bt_split.c revision 1.4 1 /*-
2 * Copyright (c) 1990, 1993, 1994
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Mike Olson.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #if defined(LIBC_SCCS) && !defined(lint)
38 static char sccsid[] = "@(#)bt_split.c 8.6 (Berkeley) 6/16/94";
39 #endif /* LIBC_SCCS and not lint */
40
41 #include <sys/types.h>
42
43 #include <limits.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47
48 #include <db.h>
49 #include "btree.h"
50
51 static int bt_broot __P((BTREE *, PAGE *, PAGE *, PAGE *));
52 static PAGE *bt_page
53 __P((BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t));
54 static int bt_preserve __P((BTREE *, pgno_t));
55 static PAGE *bt_psplit
56 __P((BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t));
57 static PAGE *bt_root
58 __P((BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t));
59 static int bt_rroot __P((BTREE *, PAGE *, PAGE *, PAGE *));
60 static recno_t rec_total __P((PAGE *));
61
62 #ifdef STATISTICS
63 u_long bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
64 #endif
65
66 /*
67 * __BT_SPLIT -- Split the tree.
68 *
69 * Parameters:
70 * t: tree
71 * sp: page to split
72 * key: key to insert
73 * data: data to insert
74 * flags: BIGKEY/BIGDATA flags
75 * ilen: insert length
76 * skip: index to leave open
77 *
78 * Returns:
79 * RET_ERROR, RET_SUCCESS
80 */
81 int
82 __bt_split(t, sp, key, data, flags, ilen, argskip)
83 BTREE *t;
84 PAGE *sp;
85 const DBT *key, *data;
86 int flags;
87 size_t ilen;
88 u_int32_t argskip;
89 {
90 BINTERNAL *bi;
91 BLEAF *bl, *tbl;
92 DBT a, b;
93 EPGNO *parent;
94 PAGE *h, *l, *r, *lchild, *rchild;
95 indx_t nxtindex;
96 u_int16_t skip;
97 u_int32_t n, nbytes, nksize;
98 int parentsplit;
99 char *dest;
100
101 /*
102 * Split the page into two pages, l and r. The split routines return
103 * a pointer to the page into which the key should be inserted and with
104 * skip set to the offset which should be used. Additionally, l and r
105 * are pinned.
106 */
107 skip = argskip;
108 h = sp->pgno == P_ROOT ?
109 bt_root(t, sp, &l, &r, &skip, ilen) :
110 bt_page(t, sp, &l, &r, &skip, ilen);
111 if (h == NULL)
112 return (RET_ERROR);
113
114 /*
115 * Insert the new key/data pair into the leaf page. (Key inserts
116 * always cause a leaf page to split first.)
117 */
118 h->linp[skip] = h->upper -= ilen;
119 dest = (char *)h + h->upper;
120 if (ISSET(t, R_RECNO))
121 WR_RLEAF(dest, data, flags)
122 else
123 WR_BLEAF(dest, key, data, flags)
124
125 /* If the root page was split, make it look right. */
126 if (sp->pgno == P_ROOT &&
127 (ISSET(t, R_RECNO) ?
128 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
129 goto err2;
130
131 /*
132 * Now we walk the parent page stack -- a LIFO stack of the pages that
133 * were traversed when we searched for the page that split. Each stack
134 * entry is a page number and a page index offset. The offset is for
135 * the page traversed on the search. We've just split a page, so we
136 * have to insert a new key into the parent page.
137 *
138 * If the insert into the parent page causes it to split, may have to
139 * continue splitting all the way up the tree. We stop if the root
140 * splits or the page inserted into didn't have to split to hold the
141 * new key. Some algorithms replace the key for the old page as well
142 * as the new page. We don't, as there's no reason to believe that the
143 * first key on the old page is any better than the key we have, and,
144 * in the case of a key being placed at index 0 causing the split, the
145 * key is unavailable.
146 *
147 * There are a maximum of 5 pages pinned at any time. We keep the left
148 * and right pages pinned while working on the parent. The 5 are the
149 * two children, left parent and right parent (when the parent splits)
150 * and the root page or the overflow key page when calling bt_preserve.
151 * This code must make sure that all pins are released other than the
152 * root page or overflow page which is unlocked elsewhere.
