bt_split.c revision 1.8 1 /* $NetBSD: bt_split.c,v 1.8 1997/07/21 14:06:38 jtc Exp $ */
2
3 /*-
4 * Copyright (c) 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Olson.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 #if defined(LIBC_SCCS) && !defined(lint)
41 #if 0
42 static char sccsid[] = "@(#)bt_split.c 8.9 (Berkeley) 7/26/94";
43 #else
44 __RCSID("$NetBSD: bt_split.c,v 1.8 1997/07/21 14:06:38 jtc Exp $");
45 #endif
46 #endif /* LIBC_SCCS and not lint */
47
48 #include "namespace.h"
49 #include <sys/types.h>
50
51 #include <limits.h>
52 #include <stdio.h>
53 #include <stdlib.h>
54 #include <string.h>
55
56 #include <db.h>
57 #include "btree.h"
58
59 static int bt_broot __P((BTREE *, PAGE *, PAGE *, PAGE *));
60 static PAGE *bt_page
61 __P((BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t));
62 static int bt_preserve __P((BTREE *, pgno_t));
63 static PAGE *bt_psplit
64 __P((BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t));
65 static PAGE *bt_root
66 __P((BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t));
67 static int bt_rroot __P((BTREE *, PAGE *, PAGE *, PAGE *));
68 static recno_t rec_total __P((PAGE *));
69
70 #ifdef STATISTICS
71 u_long bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
72 #endif
73
74 /*
75 * __BT_SPLIT -- Split the tree.
76 *
77 * Parameters:
78 * t: tree
79 * sp: page to split
80 * key: key to insert
81 * data: data to insert
82 * flags: BIGKEY/BIGDATA flags
83 * ilen: insert length
84 * skip: index to leave open
85 *
86 * Returns:
87 * RET_ERROR, RET_SUCCESS
88 */
89 int
90 __bt_split(t, sp, key, data, flags, ilen, argskip)
91 BTREE *t;
92 PAGE *sp;
93 const DBT *key, *data;
94 int flags;
95 size_t ilen;
96 u_int32_t argskip;
97 {
98 BINTERNAL *bi = NULL; /* pacify gcc */
99 BLEAF *bl = NULL, *tbl; /* pacify gcc */
100 DBT a, b;
101 EPGNO *parent;
102 PAGE *h, *l, *r, *lchild, *rchild;
103 indx_t nxtindex;
104 u_int16_t skip;
105 u_int32_t n, nbytes, nksize = 0; /* pacify gcc */
106 int parentsplit;
107 char *dest;
108
109 /*
110 * Split the page into two pages, l and r. The split routines return
111 * a pointer to the page into which the key should be inserted and with
112 * skip set to the offset which should be used. Additionally, l and r
113 * are pinned.
114 */
115 skip = argskip;
116 h = sp->pgno == P_ROOT ?
117 bt_root(t, sp, &l, &r, &skip, ilen) :
118 bt_page(t, sp, &l, &r, &skip, ilen);
119 if (h == NULL)
120 return (RET_ERROR);
121
122 /*
123 * Insert the new key/data pair into the leaf page. (Key inserts
124 * always cause a leaf page to split first.)
125 */
126 h->linp[skip] = h->upper -= ilen;
127 dest = (char *)h + h->upper;
128 if (F_ISSET(t, R_RECNO))
129 WR_RLEAF(dest, data, flags)
130 else
131 WR_BLEAF(dest, key, data, flags)
132
133 /* If the root page was split, make it look right. */
134 if (sp->pgno == P_ROOT &&
135 (F_ISSET(t, R_RECNO) ?
136 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
137 goto err2;
138
139 /*
140 * Now we walk the parent page stack -- a LIFO stack of the pages that
141 * were traversed when we searched for the page that split. Each stack
142 * entry is a page number and a page index offset. The offset is for
143 * the page traversed on the search. We've just split a page, so we
144 * have to insert a new key into the parent page.
145 *
146 * If the insert into the parent page causes it to split, may have to
147 * continue splitting all the way up the tree. We stop if the root
148 * splits or the page inserted into didn't have to split to hold the
149 * new key. Some algorithms replace the key for the old page as well
150 * as the new page. We don't, as there's no reason to believe that the
151 * first key on the old page is any better than the key we have, and,
152 * in the case of a key being placed at index 0 causing the split, the
153 * key is unavailable.
