bt_split.c revision 1.6 1 /* $NetBSD: bt_split.c,v 1.6 1996/05/03 21:50:56 cgd Exp $ */
2
3 /*-
4 * Copyright (c) 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Olson.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #if defined(LIBC_SCCS) && !defined(lint)
40 #if 0
41 static char sccsid[] = "@(#)bt_split.c 8.9 (Berkeley) 7/26/94";
42 #else
43 static char rcsid[] = "$NetBSD: bt_split.c,v 1.6 1996/05/03 21:50:56 cgd Exp $";
44 #endif
45 #endif /* LIBC_SCCS and not lint */
46
47 #include <sys/types.h>
48
49 #include <limits.h>
50 #include <stdio.h>
51 #include <stdlib.h>
52 #include <string.h>
53
54 #include <db.h>
55 #include "btree.h"
56
57 static int bt_broot __P((BTREE *, PAGE *, PAGE *, PAGE *));
58 static PAGE *bt_page
59 __P((BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t));
60 static int bt_preserve __P((BTREE *, pgno_t));
61 static PAGE *bt_psplit
62 __P((BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t));
63 static PAGE *bt_root
64 __P((BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t));
65 static int bt_rroot __P((BTREE *, PAGE *, PAGE *, PAGE *));
66 static recno_t rec_total __P((PAGE *));
67
68 #ifdef STATISTICS
69 u_long bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
70 #endif
71
72 /*
73 * __BT_SPLIT -- Split the tree.
74 *
75 * Parameters:
76 * t: tree
77 * sp: page to split
78 * key: key to insert
79 * data: data to insert
80 * flags: BIGKEY/BIGDATA flags
81 * ilen: insert length
82 * skip: index to leave open
83 *
84 * Returns:
85 * RET_ERROR, RET_SUCCESS
86 */
87 int
88 __bt_split(t, sp, key, data, flags, ilen, argskip)
89 BTREE *t;
90 PAGE *sp;
91 const DBT *key, *data;
92 int flags;
93 size_t ilen;
94 u_int32_t argskip;
95 {
96 BINTERNAL *bi;
97 BLEAF *bl, *tbl;
98 DBT a, b;
99 EPGNO *parent;
100 PAGE *h, *l, *r, *lchild, *rchild;
101 indx_t nxtindex;
102 u_int16_t skip;
103 u_int32_t n, nbytes, nksize;
104 int parentsplit;
105 char *dest;
106
107 /*
108 * Split the page into two pages, l and r. The split routines return
109 * a pointer to the page into which the key should be inserted and with
110 * skip set to the offset which should be used. Additionally, l and r
111 * are pinned.
112 */
113 skip = argskip;
114 h = sp->pgno == P_ROOT ?
115 bt_root(t, sp, &l, &r, &skip, ilen) :
116 bt_page(t, sp, &l, &r, &skip, ilen);
117 if (h == NULL)
118 return (RET_ERROR);
119
120 /*
121 * Insert the new key/data pair into the leaf page. (Key inserts
122 * always cause a leaf page to split first.)
123 */
124 h->linp[skip] = h->upper -= ilen;
125 dest = (char *)h + h->upper;
126 if (F_ISSET(t, R_RECNO))
127 WR_RLEAF(dest, data, flags)
128 else
129 WR_BLEAF(dest, key, data, flags)
130
131 /* If the root page was split, make it look right. */
132 if (sp->pgno == P_ROOT &&
133 (F_ISSET(t, R_RECNO) ?
134 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
135 goto err2;
136
137 /*
138 * Now we walk the parent page stack -- a LIFO stack of the pages that
139 * were traversed when we searched for the page that split. Each stack
140 * entry is a page number and a page index offset. The offset is for
141 * the page traversed on the search. We've just split a page, so we
142 * have to insert a new key into the parent page.
143 *
144 * If the insert into the parent page causes it to split, may have to
145 * continue splitting all the way up the tree. We stop if the root
146 * splits or the page inserted into didn't have to split to hold the
147 * new key. Some algorithms replace the key for the old page as well
148 * as the new page. We don't, as there's no reason to believe that the
149 * first key on the old page is any better than the key we have, and,
150 * in the case of a key being placed at index 0 causing the split, the
151 * key is unavailable.