153 */
154 while ((parent = BT_POP(t)) != NULL) {
155 lchild = l;
156 rchild = r;
157
158 /* Get the parent page. */
159 if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
160 goto err2;
161
162 /*
163 * The new key goes ONE AFTER the index, because the split
164 * was to the right.
165 */
166 skip = parent->index + 1;
167
168 /*
169 * Calculate the space needed on the parent page.
170 *
171 * Prefix trees: space hack when inserting into BINTERNAL
172 * pages. Retain only what's needed to distinguish between
173 * the new entry and the LAST entry on the page to its left.
174 * If the keys compare equal, retain the entire key. Note,
175 * we don't touch overflow keys, and the entire key must be
176 * retained for the next-to-left most key on the leftmost
177 * page of each level, or the search will fail. Applicable
178 * ONLY to internal pages that have leaf pages as children.
179 * Further reduction of the key between pairs of internal
180 * pages loses too much information.
181 */
182 switch (rchild->flags & P_TYPE) {
183 case P_BINTERNAL:
184 bi = GETBINTERNAL(rchild, 0);
185 nbytes = NBINTERNAL(bi->ksize);
186 break;
187 case P_BLEAF:
188 bl = GETBLEAF(rchild, 0);
189 nbytes = NBINTERNAL(bl->ksize);
190 if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
191 (h->prevpg != P_INVALID || skip > 1)) {
192 tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
193 a.size = tbl->ksize;
194 a.data = tbl->bytes;
195 b.size = bl->ksize;
196 b.data = bl->bytes;
197 nksize = t->bt_pfx(&a, &b);
198 n = NBINTERNAL(nksize);
199 if (n < nbytes) {
200 #ifdef STATISTICS
201 bt_pfxsaved += nbytes - n;
202 #endif
203 nbytes = n;
204 } else
205 nksize = 0;
206 } else
207 nksize = 0;
208 break;
209 case P_RINTERNAL:
210 case P_RLEAF:
211 nbytes = NRINTERNAL;
212 break;
213 default:
214 abort();
215 }
216
217 /* Split the parent page if necessary or shift the indices. */
218 if (h->upper - h->lower < nbytes + sizeof(indx_t)) {
219 sp = h;
220 h = h->pgno == P_ROOT ?
221 bt_root(t, h, &l, &r, &skip, nbytes) :
222 bt_page(t, h, &l, &r, &skip, nbytes);
223 if (h == NULL)
224 goto err1;
225 parentsplit = 1;
226 } else {
227 if (skip < (nxtindex = NEXTINDEX(h)))
228 memmove(h->linp + skip + 1, h->linp + skip,
229 (nxtindex - skip) * sizeof(indx_t));
230 h->lower += sizeof(indx_t);
231 parentsplit = 0;
232 }
233
234 /* Insert the key into the parent page. */
235 switch(rchild->flags & P_TYPE) {
236 case P_BINTERNAL:
237 h->linp[skip] = h->upper -= nbytes;
238 dest = (char *)h + h->linp[skip];
239 memmove(dest, bi, nbytes);
240 ((BINTERNAL *)dest)->pgno = rchild->pgno;
241 break;
242 case P_BLEAF:
243 h->linp[skip] = h->upper -= nbytes;
244 dest = (char *)h + h->linp[skip];
245 WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
246 rchild->pgno, bl->flags & P_BIGKEY);
247 memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
248 if (bl->flags & P_BIGKEY &&
249 bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
250 goto err1;
251 break;
252 case P_RINTERNAL:
253 /*
254 * Update the left page count. If split
255 * added at index 0, fix the correct page.
256 */
257 if (skip > 0)
258 dest = (char *)h + h->linp[skip - 1];
259 else
260 dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
261 ((RINTERNAL *)dest)->nrecs = rec_total(lchild);
262 ((RINTERNAL *)dest)->pgno = lchild->pgno;
263
264 /* Update the right page count. */
265 h->linp[skip] = h->upper -= nbytes;
266 dest = (char *)h + h->linp[skip];
267 ((RINTERNAL *)dest)->nrecs = rec_total(rchild);
268 ((RINTERNAL *)dest)->pgno = rchild->pgno;
269 break;
270 case P_RLEAF:
271 /*
272 * Update the left page count. If split
273 * added at index 0, fix the correct page.