154 *
155 * There are a maximum of 5 pages pinned at any time. We keep the left
156 * and right pages pinned while working on the parent. The 5 are the
157 * two children, left parent and right parent (when the parent splits)
158 * and the root page or the overflow key page when calling bt_preserve.
159 * This code must make sure that all pins are released other than the
160 * root page or overflow page which is unlocked elsewhere.
161 */
162 while ((parent = BT_POP(t)) != NULL) {
163 lchild = l;
164 rchild = r;
165
166 /* Get the parent page. */
167 if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
168 goto err2;
169
170 /*
171 * The new key goes ONE AFTER the index, because the split
172 * was to the right.
173 */
174 skip = parent->index + 1;
175
176 /*
177 * Calculate the space needed on the parent page.
178 *
179 * Prefix trees: space hack when inserting into BINTERNAL
180 * pages. Retain only what's needed to distinguish between
181 * the new entry and the LAST entry on the page to its left.
182 * If the keys compare equal, retain the entire key. Note,
183 * we don't touch overflow keys, and the entire key must be
184 * retained for the next-to-left most key on the leftmost
185 * page of each level, or the search will fail. Applicable
186 * ONLY to internal pages that have leaf pages as children.
187 * Further reduction of the key between pairs of internal
188 * pages loses too much information.
189 */
190 switch (rchild->flags & P_TYPE) {
191 case P_BINTERNAL:
192 bi = GETBINTERNAL(rchild, 0);
193 nbytes = NBINTERNAL(bi->ksize);
194 break;
195 case P_BLEAF:
196 bl = GETBLEAF(rchild, 0);
197 nbytes = NBINTERNAL(bl->ksize);
198 if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
199 (h->prevpg != P_INVALID || skip > 1)) {
200 tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
201 a.size = tbl->ksize;
202 a.data = tbl->bytes;
203 b.size = bl->ksize;
204 b.data = bl->bytes;
205 nksize = t->bt_pfx(&a, &b);
206 n = NBINTERNAL(nksize);
207 if (n < nbytes) {
208 #ifdef STATISTICS
209 bt_pfxsaved += nbytes - n;
210 #endif
211 nbytes = n;
212 } else
213 nksize = 0;
214 } else
215 nksize = 0;
216 break;
217 case P_RINTERNAL:
218 case P_RLEAF:
219 nbytes = NRINTERNAL;
220 break;
221 default:
222 abort();
223 }
224
225 /* Split the parent page if necessary or shift the indices. */
226 if (h->upper - h->lower < nbytes + sizeof(indx_t)) {
227 sp = h;
228 h = h->pgno == P_ROOT ?
229 bt_root(t, h, &l, &r, &skip, nbytes) :
230 bt_page(t, h, &l, &r, &skip, nbytes);
231 if (h == NULL)
232 goto err1;
233 parentsplit = 1;
234 } else {
235 if (skip < (nxtindex = NEXTINDEX(h)))
236 memmove(h->linp + skip + 1, h->linp + skip,
237 (nxtindex - skip) * sizeof(indx_t));
238 h->lower += sizeof(indx_t);
239 parentsplit = 0;
240 }
241
242 /* Insert the key into the parent page. */
243 switch (rchild->flags & P_TYPE) {
244 case P_BINTERNAL:
245 h->linp[skip] = h->upper -= nbytes;
246 dest = (char *)h + h->linp[skip];
247 memmove(dest, bi, nbytes);
248 ((BINTERNAL *)dest)->pgno = rchild->pgno;
249 break;
250 case P_BLEAF:
251 h->linp[skip] = h->upper -= nbytes;
252 dest = (char *)h + h->linp[skip];
253 WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
254 rchild->pgno, bl->flags & P_BIGKEY);
255 memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
256 if (bl->flags & P_BIGKEY &&
257 bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
258 goto err1;
259 break;
260 case P_RINTERNAL:
261 /*
262 * Update the left page count. If split
263 * added at index 0, fix the correct page.
264 */
265 if (skip > 0)
266 dest = (char *)h + h->linp[skip - 1];
267 else
268 dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
269 ((RINTERNAL *)dest)->nrecs = rec_total(lchild);
270 ((RINTERNAL *)dest)->pgno = lchild->pgno;
271
272 /* Update the right page count. */
273 h->linp[skip] = h->upper -= nbytes;
274 dest = (char *)h + h->linp[skip];
275 ((RINTERNAL *)dest)->nrecs = rec_total(rchild);
276 ((RINTERNAL *)dest)->pgno = rchild->pgno;
277 break;
278 case P_RLEAF:
279 /*
280 * Update the left page count. If split
281 * added at index 0, fix the correct page.