152 *
153 * There are a maximum of 5 pages pinned at any time. We keep the left
154 * and right pages pinned while working on the parent. The 5 are the
155 * two children, left parent and right parent (when the parent splits)
156 * and the root page or the overflow key page when calling bt_preserve.
157 * This code must make sure that all pins are released other than the
158 * root page or overflow page which is unlocked elsewhere.
159 */
160 while ((parent = BT_POP(t)) != NULL) {
161 lchild = l;
162 rchild = r;
163
164 /* Get the parent page. */
165 if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
166 goto err2;
167
168 /*
169 * The new key goes ONE AFTER the index, because the split
170 * was to the right.
171 */
172 skip = parent->index + 1;
173
174 /*
175 * Calculate the space needed on the parent page.
176 *
177 * Prefix trees: space hack when inserting into BINTERNAL
178 * pages. Retain only what's needed to distinguish between
179 * the new entry and the LAST entry on the page to its left.
180 * If the keys compare equal, retain the entire key. Note,
181 * we don't touch overflow keys, and the entire key must be
182 * retained for the next-to-left most key on the leftmost
183 * page of each level, or the search will fail. Applicable
184 * ONLY to internal pages that have leaf pages as children.
185 * Further reduction of the key between pairs of internal
186 * pages loses too much information.
187 */
188 switch (rchild->flags & P_TYPE) {
189 case P_BINTERNAL:
190 bi = GETBINTERNAL(rchild, 0);
191 nbytes = NBINTERNAL(bi->ksize);
192 break;
193 case P_BLEAF:
194 bl = GETBLEAF(rchild, 0);
195 nbytes = NBINTERNAL(bl->ksize);
196 if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
197 (h->prevpg != P_INVALID || skip > 1)) {
198 tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
199 a.size = tbl->ksize;
200 a.data = tbl->bytes;
201 b.size = bl->ksize;
202 b.data = bl->bytes;
203 nksize = t->bt_pfx(&a, &b);
204 n = NBINTERNAL(nksize);
205 if (n < nbytes) {
206 #ifdef STATISTICS
207 bt_pfxsaved += nbytes - n;
208 #endif
209 nbytes = n;
210 } else
211 nksize = 0;
212 } else
213 nksize = 0;
214 break;
215 case P_RINTERNAL:
216 case P_RLEAF:
217 nbytes = NRINTERNAL;
218 break;
219 default:
220 abort();
221 }
222
223 /* Split the parent page if necessary or shift the indices. */
224 if (h->upper - h->lower < nbytes + sizeof(indx_t)) {
225 sp = h;
226 h = h->pgno == P_ROOT ?
227 bt_root(t, h, &l, &r, &skip, nbytes) :
228 bt_page(t, h, &l, &r, &skip, nbytes);
229 if (h == NULL)
230 goto err1;
231 parentsplit = 1;
232 } else {
233 if (skip < (nxtindex = NEXTINDEX(h)))
234 memmove(h->linp + skip + 1, h->linp + skip,
235 (nxtindex - skip) * sizeof(indx_t));
236 h->lower += sizeof(indx_t);
237 parentsplit = 0;
238 }
239
240 /* Insert the key into the parent page. */
241 switch (rchild->flags & P_TYPE) {
242 case P_BINTERNAL:
243 h->linp[skip] = h->upper -= nbytes;
244 dest = (char *)h + h->linp[skip];
245 memmove(dest, bi, nbytes);
246 ((BINTERNAL *)dest)->pgno = rchild->pgno;
247 break;
248 case P_BLEAF:
249 h->linp[skip] = h->upper -= nbytes;
250 dest = (char *)h + h->linp[skip];
251 WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
252 rchild->pgno, bl->flags & P_BIGKEY);
253 memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
254 if (bl->flags & P_BIGKEY &&
255 bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
256 goto err1;
257 break;
258 case P_RINTERNAL:
259 /*
260 * Update the left page count. If split
261 * added at index 0, fix the correct page.
262 */
263 if (skip > 0)
264 dest = (char *)h + h->linp[skip - 1];
265 else
266 dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
267 ((RINTERNAL *)dest)->nrecs = rec_total(lchild);
268 ((RINTERNAL *)dest)->pgno = lchild->pgno;
269
270 /* Update the right page count. */
271 h->linp[skip] = h->upper -= nbytes;
272 dest = (char *)h + h->linp[skip];
273 ((RINTERNAL *)dest)->nrecs = rec_total(rchild);
274 ((RINTERNAL *)dest)->pgno = rchild->pgno;
275 break;
276 case P_RLEAF:
277 /*
278 * Update the left page count. If split
279 * added at index 0, fix the correct page.
