1 1.18 rillig /* $NetBSD: btree.h,v 1.18 2022/04/19 20:32:15 rillig Exp $ */ 2 1.8 cgd 3 1.1 cgd /*- 4 1.7 cgd * Copyright (c) 1991, 1993, 1994 5 1.2 cgd * The Regents of the University of California. All rights reserved. 6 1.1 cgd * 7 1.1 cgd * This code is derived from software contributed to Berkeley by 8 1.1 cgd * Mike Olson. 9 1.1 cgd * 10 1.1 cgd * Redistribution and use in source and binary forms, with or without 11 1.1 cgd * modification, are permitted provided that the following conditions 12 1.1 cgd * are met: 13 1.1 cgd * 1. Redistributions of source code must retain the above copyright 14 1.1 cgd * notice, this list of conditions and the following disclaimer. 15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 cgd * notice, this list of conditions and the following disclaimer in the 17 1.1 cgd * documentation and/or other materials provided with the distribution. 18 1.13 agc * 3. Neither the name of the University nor the names of its contributors 19 1.1 cgd * may be used to endorse or promote products derived from this software 20 1.1 cgd * without specific prior written permission. 21 1.1 cgd * 22 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 1.1 cgd * SUCH DAMAGE. 33 1.2 cgd * 34 1.9 cgd * @(#)btree.h 8.11 (Berkeley) 8/17/94 35 1.1 cgd */ 36 1.12 tv 37 1.14 lukem #if HAVE_NBTOOL_CONFIG_H 38 1.14 lukem #include "nbtool_config.h" 39 1.12 tv #endif 40 1.1 cgd 41 1.9 cgd /* Macros to set/clear/test flags. */ 42 1.9 cgd #define F_SET(p, f) (p)->flags |= (f) 43 1.9 cgd #define F_CLR(p, f) (p)->flags &= ~(f) 44 1.9 cgd #define F_ISSET(p, f) ((p)->flags & (f)) 45 1.9 cgd 46 1.2 cgd #include <mpool.h> 47 1.1 cgd 48 1.2 cgd #define DEFMINKEYPAGE (2) /* Minimum keys per page */ 49 1.2 cgd #define MINCACHE (5) /* Minimum cached pages */ 50 1.2 cgd #define MINPSIZE (512) /* Minimum page size */ 51 1.1 cgd 52 1.1 cgd /* 53 1.2 cgd * Page 0 of a btree file contains a copy of the meta-data. This page is also 54 1.2 cgd * used as an out-of-band page, i.e. page pointers that point to nowhere point 55 1.2 cgd * to page 0. Page 1 is the root of the btree. 56 1.1 cgd */ 57 1.2 cgd #define P_INVALID 0 /* Invalid tree page number. */ 58 1.2 cgd #define P_META 0 /* Tree metadata page number. */ 59 1.2 cgd #define P_ROOT 1 /* Tree root page number. */ 60 1.1 cgd 61 1.1 cgd /* 62 1.2 cgd * There are five page layouts in the btree: btree internal pages (BINTERNAL), 63 1.2 cgd * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages 64 1.2 cgd * (RLEAF) and overflow pages. All five page types have a page header (PAGE). 65 1.7 cgd * This implementation requires that values within structures NOT be padded. 