641 isbigkey = bi->flags & P_BIGKEY;
642 break;
643 case P_BLEAF:
644 src = bl = GETBLEAF(h, nxt);
645 nbytes = NBLEAF(bl);
646 isbigkey = bl->flags & P_BIGKEY;
647 break;
648 case P_RINTERNAL:
649 src = GETRINTERNAL(h, nxt);
650 nbytes = NRINTERNAL;
651 isbigkey = 0;
652 break;
653 case P_RLEAF:
654 src = rl = GETRLEAF(h, nxt);
655 nbytes = NRLEAF(rl);
656 isbigkey = 0;
657 break;
658 default:
659 abort();
660 }
661
662 /*
663 * If the key/data pairs are substantial fractions of the max
664 * possible size for the page, it's possible to get situations
665 * where we decide to try and copy too much onto the left page.
666 * Make sure that doesn't happen.
667 */
668 if ((skip <= off && used + nbytes + sizeof(indx_t) >= full) ||
669 nxt == top - 1) {
670 --off;
671 break;
672 }
673
674 /* Copy the key/data pair, if not the skipped index. */
675 if (skip != off) {
676 ++nxt;
677
678 l->linp[off] = l->upper -= nbytes;
679 memmove((char *)(void *)l + l->upper, src, nbytes);
680 }
681
682 temp = nbytes + sizeof(indx_t);
683 _DBFIT(temp, indx_t);
684 used += (indx_t)temp;
685 if (used >= half) {
686 if (!isbigkey || bigkeycnt == 3)
687 break;
688 else
689 ++bigkeycnt;
690 }
691 }
692
693 /*
694 * Off is the last offset that's valid for the left page.
695 * Nxt is the first offset to be placed on the right page.
696 */
697 temp = (off + 1) * sizeof(indx_t);
698 _DBFIT(temp, indx_t);
699 l->lower += (indx_t)temp;
700
701 /*
702 * If splitting the page that the cursor was on, the cursor has to be
703 * adjusted to point to the same record as before the split. If the
704 * cursor is at or past the skipped slot, the cursor is incremented by
705 * one. If the cursor is on the right page, it is decremented by the
706 * number of records split to the left page.
707 */
708 c = &t->bt_cursor;
709 if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) {
710 if (c->pg.index >= skip)
711 ++c->pg.index;
712 if (c->pg.index < nxt) /* Left page. */
713 c->pg.pgno = l->pgno;
714 else { /* Right page. */
715 c->pg.pgno = r->pgno;
716 c->pg.index -= nxt;
717 }
718 }
719
720 /*
721 * If the skipped index was on the left page, just return that page.
722 * Otherwise, adjust the skip index to reflect the new position on
723 * the right page.
724 */
725 if (skip <= off) {
726 skip = MAX_PAGE_OFFSET;
727 rval = l;
728 } else {
729 rval = r;
730 *pskip -= nxt;
731 }
732
733 for (off = 0; nxt < top; ++off) {
734 if (skip == nxt) {
735 ++off;
736 skip = MAX_PAGE_OFFSET;
737 }
738 switch (h->flags & P_TYPE) {
739 case P_BINTERNAL:
740 src = bi = GETBINTERNAL(h, nxt);
741 nbytes = NBINTERNAL(bi->ksize);
742 break;
743 case P_BLEAF:
744 src = bl = GETBLEAF(h, nxt);
745 nbytes = NBLEAF(bl);
746 break;
747 case P_RINTERNAL:
748 src = GETRINTERNAL(h, nxt);
749 nbytes = NRINTERNAL;
750 break;
751 case P_RLEAF:
752 src = rl = GETRLEAF(h, nxt);
753 nbytes = NRLEAF(rl);
754 break;
755 default:
756 abort();
757 }
758 ++nxt;
759 r->linp[off] = r->upper -= nbytes;
760 memmove((char *)(void *)r + r->upper, src, nbytes);
761 }
762 temp = off * sizeof(indx_t);
763 _DBFIT(temp, indx_t);
764 r->lower += (indx_t)temp;
765
766 /* If the key is being appended to the page, adjust the index. */
767 if (skip == top)
768 r->lower += sizeof(indx_t);
769
770 return (rval);
771 }
772
773 /*
774 * BT_PRESERVE -- Mark a chain of pages as used by an internal node.
775 *
776 * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
777 * record that references them gets deleted. Chains pointed to by internal
778 * pages never get deleted. This routine marks a chain as pointed to by an
779 * internal page.
780 *
781 * Parameters:
782 * t: tree
783 * pg: page number of first page in the chain.
784 *
785 * Returns:
786 * RET_SUCCESS, RET_ERROR.
787 */
788 static int
789 bt_preserve(BTREE *t, pgno_t pg)
790 {
791 PAGE *h;
792
793 if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
794 return (RET_ERROR);
795 h->flags |= P_PRESERVE;
796 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
797 return (RET_SUCCESS);
798 }
799
800 /*
801 * REC_TOTAL -- Return the number of recno entries below a page.
802 *
803 * Parameters:
804 * h: page
805 *
806 * Returns:
807 * The number of recno entries below a page.
808 *
809 * XXX
810 * These values could be set by the bt_psplit routine. The problem is that the
811 * entry has to be popped off of the stack etc. or the values have to be passed
812 * all the way back to bt_split/bt_rroot and it's not very clean.
813 */
814 static recno_t
815 rec_total(PAGE *h)
816 {
817 recno_t recs;
818 indx_t nxt, top;
819
820 for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
821 recs += GETRINTERNAL(h, nxt)->nrecs;
822 return (recs);
823 }
824