280 */
281 if (skip > 0)
282 dest = (char *)h + h->linp[skip - 1];
283 else
284 dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
285 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild);
286 ((RINTERNAL *)dest)->pgno = lchild->pgno;
287
288 /* Update the right page count. */
289 h->linp[skip] = h->upper -= nbytes;
290 dest = (char *)h + h->linp[skip];
291 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild);
292 ((RINTERNAL *)dest)->pgno = rchild->pgno;
293 break;
294 default:
295 abort();
296 }
297
298 /* Unpin the held pages. */
299 if (!parentsplit) {
300 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
301 break;
302 }
303
304 /* If the root page was split, make it look right. */
305 if (sp->pgno == P_ROOT &&
306 (F_ISSET(t, R_RECNO) ?
307 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
308 goto err1;
309
310 mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
311 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
312 }
313
314 /* Unpin the held pages. */
315 mpool_put(t->bt_mp, l, MPOOL_DIRTY);
316 mpool_put(t->bt_mp, r, MPOOL_DIRTY);
317
318 /* Clear any pages left on the stack. */
319 return (RET_SUCCESS);
320
321 /*
322 * If something fails in the above loop we were already walking back
323 * up the tree and the tree is now inconsistent. Nothing much we can
324 * do about it but release any memory we're holding.
325 */
326 err1: mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
327 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
328
329 err2: mpool_put(t->bt_mp, l, 0);
330 mpool_put(t->bt_mp, r, 0);
331 __dbpanic(t->bt_dbp);
332 return (RET_ERROR);
333 }
334
335 /*
336 * BT_PAGE -- Split a non-root page of a btree.
337 *
338 * Parameters:
339 * t: tree
340 * h: root page
341 * lp: pointer to left page pointer
342 * rp: pointer to right page pointer
343 * skip: pointer to index to leave open
344 * ilen: insert length
345 *
346 * Returns:
347 * Pointer to page in which to insert or NULL on error.
348 */
349 static PAGE *
350 bt_page(t, h, lp, rp, skip, ilen)
351 BTREE *t;
352 PAGE *h, **lp, **rp;
353 indx_t *skip;
354 size_t ilen;
355 {
356 PAGE *l, *r, *tp;
357 pgno_t npg;
358
359 #ifdef STATISTICS
360 ++bt_split;
361 #endif
362 /* Put the new right page for the split into place. */
363 if ((r = __bt_new(t, &npg)) == NULL)
364 return (NULL);
365 r->pgno = npg;
366 r->lower = BTDATAOFF;
367 r->upper = t->bt_psize;
368 r->nextpg = h->nextpg;
369 r->prevpg = h->pgno;
370 r->flags = h->flags & P_TYPE;
371
372 /*
373 * If we're splitting the last page on a level because we're appending
374 * a key to it (skip is NEXTINDEX()), it's likely that the data is
375 * sorted. Adding an empty page on the side of the level is less work
376 * and can push the fill factor much higher than normal. If we're
377 * wrong it's no big deal, we'll just do the split the right way next
378 * time. It may look like it's equally easy to do a similar hack for
379 * reverse sorted data, that is, split the tree left, but it's not.
380 * Don't even try.
381 */
382 if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
383 #ifdef STATISTICS
384 ++bt_sortsplit;
385 #endif
386 h->nextpg = r->pgno;
387 r->lower = BTDATAOFF + sizeof(indx_t);
388 *skip = 0;
389 *lp = h;
390 *rp = r;
391 return (r);
392 }
393
394 /* Put the new left page for the split into place. */
395 if ((l = (PAGE *)malloc(t->bt_psize)) == NULL) {
396 mpool_put(t->bt_mp, r, 0);
397 return (NULL);
398 }
399 #ifdef PURIFY
400 memset(l, 0xff, t->bt_psize);
401 #endif
402 l->pgno = h->pgno;
403 l->nextpg = r->pgno;
404 l->prevpg = h->prevpg;
405 l->lower = BTDATAOFF;
406 l->upper = t->bt_psize;
407 l->flags = h->flags & P_TYPE;
408
409 /* Fix up the previous pointer of the page after the split page. */
410 if (h->nextpg != P_INVALID) {
411 if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
412 free(l);
413 /* XXX mpool_free(t->bt_mp, r->pgno); */
414 return (NULL);
415 }
416 tp->prevpg = r->pgno;
417 mpool_put(t->bt_mp, tp, MPOOL_DIRTY);
418 }
419
420 /*
421 * Split right. The key/data pairs aren't sorted in the btree page so
422 * it's simpler to copy the data from the split page onto two new pages
423 * instead of copying half the data to the right page and compacting
424 * the left page in place. Since the left page can't change, we have
425 * to swap the original and the allocated left page after the split.