66 1.2 cgd * (ANSI C permits random padding.) If your compiler pads randomly you'll have 67 1.2 cgd * to do some work to get this package to run. 68 1.1 cgd */ 69 1.4 cgd typedef struct _page { 70 1.2 cgd pgno_t pgno; /* this page's page number */ 71 1.2 cgd pgno_t prevpg; /* left sibling */ 72 1.2 cgd pgno_t nextpg; /* right sibling */ 73 1.1 cgd 74 1.2 cgd #define P_BINTERNAL 0x01 /* btree internal page */ 75 1.2 cgd #define P_BLEAF 0x02 /* leaf page */ 76 1.2 cgd #define P_OVERFLOW 0x04 /* overflow page */ 77 1.2 cgd #define P_RINTERNAL 0x08 /* recno internal page */ 78 1.2 cgd #define P_RLEAF 0x10 /* leaf page */ 79 1.2 cgd #define P_TYPE 0x1f /* type mask */ 80 1.2 cgd #define P_PRESERVE 0x20 /* never delete this chain of pages */ 81 1.16 joerg uint32_t flags; 82 1.1 cgd 83 1.2 cgd indx_t lower; /* lower bound of free space on page */ 84 1.2 cgd indx_t upper; /* upper bound of free space on page */ 85 1.7 cgd indx_t linp[1]; /* indx_t-aligned VAR. LENGTH DATA */ 86 1.2 cgd } PAGE; 87 1.1 cgd 88 1.2 cgd /* First and next index. */ 89 1.9 cgd #define BTDATAOFF \ 90 1.9 cgd (sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) + \ 91 1.16 joerg sizeof(uint32_t) + sizeof(indx_t) + sizeof(indx_t)) 92 1.15 christos 93 1.15 christos #define _NEXTINDEX(p) (((p)->lower - BTDATAOFF) / sizeof(indx_t)) 94 1.15 christos #ifdef _DIAGNOSTIC 95 1.15 christos static __inline indx_t 96 1.15 christos NEXTINDEX(const PAGE *p) { 97 1.15 christos size_t x = _NEXTINDEX(p); 98 1.15 christos _DBFIT(x, indx_t); 99 1.15 christos return (indx_t)x; 100 1.15 christos } 101 1.15 christos #else 102 1.15 christos #define NEXTINDEX(p) (indx_t)_NEXTINDEX(p) 103 1.15 christos #endif 104 1.1 cgd 105 1.1 cgd /* 106 1.2 cgd * For pages other than overflow pages, there is an array of offsets into the 107 1.2 cgd * rest of the page immediately following the page header. Each offset is to 108 1.2 cgd * an item which is unique to the type of page. The h_lower offset is just 109 1.2 cgd * past the last filled-in index. The h_upper offset is the first item on the 110 1.2 cgd * page. Offsets are from the beginning of the page. 111 1.1 cgd * 112 1.2 cgd * If an item is too big to store on a single page, a flag is set and the item 113 1.2 cgd * is a { page, size } pair such that the page is the first page of an overflow 114 1.2 cgd * chain with size bytes of item. Overflow pages are simply bytes without any 115 1.2 cgd * external structure. 116 1.1 cgd * 117 1.7 cgd * The page number and size fields in the items are pgno_t-aligned so they can 118 1.7 cgd * be manipulated without copying. (This presumes that 32 bit items can be 119 1.7 cgd * manipulated on this system.) 120 1.1 cgd */ 121 1.10 christos #define BTLALIGN(n) (((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1)) 122 1.16 joerg #define NOVFLSIZE (sizeof(pgno_t) + sizeof(uint32_t)) 123 1.1 cgd 124 1.1 cgd /* 125 1.2 cgd * For the btree internal pages, the item is a key. BINTERNALs are {key, pgno} 126 1.2 cgd * pairs, such that the key compares less than or equal to all of the records 127 1.2 cgd * on that page. For a tree without duplicate keys, an internal page with two 128 1.2 cgd * consecutive keys, a and b, will have all records greater than or equal to a 129 1.2 cgd * and less than b stored on the page associated with a. Duplicate keys are 130 1.2 cgd * somewhat special and can cause duplicate internal and leaf page records and 131 1.2 cgd * some minor modifications of the above rule. 132 1.2 cgd */ 133 1.4 cgd typedef struct _binternal { 134 1.16 joerg uint32_t