282 */
283 if (skip > 0)
284 dest = (char *)h + h->linp[skip - 1];
285 else
286 dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
287 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild);
288 ((RINTERNAL *)dest)->pgno = lchild->pgno;
289
290 /* Update the right page count. */
291 h->linp[skip] = h->upper -= nbytes;
292 dest = (char *)h + h->linp[skip];
293 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild);
294 ((RINTERNAL *)dest)->pgno = rchild->pgno;
295 break;
296 default:
297 abort();
298 }
299
300 /* Unpin the held pages. */
301 if (!parentsplit) {
302 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
303 break;
304 }
305
306 /* If the root page was split, make it look right. */
307 if (sp->pgno == P_ROOT &&
308 (F_ISSET(t, R_RECNO) ?
309 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
310 goto err1;
311
312 mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
313 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
314 }
315
316 /* Unpin the held pages. */
317 mpool_put(t->bt_mp, l, MPOOL_DIRTY);
318 mpool_put(t->bt_mp, r, MPOOL_DIRTY);
319
320 /* Clear any pages left on the stack. */
321 return (RET_SUCCESS);
322
323 /*
324 * If something fails in the above loop we were already walking back
325 * up the tree and the tree is now inconsistent. Nothing much we can
326 * do about it but release any memory we're holding.
327 */
328 err1: mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
329 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
330
331 err2: mpool_put(t->bt_mp, l, 0);
332 mpool_put(t->bt_mp, r, 0);
333 __dbpanic(t->bt_dbp);
334 return (RET_ERROR);
335 }
336
337 /*
338 * BT_PAGE -- Split a non-root page of a btree.
339 *
340 * Parameters:
341 * t: tree
342 * h: root page
343 * lp: pointer to left page pointer
344 * rp: pointer to right page pointer
345 * skip: pointer to index to leave open
346 * ilen: insert length
347 *
348 * Returns:
349 * Pointer to page in which to insert or NULL on error.
350 */
351 static PAGE *
352 bt_page(t, h, lp, rp, skip, ilen)
353 BTREE *t;
354 PAGE *h, **lp, **rp;
355 indx_t *skip;
356 size_t ilen;
357 {
358 PAGE *l, *r, *tp;
359 pgno_t npg;
360
361 #ifdef STATISTICS
362 ++bt_split;
363 #endif
364 /* Put the new right page for the split into place. */
365 if ((r = __bt_new(t, &npg)) == NULL)
366 return (NULL);
367 r->pgno = npg;
368 r->lower = BTDATAOFF;
369 r->upper = t->bt_psize;
370 r->nextpg = h->nextpg;
371 r->prevpg = h->pgno;
372 r->flags = h->flags & P_TYPE;
373
374 /*
375 * If we're splitting the last page on a level because we're appending
376 * a key to it (skip is NEXTINDEX()), it's likely that the data is
377 * sorted. Adding an empty page on the side of the level is less work
378 * and can push the fill factor much higher than normal. If we're
379 * wrong it's no big deal, we'll just do the split the right way next
380 * time. It may look like it's equally easy to do a similar hack for
381 * reverse sorted data, that is, split the tree left, but it's not.
382 * Don't even try.
383 */
384 if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
385 #ifdef STATISTICS
386 ++bt_sortsplit;
387 #endif
388 h->nextpg = r->pgno;
389 r->lower = BTDATAOFF + sizeof(indx_t);
390 *skip = 0;
391 *lp = h;
392 *rp = r;
393 return (r);
394 }
395
396 /* Put the new left page for the split into place. */
397 if ((l = (PAGE *)malloc(t->bt_psize)) == NULL) {
398 mpool_put(t->bt_mp, r, 0);
399 return (NULL);
400 }
401 #ifdef PURIFY
402 memset(l, 0xff, t->bt_psize);
403 #endif
404 l->pgno = h->pgno;
405 l->nextpg = r->pgno;
406 l->prevpg = h->prevpg;
407 l->lower = BTDATAOFF;
408 l->upper = t->bt_psize;
409 l->flags = h->flags & P_TYPE;
410
411 /* Fix up the previous pointer of the page after the split page. */
412 if (h->nextpg != P_INVALID) {
413 if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
414 free(l);
415 /* XXX mpool_free(t->bt_mp, r->pgno); */
416 return (NULL);
417 }
418 tp->prevpg = r->pgno;
419 mpool_put(t->bt_mp, tp, MPOOL_DIRTY);
420 }
421
422 /*
423 * Split right. The key/data pairs aren't sorted in the btree page so
424 * it's simpler to copy the data from the split page onto two new pages
425 * instead of copying half the data to the right page and compacting
426 * the left page in place. Since the left page can't change, we have
427 * to swap the original and the allocated left page after the split.