274 */
275 if (skip > 0)
276 dest = (char *)h + h->linp[skip - 1];
277 else
278 dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
279 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild);
280 ((RINTERNAL *)dest)->pgno = lchild->pgno;
281
282 /* Update the right page count. */
283 h->linp[skip] = h->upper -= nbytes;
284 dest = (char *)h + h->linp[skip];
285 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild);
286 ((RINTERNAL *)dest)->pgno = rchild->pgno;
287 break;
288 default:
289 abort();
290 }
291
292 /* Unpin the held pages. */
293 if (!parentsplit) {
294 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
295 break;
296 }
297
298 /* If the root page was split, make it look right. */
299 if (sp->pgno == P_ROOT &&
300 (ISSET(t, R_RECNO) ?
301 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
302 goto err1;
303
304 mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
305 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
306 }
307
308 /* Unpin the held pages. */
309 mpool_put(t->bt_mp, l, MPOOL_DIRTY);
310 mpool_put(t->bt_mp, r, MPOOL_DIRTY);
311
312 /* Clear any pages left on the stack. */
313 return (RET_SUCCESS);
314
315 /*
316 * If something fails in the above loop we were already walking back
317 * up the tree and the tree is now inconsistent. Nothing much we can
318 * do about it but release any memory we're holding.
319 */
320 err1: mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
321 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
322
323 err2: mpool_put(t->bt_mp, l, 0);
324 mpool_put(t->bt_mp, r, 0);
325 __dbpanic(t->bt_dbp);
326 return (RET_ERROR);
327 }
328
329 /*
330 * BT_PAGE -- Split a non-root page of a btree.
331 *
332 * Parameters:
333 * t: tree
334 * h: root page
335 * lp: pointer to left page pointer
336 * rp: pointer to right page pointer
337 * skip: pointer to index to leave open
338 * ilen: insert length
339 *
340 * Returns:
341 * Pointer to page in which to insert or NULL on error.
342 */
343 static PAGE *
344 bt_page(t, h, lp, rp, skip, ilen)
345 BTREE *t;
346 PAGE *h, **lp, **rp;
347 indx_t *skip;
348 size_t ilen;
349 {
350 PAGE *l, *r, *tp;
351 pgno_t npg;
352
353 #ifdef STATISTICS
354 ++bt_split;
355 #endif
356 /* Put the new right page for the split into place. */
357 if ((r = __bt_new(t, &npg)) == NULL)
358 return (NULL);
359 r->pgno = npg;
360 r->lower = BTDATAOFF;
361 r->upper = t->bt_psize;
362 r->nextpg = h->nextpg;
363 r->prevpg = h->pgno;
364 r->flags = h->flags & P_TYPE;
365
366 /*
367 * If we're splitting the last page on a level because we're appending
368 * a key to it (skip is NEXTINDEX()), it's likely that the data is
369 * sorted. Adding an empty page on the side of the level is less work
370 * and can push the fill factor much higher than normal. If we're
371 * wrong it's no big deal, we'll just do the split the right way next
372 * time. It may look like it's equally easy to do a similar hack for
373 * reverse sorted data, that is, split the tree left, but it's not.
374 * Don't even try.
375 */
376 if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
377 #ifdef STATISTICS
378 ++bt_sortsplit;
379 #endif
380 h->nextpg = r->pgno;
381 r->lower = BTDATAOFF + sizeof(indx_t);
382 *skip = 0;
383 *lp = h;
384 *rp = r;
385 return (r);
386 }
387
388 /* Put the new left page for the split into place. */
389 if ((l = (PAGE *)malloc(t->bt_psize)) == NULL) {
390 mpool_put(t->bt_mp, r, 0);
391 return (NULL);
392 }
393 l->pgno = h->pgno;
394 l->nextpg = r->pgno;
395 l->prevpg = h->prevpg;
396 l->lower = BTDATAOFF;
397 l->upper = t->bt_psize;
398 l->flags = h->flags & P_TYPE;
399
400 /* Fix up the previous pointer of the page after the split page. */
401 if (h->nextpg != P_INVALID) {
402 if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
403 free(l);
404 /* XXX mpool_free(t->bt_mp, r->pgno); */
405 return (NULL);
406 }
407 tp->prevpg = r->pgno;
408 mpool_put(t->bt_mp, tp, 0);
409 }
410
411 /*
412 * Split right. The key/data pairs aren't sorted in the btree page so
413 * it's simpler to copy the data from the split page onto two new pages
414 * instead of copying half the data to the right page and compacting
415 * the left page in place. Since the left page can't change, we have
416 * to swap the original and the allocated left page after the split.