ksize; /* key size */ 135 1.2 cgd pgno_t pgno; /* page number stored on */ 136 1.2 cgd #define P_BIGDATA 0x01 /* overflow data */ 137 1.2 cgd #define P_BIGKEY 0x02 /* overflow key */ 138 1.16 joerg uint8_t flags; 139 1.2 cgd char bytes[1]; /* data */ 140 1.2 cgd } BINTERNAL; 141 1.2 cgd 142 1.2 cgd /* Get the page's BINTERNAL structure at index indx. */ 143 1.9 cgd #define GETBINTERNAL(pg, indx) \ 144 1.11 christos ((BINTERNAL *)(void *)((char *)(void *)(pg) + (pg)->linp[indx])) 145 1.2 cgd 146 1.2 cgd /* Get the number of bytes in the entry. */ 147 1.15 christos #define _NBINTERNAL(len) \ 148 1.16 joerg BTLALIGN(sizeof(uint32_t) + sizeof(pgno_t) + sizeof(uint8_t) + (len)) 149 1.15 christos #ifdef _DIAGNOSTIC 150 1.16 joerg static __inline uint32_t 151 1.16 joerg NBINTERNAL(uint32_t len) { 152 1.15 christos size_t x = _NBINTERNAL(len); 153 1.16 joerg _DBFIT(x, uint32_t); 154 1.16 joerg return (uint32_t)x; 155 1.15 christos } 156 1.15 christos #else 157 1.16 joerg #define NBINTERNAL(len) (uint32_t)_NBINTERNAL(len) 158 1.15 christos #endif 159 1.2 cgd 160 1.2 cgd /* Copy a BINTERNAL entry to the page. */ 161 1.15 christos #define WR_BINTERNAL(p, size, pgno, flags) do { \ 162 1.16 joerg _DBFIT(size, uint32_t); \ 163 1.16 joerg *(uint32_t *)(void *)p = (uint32_t)size; \ 164 1.16 joerg p += sizeof(uint32_t); \ 165 1.11 christos *(pgno_t *)(void *)p = pgno; \ 166 1.7 cgd p += sizeof(pgno_t); \ 167 1.16 joerg *(uint8_t *)(void *)p = flags; \ 168 1.16 joerg p += sizeof(uint8_t); \ 169 1.18 rillig } while (0) 170 1.2 cgd 171 1.2 cgd /* 172 1.2 cgd * For the recno internal pages, the item is a page number with the number of 173 1.2 cgd * keys found on that page and below. 174 1.2 cgd */ 175 1.4 cgd typedef struct _rinternal { 176 1.2 cgd recno_t nrecs; /* number of records */ 177 1.2 cgd pgno_t pgno; /* page number stored below */ 178 1.2 cgd } RINTERNAL; 179 1.2 cgd 180 1.2 cgd /* Get the page's RINTERNAL structure at index indx. */ 181 1.9 cgd #define GETRINTERNAL(pg, indx) \ 182 1.11 christos ((RINTERNAL *)(void *)((char *)(void *)(pg) + (pg)->linp[indx])) 183 1.2 cgd 184 1.2 cgd /* Get the number of bytes in the entry. */ 185 1.9 cgd #define NRINTERNAL \ 186 1.10 christos BTLALIGN(sizeof(recno_t) + sizeof(pgno_t)) 187 1.2 cgd 188 1.17 ryoon /* Copy a RINTERNAL entry to the page. */ 189 1.15 christos #define WR_RINTERNAL(p, nrecs, pgno) do { \ 190 1.11 christos *(recno_t *)(void *)p = nrecs; \ 191 1.9 cgd p += sizeof(recno_t); \ 192 1.11 christos *(pgno_t *)(void *)p = pgno; \ 193 1.18 rillig } while (0) 194 1.2 cgd 195 1.2 cgd /* For the btree leaf pages, the item is a key and data pair. */ 196 1.4 cgd typedef struct _bleaf { 197 1.16 joerg uint32_t ksize; /* size of key */ 198 1.16 joerg uint32_t dsize; /* size of data */ 199 1.16 joerg uint8_t flags; /* P_BIGDATA, P_BIGKEY */ 200 1.2 cgd char bytes[1]; /* data */ 201 1.2 cgd } BLEAF; 202 1.2 cgd 203 1.2 cgd /* Get the page's BLEAF structure at index indx. */ 204 1.9 cgd #define GETBLEAF(pg, indx) \ 205 1.11 christos ((BLEAF *)(void *)((char *)(void *)(pg) + (pg)->linp[indx])) 206 1.2 cgd 207 1.2 cgd 208 1.2 