428 */
429 tp = bt_psplit(t, h, l, r, skip, ilen);
430
431 /* Move the new left page onto the old left page. */
432 memmove(h, l, t->bt_psize);
433 if (tp == l)
434 tp = h;
435 free(l);
436
437 *lp = h;
438 *rp = r;
439 return (tp);
440 }
441
442 /*
443 * BT_ROOT -- Split the root page of a btree.
444 *
445 * Parameters:
446 * t: tree
447 * h: root page
448 * lp: pointer to left page pointer
449 * rp: pointer to right page pointer
450 * skip: pointer to index to leave open
451 * ilen: insert length
452 *
453 * Returns:
454 * Pointer to page in which to insert or NULL on error.
455 */
456 static PAGE *
457 bt_root(t, h, lp, rp, skip, ilen)
458 BTREE *t;
459 PAGE *h, **lp, **rp;
460 indx_t *skip;
461 size_t ilen;
462 {
463 PAGE *l, *r, *tp;
464 pgno_t lnpg, rnpg;
465
466 #ifdef STATISTICS
467 ++bt_split;
468 ++bt_rootsplit;
469 #endif
470 /* Put the new left and right pages for the split into place. */
471 if ((l = __bt_new(t, &lnpg)) == NULL ||
472 (r = __bt_new(t, &rnpg)) == NULL)
473 return (NULL);
474 l->pgno = lnpg;
475 r->pgno = rnpg;
476 l->nextpg = r->pgno;
477 r->prevpg = l->pgno;
478 l->prevpg = r->nextpg = P_INVALID;
479 l->lower = r->lower = BTDATAOFF;
480 l->upper = r->upper = t->bt_psize;
481 l->flags = r->flags = h->flags & P_TYPE;
482
483 /* Split the root page. */
484 tp = bt_psplit(t, h, l, r, skip, ilen);
485
486 *lp = l;
487 *rp = r;
488 return (tp);
489 }
490
491 /*
492 * BT_RROOT -- Fix up the recno root page after it has been split.
493 *
494 * Parameters:
495 * t: tree
496 * h: root page
497 * l: left page
498 * r: right page
499 *
500 * Returns:
501 * RET_ERROR, RET_SUCCESS
502 */
503 static int
504 bt_rroot(t, h, l, r)
505 BTREE *t;
506 PAGE *h, *l, *r;
507 {
508 char *dest;
509
510 /* Insert the left and right keys, set the header information. */
511 h->linp[0] = h->upper = t->bt_psize - NRINTERNAL;
512 dest = (char *)h + h->upper;
513 WR_RINTERNAL(dest,
514 l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
515
516 h->linp[1] = h->upper -= NRINTERNAL;
517 dest = (char *)h + h->upper;
518 WR_RINTERNAL(dest,
519 r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
520
521 h->lower = BTDATAOFF + 2 * sizeof(indx_t);
522
523 /* Unpin the root page, set to recno internal page. */
524 h->flags &= ~P_TYPE;
525 h->flags |= P_RINTERNAL;
526 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
527
528 return (RET_SUCCESS);
529 }
530
531 /*
532 * BT_BROOT -- Fix up the btree root page after it has been split.
533 *
534 * Parameters:
535 * t: tree
536 * h: root page
537 * l: left page
538 * r: right page
539 *
540 * Returns:
541 * RET_ERROR, RET_SUCCESS
542 */
543 static int
544 bt_broot(t, h, l, r)
545 BTREE *t;
546 PAGE *h, *l, *r;
547 {
548 BINTERNAL *bi = NULL; /* pacify gcc */
549 BLEAF *bl;
550 u_int32_t nbytes;
551 char *dest;
552
553 /*
554 * If the root page was a leaf page, change it into an internal page.