426 */
427 tp = bt_psplit(t, h, l, r, skip, ilen);
428
429 /* Move the new left page onto the old left page. */
430 memmove(h, l, t->bt_psize);
431 if (tp == l)
432 tp = h;
433 free(l);
434
435 *lp = h;
436 *rp = r;
437 return (tp);
438 }
439
440 /*
441 * BT_ROOT -- Split the root page of a btree.
442 *
443 * Parameters:
444 * t: tree
445 * h: root page
446 * lp: pointer to left page pointer
447 * rp: pointer to right page pointer
448 * skip: pointer to index to leave open
449 * ilen: insert length
450 *
451 * Returns:
452 * Pointer to page in which to insert or NULL on error.
453 */
454 static PAGE *
455 bt_root(t, h, lp, rp, skip, ilen)
456 BTREE *t;
457 PAGE *h, **lp, **rp;
458 indx_t *skip;
459 size_t ilen;
460 {
461 PAGE *l, *r, *tp;
462 pgno_t lnpg, rnpg;
463
464 #ifdef STATISTICS
465 ++bt_split;
466 ++bt_rootsplit;
467 #endif
468 /* Put the new left and right pages for the split into place. */
469 if ((l = __bt_new(t, &lnpg)) == NULL ||
470 (r = __bt_new(t, &rnpg)) == NULL)
471 return (NULL);
472 l->pgno = lnpg;
473 r->pgno = rnpg;
474 l->nextpg = r->pgno;
475 r->prevpg = l->pgno;
476 l->prevpg = r->nextpg = P_INVALID;
477 l->lower = r->lower = BTDATAOFF;
478 l->upper = r->upper = t->bt_psize;
479 l->flags = r->flags = h->flags & P_TYPE;
480
481 /* Split the root page. */
482 tp = bt_psplit(t, h, l, r, skip, ilen);
483
484 *lp = l;
485 *rp = r;
486 return (tp);
487 }
488
489 /*
490 * BT_RROOT -- Fix up the recno root page after it has been split.
491 *
492 * Parameters:
493 * t: tree
494 * h: root page
495 * l: left page
496 * r: right page
497 *
498 * Returns:
499 * RET_ERROR, RET_SUCCESS
500 */
501 static int
502 bt_rroot(t, h, l, r)
503 BTREE *t;
504 PAGE *h, *l, *r;
505 {
506 char *dest;
507
508 /* Insert the left and right keys, set the header information. */
509 h->linp[0] = h->upper = t->bt_psize - NRINTERNAL;
510 dest = (char *)h + h->upper;
511 WR_RINTERNAL(dest,
512 l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
513
514 h->linp[1] = h->upper -= NRINTERNAL;
515 dest = (char *)h + h->upper;
516 WR_RINTERNAL(dest,
517 r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
518
519 h->lower = BTDATAOFF + 2 * sizeof(indx_t);
520
521 /* Unpin the root page, set to recno internal page. */
522 h->flags &= ~P_TYPE;
523 h->flags |= P_RINTERNAL;
524 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
525
526 return (RET_SUCCESS);
527 }
528
529 /*
530 * BT_BROOT -- Fix up the btree root page after it has been split.
531 *
532 * Parameters:
533 * t: tree
534 * h: root page
535 * l: left page
536 * r: right page
537 *
538 * Returns:
539 * RET_ERROR, RET_SUCCESS
540 */
541 static int
542 bt_broot(t, h, l, r)
543 BTREE *t;
544 PAGE *h, *l, *r;
545 {
546 BINTERNAL *bi;
547 BLEAF *bl;
548 u_int32_t nbytes;
549 char *dest;
550
551 /*
552 * If the root page was a leaf page, change it into an internal page.
553 * We copy the key we split on (but not the key's data, in the case of
554 * a leaf page) to the new root page.