417 */
418 tp = bt_psplit(t, h, l, r, skip, ilen);
419
420 /* Move the new left page onto the old left page. */
421 memmove(h, l, t->bt_psize);
422 if (tp == l)
423 tp = h;
424 free(l);
425
426 *lp = h;
427 *rp = r;
428 return (tp);
429 }
430
431 /*
432 * BT_ROOT -- Split the root page of a btree.
433 *
434 * Parameters:
435 * t: tree
436 * h: root page
437 * lp: pointer to left page pointer
438 * rp: pointer to right page pointer
439 * skip: pointer to index to leave open
440 * ilen: insert length
441 *
442 * Returns:
443 * Pointer to page in which to insert or NULL on error.
444 */
445 static PAGE *
446 bt_root(t, h, lp, rp, skip, ilen)
447 BTREE *t;
448 PAGE *h, **lp, **rp;
449 indx_t *skip;
450 size_t ilen;
451 {
452 PAGE *l, *r, *tp;
453 pgno_t lnpg, rnpg;
454
455 #ifdef STATISTICS
456 ++bt_split;
457 ++bt_rootsplit;
458 #endif
459 /* Put the new left and right pages for the split into place. */
460 if ((l = __bt_new(t, &lnpg)) == NULL ||
461 (r = __bt_new(t, &rnpg)) == NULL)
462 return (NULL);
463 l->pgno = lnpg;
464 r->pgno = rnpg;
465 l->nextpg = r->pgno;
466 r->prevpg = l->pgno;
467 l->prevpg = r->nextpg = P_INVALID;
468 l->lower = r->lower = BTDATAOFF;
469 l->upper = r->upper = t->bt_psize;
470 l->flags = r->flags = h->flags & P_TYPE;
471
472 /* Split the root page. */
473 tp = bt_psplit(t, h, l, r, skip, ilen);
474
475 *lp = l;
476 *rp = r;
477 return (tp);
478 }
479
480 /*
481 * BT_RROOT -- Fix up the recno root page after it has been split.
482 *
483 * Parameters:
484 * t: tree
485 * h: root page
486 * l: left page
487 * r: right page
488 *
489 * Returns:
490 * RET_ERROR, RET_SUCCESS
491 */
492 static int
493 bt_rroot(t, h, l, r)
494 BTREE *t;
495 PAGE *h, *l, *r;
496 {
497 char *dest;
498
499 /* Insert the left and right keys, set the header information. */
500 h->linp[0] = h->upper = t->bt_psize - NRINTERNAL;
501 dest = (char *)h + h->upper;
502 WR_RINTERNAL(dest,
503 l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
504
505 h->linp[1] = h->upper -= NRINTERNAL;
506 dest = (char *)h + h->upper;
507 WR_RINTERNAL(dest,
508 r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
509
510 h->lower = BTDATAOFF + 2 * sizeof(indx_t);
511
512 /* Unpin the root page, set to recno internal page. */
513 h->flags &= ~P_TYPE;
514 h->flags |= P_RINTERNAL;
515 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
516
517 return (RET_SUCCESS);
518 }
519
520 /*
521 * BT_BROOT -- Fix up the btree root page after it has been split.
522 *
523 * Parameters:
524 * t: tree
525 * h: root page
526 * l: left page
527 * r: right page
528 *
529 * Returns:
530 * RET_ERROR, RET_SUCCESS
531 */
532 static int
533 bt_broot(t, h, l, r)
534 BTREE *t;
535 PAGE *h, *l, *r;
536 {
537 BINTERNAL *bi;
538 BLEAF *bl;
539 u_int32_t nbytes;
540 char *dest;
541
542 /*
543 * If the root page was a leaf page, change it into an internal page.
544 * We copy the key we split on (but not the key's data, in the case of
545 * a leaf page) to the new root page.
546 *
547 * The btree comparison code guarantees that the left-most key on any
548 * level of the tree is never used, so it doesn't need to be filled in.