cgd /* Get the number of bytes in the user's key/data pair. */ 209 1.15 christos #define _NBLEAFDBT(ksize, dsize) \ 210 1.16 joerg BTLALIGN(sizeof(uint32_t) + sizeof(uint32_t) + sizeof(uint8_t) + \ 211 1.2 cgd (ksize) + (dsize)) 212 1.15 christos #ifdef _DIAGNOSTIC 213 1.16 joerg static __inline uint32_t 214 1.15 christos NBLEAFDBT(size_t k, size_t d) { 215 1.15 christos size_t x = _NBLEAFDBT(k, d); 216 1.16 joerg _DBFIT(x, uint32_t); 217 1.16 joerg return (uint32_t)x; 218 1.15 christos } 219 1.15 christos #else 220 1.16 joerg #define NBLEAFDBT(p, q) (uint32_t)_NBLEAFDBT(p, q) 221 1.15 christos #endif 222 1.15 christos 223 1.15 christos /* Get the number of bytes in the entry. */ 224 1.15 christos #define NBLEAF(p) NBLEAFDBT((p)->ksize, (p)->dsize) 225 1.2 cgd 226 1.2 cgd /* Copy a BLEAF entry to the page. */ 227 1.15 christos #define WR_BLEAF(p, key, data, flags) do { \ 228 1.16 joerg _DBFIT(key->size, uint32_t); \ 229 1.16 joerg *(uint32_t *)(void *)p = (uint32_t)key->size; \ 230 1.16 joerg p += sizeof(uint32_t); \ 231 1.16 joerg _DBFIT(data->size, uint32_t); \ 232 1.16 joerg *(uint32_t *)(void *)p = (uint32_t)data->size; \ 233 1.16 joerg p += sizeof(uint32_t); \ 234 1.16 joerg *(uint8_t *)(void *)p = flags; \ 235 1.16 joerg p += sizeof(uint8_t); \ 236 1.15 christos (void)memmove(p, key->data, key->size); \ 237 1.7 cgd p += key->size; \ 238 1.15 christos (void)memmove(p, data->data, data->size); \ 239 1.18 rillig } while (0) 240 1.2 cgd 241 1.2 cgd /* For the recno leaf pages, the item is a data entry. */ 242 1.4 cgd typedef struct _rleaf { 243 1.16 joerg uint32_t dsize; /* size of data */ 244 1.16 joerg uint8_t flags; /* P_BIGDATA */ 245 1.2 cgd char bytes[1]; 246 1.2 cgd } RLEAF; 247 1.2 cgd 248 1.2 cgd /* Get the page's RLEAF structure at index indx. */ 249 1.9 cgd #define GETRLEAF(pg, indx) \ 250 1.11 christos ((RLEAF *)(void *)((char *)(void *)(pg) + (pg)->linp[indx])) 251 1.2 cgd 252 1.15 christos #define _NRLEAFDBT(dsize) \ 253 1.16 joerg BTLALIGN(sizeof(uint32_t) + sizeof(uint8_t) + (dsize)) 254 1.15 christos 255 1.15 christos #ifdef _DIAGNOSTIC 256 1.16 joerg static __inline uint32_t 257 1.15 christos NRLEAFDBT(size_t d) { 258 1.15 christos size_t x = _NRLEAFDBT(d); 259 1.16 joerg _DBFIT(x, uint32_t); 260 1.16 joerg return (uint32_t)x; 261 1.15 christos } 262 1.15 christos #else 263 1.16 joerg #define NRLEAFDBT(d) (uint32_t)_NRLEAFDBT(d) 264 1.15 christos #endif 265 1.15 christos 266 1.2 cgd /* Get the number of bytes in the entry. */ 267 1.2 cgd #define NRLEAF(p) NRLEAFDBT((p)->dsize) 268 1.2 cgd 269 1.2 cgd /* Get the number of bytes from the user's data. */ 270 1.2 cgd 271 1.2 cgd /* Copy a RLEAF entry to the page. */ 272 1.15 christos #define WR_RLEAF(p, data, flags) do { \ 273 1.16 joerg _DBFIT(data->size, uint32_t); \ 274 1.16 joerg *(uint32_t *)(void *)p = (uint32_t)data->size; \ 275 1.16 joerg p += sizeof(uint32_t); \ 276 1.16 joerg *(uint8_t *)(void *)p = flags; \ 277 1.16 joerg p += sizeof(uint8_t); \ 278 1.7 cgd memmove(p, data->data, data->size); \ 279 1.18 rillig } while (0) 280 1.2 cgd 281 1.2 cgd /* 282 1.2 cgd * A record in the tree is either a pointer to a page and an index in the page 283 1.2 cgd * or a page number and an index. These structures are used as a cursor, stack 284 1.2 cgd * entry and search returns as well as to pass records to other routines. 