555 *
556 * The btree comparison code guarantees that the left-most key on any
557 * level of the tree is never used, so it doesn't need to be filled in.
558 */
559 nbytes = NBINTERNAL(0);
560 h->linp[0] = h->upper = t->bt_psize - nbytes;
561 dest = (char *)h + h->upper;
562 WR_BINTERNAL(dest, 0, l->pgno, 0);
563
564 switch (h->flags & P_TYPE) {
565 case P_BLEAF:
566 bl = GETBLEAF(r, 0);
567 nbytes = NBINTERNAL(bl->ksize);
568 h->linp[1] = h->upper -= nbytes;
569 dest = (char *)h + h->upper;
570 WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
571 memmove(dest, bl->bytes, bl->ksize);
572
573 /*
574 * If the key is on an overflow page, mark the overflow chain
575 * so it isn't deleted when the leaf copy of the key is deleted.
576 */
577 if (bl->flags & P_BIGKEY &&
578 bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
579 return (RET_ERROR);
580 break;
581 case P_BINTERNAL:
582 bi = GETBINTERNAL(r, 0);
583 nbytes = NBINTERNAL(bi->ksize);
584 h->linp[1] = h->upper -= nbytes;
585 dest = (char *)h + h->upper;
586 memmove(dest, bi, nbytes);
587 ((BINTERNAL *)dest)->pgno = r->pgno;
588 break;
589 default:
590 abort();
591 }
592
593 /* There are two keys on the page. */
594 h->lower = BTDATAOFF + 2 * sizeof(indx_t);
595
596 /* Unpin the root page, set to btree internal page. */
597 h->flags &= ~P_TYPE;
598 h->flags |= P_BINTERNAL;
599 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
600
601 return (RET_SUCCESS);
602 }
603
604 /*
605 * BT_PSPLIT -- Do the real work of splitting the page.
606 *
607 * Parameters:
608 * t: tree
609 * h: page to be split
610 * l: page to put lower half of data
611 * r: page to put upper half of data
612 * pskip: pointer to index to leave open
613 * ilen: insert length
614 *
615 * Returns:
616 * Pointer to page in which to insert.
617 */
618 static PAGE *
619 bt_psplit(t, h, l, r, pskip, ilen)
620 BTREE *t;
621 PAGE *h, *l, *r;
622 indx_t *pskip;
623 size_t ilen;
624 {
625 BINTERNAL *bi;
626 BLEAF *bl;
627 CURSOR *c;
628 RLEAF *rl;
629 PAGE *rval;
630 void *src;
631 indx_t full, half, nxt, off, skip, top, used;
632 u_int32_t nbytes;
633 int bigkeycnt, isbigkey;
634
635 /*
636 * Split the data to the left and right pages. Leave the skip index
637 * open. Additionally, make some effort not to split on an overflow
638 * key. This makes internal page processing faster and can save
639 * space as overflow keys used by internal pages are never deleted.
640 */
641 bigkeycnt = 0;
642 skip = *pskip;
643 full = t->bt_psize - BTDATAOFF;
644 half = full / 2;
645 used = 0;
646 for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
647 if (skip == off) {
648 nbytes = ilen;
649 isbigkey = 0; /* XXX: not really known. */
650 } else
651 switch (h->flags & P_TYPE) {
652 case P_BINTERNAL:
653 src = bi = GETBINTERNAL(h, nxt);
654 nbytes = NBINTERNAL(bi->ksize);
655 isbigkey = bi->flags & P_BIGKEY;
656 break;
657 case P_BLEAF:
658 src = bl = GETBLEAF(h, nxt);
659 nbytes = NBLEAF(bl);
660 isbigkey = bl->flags & P_BIGKEY;
661 break;
662 case P_RINTERNAL:
663 src = GETRINTERNAL(h, nxt);
664 nbytes = NRINTERNAL;
665 isbigkey = 0;
666 break;
667 case P_RLEAF:
668 src = rl = GETRLEAF(h, nxt);
669 nbytes = NRLEAF(rl);
670 isbigkey = 0;
671 break;
672 default:
673 abort();
674 }
675
676 /*
677 * If the key/data pairs are substantial fractions of the max
678 * possible size for the page, it's possible to get situations
679 * where we decide to try and copy too much onto the left page.
680 * Make sure that doesn't happen.