549 */
550 nbytes = NBINTERNAL(0);
551 h->linp[0] = h->upper = t->bt_psize - nbytes;
552 dest = (char *)h + h->upper;
553 WR_BINTERNAL(dest, 0, l->pgno, 0);
554
555 switch(h->flags & P_TYPE) {
556 case P_BLEAF:
557 bl = GETBLEAF(r, 0);
558 nbytes = NBINTERNAL(bl->ksize);
559 h->linp[1] = h->upper -= nbytes;
560 dest = (char *)h + h->upper;
561 WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
562 memmove(dest, bl->bytes, bl->ksize);
563
564 /*
565 * If the key is on an overflow page, mark the overflow chain
566 * so it isn't deleted when the leaf copy of the key is deleted.
567 */
568 if (bl->flags & P_BIGKEY &&
569 bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
570 return (RET_ERROR);
571 break;
572 case P_BINTERNAL:
573 bi = GETBINTERNAL(r, 0);
574 nbytes = NBINTERNAL(bi->ksize);
575 h->linp[1] = h->upper -= nbytes;
576 dest = (char *)h + h->upper;
577 memmove(dest, bi, nbytes);
578 ((BINTERNAL *)dest)->pgno = r->pgno;
579 break;
580 default:
581 abort();
582 }
583
584 /* There are two keys on the page. */
585 h->lower = BTDATAOFF + 2 * sizeof(indx_t);
586
587 /* Unpin the root page, set to btree internal page. */
588 h->flags &= ~P_TYPE;
589 h->flags |= P_BINTERNAL;
590 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
591
592 return (RET_SUCCESS);
593 }
594
595 /*
596 * BT_PSPLIT -- Do the real work of splitting the page.
597 *
598 * Parameters:
599 * t: tree
600 * h: page to be split
601 * l: page to put lower half of data
602 * r: page to put upper half of data
603 * pskip: pointer to index to leave open
604 * ilen: insert length
605 *
606 * Returns:
607 * Pointer to page in which to insert.
608 */
609 static PAGE *
610 bt_psplit(t, h, l, r, pskip, ilen)
611 BTREE *t;
612 PAGE *h, *l, *r;
613 indx_t *pskip;
614 size_t ilen;
615 {
616 BINTERNAL *bi;
617 BLEAF *bl;
618 RLEAF *rl;
619 EPGNO *c;
620 PAGE *rval;
621 void *src;
622 indx_t full, half, nxt, off, skip, top, used;
623 u_int32_t nbytes;
624 int bigkeycnt, isbigkey;
625
626 /*
627 * Split the data to the left and right pages. Leave the skip index
628 * open. Additionally, make some effort not to split on an overflow
629 * key. This makes internal page processing faster and can save
630 * space as overflow keys used by internal pages are never deleted.
631 */
632 bigkeycnt = 0;
633 skip = *pskip;
634 full = t->bt_psize - BTDATAOFF;
635 half = full / 2;
636 used = 0;
637 for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
638 if (skip == off) {
639 nbytes = ilen;
640 isbigkey = 0; /* XXX: not really known. */
641 } else
642 switch (h->flags & P_TYPE) {
643 case P_BINTERNAL:
644 src = bi = GETBINTERNAL(h, nxt);
645 nbytes = NBINTERNAL(bi->ksize);
646 isbigkey = bi->flags & P_BIGKEY;
647 break;
648 case P_BLEAF:
649 src = bl = GETBLEAF(h, nxt);
650 nbytes = NBLEAF(bl);
651 isbigkey = bl->flags & P_BIGKEY;
652 break;
653 case P_RINTERNAL:
654 src = GETRINTERNAL(h, nxt);
655 nbytes = NRINTERNAL;
656 isbigkey = 0;
657 break;
658 case P_RLEAF:
659 src = rl = GETRLEAF(h, nxt);
660 nbytes = NRLEAF(rl);
661 isbigkey = 0;
662 break;
663 default:
664 abort();
665 }
666
667 /*
668 * If the key/data pairs are substantial fractions of the max
669 * possible size for the page, it's possible to get situations
670 * where we decide to try and copy too much onto the left page.
671 * Make sure that doesn't happen.