285 1.1 cgd * 286 1.2 cgd * One comment about searches. Internal page searches must find the largest 287 1.2 cgd * record less than key in the tree so that descents work. Leaf page searches 288 1.2 cgd * must find the smallest record greater than key so that the returned index 289 1.2 cgd * is the record's correct position for insertion. 290 1.2 cgd */ 291 1.4 cgd typedef struct _epgno { 292 1.2 cgd pgno_t pgno; /* the page number */ 293 1.2 cgd indx_t index; /* the index on the page */ 294 1.2 cgd } EPGNO; 295 1.2 cgd 296 1.4 cgd typedef struct _epg { 297 1.2 cgd PAGE *page; /* the (pinned) page */ 298 1.2 cgd indx_t index; /* the index on the page */ 299 1.2 cgd } EPG; 300 1.2 cgd 301 1.2 cgd /* 302 1.9 cgd * About cursors. The cursor (and the page that contained the key/data pair 303 1.9 cgd * that it referenced) can be deleted, which makes things a bit tricky. If 304 1.9 cgd * there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set 305 1.9 cgd * or there simply aren't any duplicates of the key) we copy the key that it 306 1.9 cgd * referenced when it's deleted, and reacquire a new cursor key if the cursor 307 1.9 cgd * is used again. If there are duplicates keys, we move to the next/previous 308 1.9 cgd * key, and set a flag so that we know what happened. NOTE: if duplicate (to 309 1.9 cgd * the cursor) keys are added to the tree during this process, it is undefined 310 1.9 cgd * if they will be returned or not in a cursor scan. 311 1.9 cgd * 312 1.9 cgd * The flags determine the possible states of the cursor: 313 1.9 cgd * 314 1.9 cgd * CURS_INIT The cursor references *something*. 315 1.9 cgd * CURS_ACQUIRE The cursor was deleted, and a key has been saved so that 316 1.9 cgd * we can reacquire the right position in the tree. 317 1.9 cgd * CURS_AFTER, CURS_BEFORE 318 1.9 cgd * The cursor was deleted, and now references a key/data pair 319 1.9 cgd * that has not yet been returned, either before or after the 320 1.9 cgd * deleted key/data pair. 321 1.9 cgd * XXX 322 1.9 cgd * This structure is broken out so that we can eventually offer multiple 323 1.9 cgd * cursors as part of the DB interface. 324 1.9 cgd */ 325 1.9 cgd typedef struct _cursor { 326 1.9 cgd EPGNO pg; /* B: Saved tree reference. */ 327 1.9 cgd DBT key; /* B: Saved key, or key.data == NULL. */ 328 1.9 cgd recno_t rcursor; /* R: recno cursor (1-based) */ 329 1.9 cgd 330 1.9 cgd #define CURS_ACQUIRE 0x01 /* B: Cursor needs to be reacquired. */ 331 1.9 cgd #define CURS_AFTER 0x02 /* B: Unreturned cursor after key. */ 332 1.9 cgd #define CURS_BEFORE 0x04 /* B: Unreturned cursor before key. */ 333 1.9 cgd #define CURS_INIT 0x08 /* RB: Cursor initialized. */ 334 1.16 joerg uint8_t flags; 335 1.9 cgd } CURSOR; 336 1.9 cgd 337 1.9 cgd /* 338 1.9 cgd * The metadata of the tree. The nrecs field is used only by the RECNO code. 339 1.2 cgd * This is because the btree doesn't really need it and it requires that every 340 1.2 cgd * put or delete call modify the metadata. 