555 * We copy the key we split on (but not the key's data, in the case of
556 * a leaf page) to the new root page.
557 *
558 * The btree comparison code guarantees that the left-most key on any
559 * level of the tree is never used, so it doesn't need to be filled in.
560 */
561 nbytes = NBINTERNAL(0);
562 h->linp[0] = h->upper = t->bt_psize - nbytes;
563 dest = (char *)h + h->upper;
564 WR_BINTERNAL(dest, 0, l->pgno, 0);
565
566 switch (h->flags & P_TYPE) {
567 case P_BLEAF:
568 bl = GETBLEAF(r, 0);
569 nbytes = NBINTERNAL(bl->ksize);
570 h->linp[1] = h->upper -= nbytes;
571 dest = (char *)h + h->upper;
572 WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
573 memmove(dest, bl->bytes, bl->ksize);
574
575 /*
576 * If the key is on an overflow page, mark the overflow chain
577 * so it isn't deleted when the leaf copy of the key is deleted.
578 */
579 if (bl->flags & P_BIGKEY &&
580 bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
581 return (RET_ERROR);
582 break;
583 case P_BINTERNAL:
584 bi = GETBINTERNAL(r, 0);
585 nbytes = NBINTERNAL(bi->ksize);
586 h->linp[1] = h->upper -= nbytes;
587 dest = (char *)h + h->upper;
588 memmove(dest, bi, nbytes);
589 ((BINTERNAL *)dest)->pgno = r->pgno;
590 break;
591 default:
592 abort();
593 }
594
595 /* There are two keys on the page. */
596 h->lower = BTDATAOFF + 2 * sizeof(indx_t);
597
598 /* Unpin the root page, set to btree internal page. */
599 h->flags &= ~P_TYPE;
600 h->flags |= P_BINTERNAL;
601 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
602
603 return (RET_SUCCESS);
604 }
605
606 /*
607 * BT_PSPLIT -- Do the real work of splitting the page.
608 *
609 * Parameters:
610 * t: tree
611 * h: page to be split
612 * l: page to put lower half of data
613 * r: page to put upper half of data
614 * pskip: pointer to index to leave open
615 * ilen: insert length
616 *
617 * Returns:
618 * Pointer to page in which to insert.
619 */
620 static PAGE *
621 bt_psplit(t, h, l, r, pskip, ilen)
622 BTREE *t;
623 PAGE *h, *l, *r;
624 indx_t *pskip;
625 size_t ilen;
626 {
627 BINTERNAL *bi;
628 BLEAF *bl;
629 CURSOR *c;
630 RLEAF *rl;
631 PAGE *rval;
632 void *src = NULL; /* pacify gcc */
633 indx_t full, half, nxt, off, skip, top, used;
634 u_int32_t nbytes;
635 int bigkeycnt, isbigkey;
636
637 /*
638 * Split the data to the left and right pages. Leave the skip index
639 * open. Additionally, make some effort not to split on an overflow
640 * key. This makes internal page processing faster and can save
641 * space as overflow keys used by internal pages are never deleted.
642 */
643 bigkeycnt = 0;
644 skip = *pskip;
645 full = t->bt_psize - BTDATAOFF;
646 half = full / 2;
647 used = 0;
648 for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
649 if (skip == off) {
650 nbytes = ilen;
651 isbigkey = 0; /* XXX: not really known. */
652 } else
653 switch (h->flags & P_TYPE) {
654 case P_BINTERNAL:
655 src = bi = GETBINTERNAL(h, nxt);
656 nbytes = NBINTERNAL(bi->ksize);
657 isbigkey = bi->flags & P_BIGKEY;
658 break;
659 case P_BLEAF:
660 src = bl = GETBLEAF(h, nxt);
661 nbytes = NBLEAF(bl);
662 isbigkey = bl->flags & P_BIGKEY;
663 break;
664 case P_RINTERNAL:
665 src = GETRINTERNAL(h, nxt);
666 nbytes = NRINTERNAL;
667 isbigkey = 0;
668 break;
669 case P_RLEAF:
670 src = rl = GETRLEAF(h, nxt);
671 nbytes = NRLEAF(rl);
672 isbigkey = 0;
673 break;
674 default:
675 abort();
676 }
677
678 /*
679 * If the key/data pairs are substantial fractions of the max
680 * possible size for the page, it's possible to get situations
681 * where we decide to try and copy too much onto the left page.
682 * Make sure that doesn't happen.