672 */
673 if (skip <= off && used + nbytes >= full) {
674 --off;
675 break;
676 }
677
678 /* Copy the key/data pair, if not the skipped index. */
679 if (skip != off) {
680 ++nxt;
681
682 l->linp[off] = l->upper -= nbytes;
683 memmove((char *)l + l->upper, src, nbytes);
684 }
685
686 used += nbytes;
687 if (used >= half) {
688 if (!isbigkey || bigkeycnt == 3)
689 break;
690 else
691 ++bigkeycnt;
692 }
693 }
694
695 /*
696 * Off is the last offset that's valid for the left page.
697 * Nxt is the first offset to be placed on the right page.
698 */
699 l->lower += (off + 1) * sizeof(indx_t);
700
701 /*
702 * If splitting the page that the cursor was on, the cursor has to be
703 * adjusted to point to the same record as before the split. If the
704 * cursor is at or past the skipped slot, the cursor is incremented by
705 * one. If the cursor is on the right page, it is decremented by the
706 * number of records split to the left page.
707 *
708 * Don't bother checking for the B_SEQINIT flag, the page number will
709 * be P_INVALID.
710 */
711 c = &t->bt_bcursor;
712 if (c->pgno == h->pgno) {
713 if (c->index >= skip)
714 ++c->index;
715 if (c->index < nxt) /* Left page. */
716 c->pgno = l->pgno;
717 else { /* Right page. */
718 c->pgno = r->pgno;
719 c->index -= nxt;
720 }
721 }
722
723 /*
724 * If the skipped index was on the left page, just return that page.
725 * Otherwise, adjust the skip index to reflect the new position on
726 * the right page.
727 */
728 if (skip <= off) {
729 skip = 0;
730 rval = l;
731 } else {
732 rval = r;
733 *pskip -= nxt;
734 }
735
736 for (off = 0; nxt < top; ++off) {
737 if (skip == nxt) {
738 ++off;
739 skip = 0;
740 }
741 switch (h->flags & P_TYPE) {
742 case P_BINTERNAL:
743 src = bi = GETBINTERNAL(h, nxt);
744 nbytes = NBINTERNAL(bi->ksize);
745 break;
746 case P_BLEAF:
747 src = bl = GETBLEAF(h, nxt);
748 nbytes = NBLEAF(bl);
749 break;
750 case P_RINTERNAL:
751 src = GETRINTERNAL(h, nxt);
752 nbytes = NRINTERNAL;
753 break;
754 case P_RLEAF:
755 src = rl = GETRLEAF(h, nxt);
756 nbytes = NRLEAF(rl);
757 break;
758 default:
759 abort();
760 }
761 ++nxt;
762 r->linp[off] = r->upper -= nbytes;
763 memmove((char *)r + r->upper, src, nbytes);
764 }
765 r->lower += off * sizeof(indx_t);
766
767 /* If the key is being appended to the page, adjust the index. */
768 if (skip == top)
769 r->lower += sizeof(indx_t);
770
771 return (rval);
772 }
773
774 /*
775 * BT_PRESERVE -- Mark a chain of pages as used by an internal node.
776 *
777 * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
778 * record that references them gets deleted. Chains pointed to by internal
779 * pages never get deleted. This routine marks a chain as pointed to by an
780 * internal page.
781 *
782 * Parameters:
783 * t: tree
784 * pg: page number of first page in the chain.
785 *
786 * Returns:
787 * RET_SUCCESS, RET_ERROR.
788 */
789 static int
790 bt_preserve(t, pg)
791 BTREE *t;
792 pgno_t pg;
793 {
794 PAGE *h;
795
796 if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
797 return (RET_ERROR);
798 h->flags |= P_PRESERVE;
799 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
800 return (RET_SUCCESS);
801 }
802
803 /*
804 * REC_TOTAL -- Return the number of recno entries below a page.
805 *
806 * Parameters:
807 * h: page
808 *
809 * Returns:
810 * The number of recno entries below a page.
811 *
812 * XXX
813 * These values could be set by the bt_psplit routine. The problem is that the
814 * entry has to be popped off of the stack etc. or the values have to be passed
815 * all the way back to bt_split/bt_rroot and it's not very clean.
816 */
817 static recno_t
818 rec_total(h)
819 PAGE *h;
820 {
821 recno_t recs;
822 indx_t nxt, top;
823
824 for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
825 recs += GETRINTERNAL(h, nxt)->nrecs;
826 return (recs);
827 }
828