681 */
682 if (skip <= off && used + nbytes >= full) {
683 --off;
684 break;
685 }
686
687 /* Copy the key/data pair, if not the skipped index. */
688 if (skip != off) {
689 ++nxt;
690
691 l->linp[off] = l->upper -= nbytes;
692 memmove((char *)l + l->upper, src, nbytes);
693 }
694
695 used += nbytes;
696 if (used >= half) {
697 if (!isbigkey || bigkeycnt == 3)
698 break;
699 else
700 ++bigkeycnt;
701 }
702 }
703
704 /*
705 * Off is the last offset that's valid for the left page.
706 * Nxt is the first offset to be placed on the right page.
707 */
708 l->lower += (off + 1) * sizeof(indx_t);
709
710 /*
711 * If splitting the page that the cursor was on, the cursor has to be
712 * adjusted to point to the same record as before the split. If the
713 * cursor is at or past the skipped slot, the cursor is incremented by
714 * one. If the cursor is on the right page, it is decremented by the
715 * number of records split to the left page.
716 */
717 c = &t->bt_cursor;
718 if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) {
719 if (c->pg.index >= skip)
720 ++c->pg.index;
721 if (c->pg.index < nxt) /* Left page. */
722 c->pg.pgno = l->pgno;
723 else { /* Right page. */
724 c->pg.pgno = r->pgno;
725 c->pg.index -= nxt;
726 }
727 }
728
729 /*
730 * If the skipped index was on the left page, just return that page.
731 * Otherwise, adjust the skip index to reflect the new position on
732 * the right page.
733 */
734 if (skip <= off) {
735 skip = 0;
736 rval = l;
737 } else {
738 rval = r;
739 *pskip -= nxt;
740 }
741
742 for (off = 0; nxt < top; ++off) {
743 if (skip == nxt) {
744 ++off;
745 skip = 0;
746 }
747 switch (h->flags & P_TYPE) {
748 case P_BINTERNAL:
749 src = bi = GETBINTERNAL(h, nxt);
750 nbytes = NBINTERNAL(bi->ksize);
751 break;
752 case P_BLEAF:
753 src = bl = GETBLEAF(h, nxt);
754 nbytes = NBLEAF(bl);
755 break;
756 case P_RINTERNAL:
757 src = GETRINTERNAL(h, nxt);
758 nbytes = NRINTERNAL;
759 break;
760 case P_RLEAF:
761 src = rl = GETRLEAF(h, nxt);
762 nbytes = NRLEAF(rl);
763 break;
764 default:
765 abort();
766 }
767 ++nxt;
768 r->linp[off] = r->upper -= nbytes;
769 memmove((char *)r + r->upper, src, nbytes);
770 }
771 r->lower += off * sizeof(indx_t);
772
773 /* If the key is being appended to the page, adjust the index. */
774 if (skip == top)
775 r->lower += sizeof(indx_t);
776
777 return (rval);
778 }
779
780 /*
781 * BT_PRESERVE -- Mark a chain of pages as used by an internal node.
782 *
783 * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
784 * record that references them gets deleted. Chains pointed to by internal
785 * pages never get deleted. This routine marks a chain as pointed to by an
786 * internal page.
787 *
788 * Parameters:
789 * t: tree
790 * pg: page number of first page in the chain.
791 *
792 * Returns:
793 * RET_SUCCESS, RET_ERROR.
794 */
795 static int
796 bt_preserve(t, pg)
797 BTREE *t;
798 pgno_t pg;
799 {
800 PAGE *h;
801
802 if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
803 return (RET_ERROR);
804 h->flags |= P_PRESERVE;
805 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
806 return (RET_SUCCESS);
807 }
808
809 /*
810 * REC_TOTAL -- Return the number of recno entries below a page.
811 *
812 * Parameters:
813 * h: page
814 *
815 * Returns:
816 * The number of recno entries below a page.
817 *
818 * XXX
819 * These values could be set by the bt_psplit routine. The problem is that the
820 * entry has to be popped off of the stack etc. or the values have to be passed
821 * all the way back to bt_split/bt_rroot and it's not very clean.
822 */
823 static recno_t
824 rec_total(h)
825 PAGE *h;
826 {
827 recno_t recs;
828 indx_t nxt, top;
829
830 for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
831 recs += GETRINTERNAL(h, nxt)->nrecs;
832 return (recs);
833 }
834