683 */
684 if (skip <= off && used + nbytes >= full) {
685 --off;
686 break;
687 }
688
689 /* Copy the key/data pair, if not the skipped index. */
690 if (skip != off) {
691 ++nxt;
692
693 l->linp[off] = l->upper -= nbytes;
694 memmove((char *)l + l->upper, src, nbytes);
695 }
696
697 used += nbytes;
698 if (used >= half) {
699 if (!isbigkey || bigkeycnt == 3)
700 break;
701 else
702 ++bigkeycnt;
703 }
704 }
705
706 /*
707 * Off is the last offset that's valid for the left page.
708 * Nxt is the first offset to be placed on the right page.
709 */
710 l->lower += (off + 1) * sizeof(indx_t);
711
712 /*
713 * If splitting the page that the cursor was on, the cursor has to be
714 * adjusted to point to the same record as before the split. If the
715 * cursor is at or past the skipped slot, the cursor is incremented by
716 * one. If the cursor is on the right page, it is decremented by the
717 * number of records split to the left page.
718 */
719 c = &t->bt_cursor;
720 if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) {
721 if (c->pg.index >= skip)
722 ++c->pg.index;
723 if (c->pg.index < nxt) /* Left page. */
724 c->pg.pgno = l->pgno;
725 else { /* Right page. */
726 c->pg.pgno = r->pgno;
727 c->pg.index -= nxt;
728 }
729 }
730
731 /*
732 * If the skipped index was on the left page, just return that page.
733 * Otherwise, adjust the skip index to reflect the new position on
734 * the right page.
735 */
736 if (skip <= off) {
737 skip = 0;
738 rval = l;
739 } else {
740 rval = r;
741 *pskip -= nxt;
742 }
743
744 for (off = 0; nxt < top; ++off) {
745 if (skip == nxt) {
746 ++off;
747 skip = 0;
748 }
749 switch (h->flags & P_TYPE) {
750 case P_BINTERNAL:
751 src = bi = GETBINTERNAL(h, nxt);
752 nbytes = NBINTERNAL(bi->ksize);
753 break;
754 case P_BLEAF:
755 src = bl = GETBLEAF(h, nxt);
756 nbytes = NBLEAF(bl);
757 break;
758 case P_RINTERNAL:
759 src = GETRINTERNAL(h, nxt);
760 nbytes = NRINTERNAL;
761 break;
762 case P_RLEAF:
763 src = rl = GETRLEAF(h, nxt);
764 nbytes = NRLEAF(rl);
765 break;
766 default:
767 abort();
768 }
769 ++nxt;
770 r->linp[off] = r->upper -= nbytes;
771 memmove((char *)r + r->upper, src, nbytes);
772 }
773 r->lower += off * sizeof(indx_t);
774
775 /* If the key is being appended to the page, adjust the index. */
776 if (skip == top)
777 r->lower += sizeof(indx_t);
778
779 return (rval);
780 }
781
782 /*
783 * BT_PRESERVE -- Mark a chain of pages as used by an internal node.
784 *
785 * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
786 * record that references them gets deleted. Chains pointed to by internal
787 * pages never get deleted. This routine marks a chain as pointed to by an
788 * internal page.
789 *
790 * Parameters:
791 * t: tree
792 * pg: page number of first page in the chain.
793 *
794 * Returns:
795 * RET_SUCCESS, RET_ERROR.
796 */
797 static int
798 bt_preserve(t, pg)
799 BTREE *t;
800 pgno_t pg;
801 {
802 PAGE *h;
803
804 if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
805 return (RET_ERROR);
806 h->flags |= P_PRESERVE;
807 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
808 return (RET_SUCCESS);
809 }
810
811 /*
812 * REC_TOTAL -- Return the number of recno entries below a page.
813 *
814 * Parameters:
815 * h: page
816 *
817 * Returns:
818 * The number of recno entries below a page.
819 *
820 * XXX
821 * These values could be set by the bt_psplit routine. The problem is that the
822 * entry has to be popped off of the stack etc. or the values have to be passed
823 * all the way back to bt_split/bt_rroot and it's not very clean.
824 */
825 static recno_t
826 rec_total(h)
827 PAGE *h;
828 {
829 recno_t recs;
830 indx_t nxt, top;
831
832 for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
833 recs += GETRINTERNAL(h, nxt)->nrecs;
834 return (recs);
835 }
836