341 1.1 cgd */ 342 1.4 cgd typedef struct _btmeta { 343 1.16 joerg uint32_t magic; /* magic number */ 344 1.16 joerg uint32_t version; /* version */ 345 1.16 joerg uint32_t psize; /* page size */ 346 1.16 joerg uint32_t free; /* page number of first free page */ 347 1.16 joerg uint32_t nrecs; /* R: number of records */ 348 1.9 cgd 349 1.2 cgd #define SAVEMETA (B_NODUPS | R_RECNO) 350 1.16 joerg uint32_t flags; /* bt_flags & SAVEMETA */ 351 1.2 cgd } BTMETA; 352 1.1 cgd 353 1.2 cgd /* The in-memory btree/recno data structure. */ 354 1.4 cgd typedef struct _btree { 355 1.9 cgd MPOOL *bt_mp; /* memory pool cookie */ 356 1.2 cgd 357 1.9 cgd DB *bt_dbp; /* pointer to enclosing DB */ 358 1.2 cgd 359 1.9 cgd EPG bt_cur; /* current (pinned) page */ 360 1.9 cgd PAGE *bt_pinned; /* page pinned across calls */ 361 1.4 cgd 362 1.9 cgd CURSOR bt_cursor; /* cursor */ 363 1.2 cgd 364 1.9 cgd #define BT_PUSH(t, p, i) { \ 365 1.9 cgd t->bt_sp->pgno = p; \ 366 1.9 cgd t->bt_sp->index = i; \ 367 1.9 cgd ++t->bt_sp; \ 368 1.9 cgd } 369 1.9 cgd #define BT_POP(t) (t->bt_sp == t->bt_stack ? NULL : --t->bt_sp) 370 1.9 cgd #define BT_CLR(t) (t->bt_sp = t->bt_stack) 371 1.9 cgd EPGNO bt_stack[50]; /* stack of parent pages */ 372 1.9 cgd EPGNO *bt_sp; /* current stack pointer */ 373 1.2 cgd 374 1.9 cgd DBT bt_rkey; /* returned key */ 375 1.9 cgd DBT bt_rdata; /* returned data */ 376 1.2 cgd 377 1.9 cgd int bt_fd; /* tree file descriptor */ 378 1.2 cgd 379 1.9 cgd pgno_t bt_free; /* next free page */ 380 1.16 joerg uint32_t bt_psize; /* page size */ 381 1.9 cgd indx_t bt_ovflsize; /* cut-off for key/data overflow */ 382 1.9 cgd int bt_lorder; /* byte order */ 383 1.2 cgd /* sorted order */ 384 1.6 cgd enum { NOT, BACK, FORWARD } bt_order; 385 1.9 cgd EPGNO bt_last; /* last insert */ 386 1.2 cgd 387 1.2 cgd /* B: key comparison function */ 388 1.15 christos int (*bt_cmp)(const DBT *, const DBT *); 389 1.2 cgd /* B: prefix comparison function */ 390 1.15 christos size_t (*bt_pfx)(const DBT *, const DBT *); 391 1.2 cgd /* R: recno input function */ 392 1.15 christos int (*bt_irec)(struct _btree *, recno_t); 393 1.2 cgd 394 1.9 cgd FILE *bt_rfp; /* R: record FILE pointer */ 395 1.9 cgd int bt_rfd; /* R: record file descriptor */ 396 1.2 cgd 397 1.9 cgd caddr_t bt_cmap; /* R: current point in mapped space */ 398 1.9 cgd caddr_t bt_smap; /* R: start of mapped space */ 399 1.9 cgd caddr_t bt_emap; /* R: end of mapped space */ 400 1.9 cgd size_t bt_msize; /* R: size of mapped region. */ 401 1.9 cgd 402 1.9 cgd recno_t bt_nrecs; /* R: number of records */ 403 1.9 cgd size_t bt_reclen; /* R: fixed record length */ 404 1.16 joerg uint8_t bt_bval; /* R: delimiting byte/pad character */ 405 1.2 cgd 406 1.2 cgd /* 407 1.2 cgd * NB: 408 1.2 cgd * B_NODUPS and R_RECNO are stored on disk, and may not be changed. 409 1.2 cgd */ 410 1.9 cgd #define B_INMEM 0x00001 /* in-memory tree */ 411 1.9 cgd #define B_METADIRTY 0x00002 /* need to write metadata */ 412 1.9 cgd #define B_MODIFIED 0x00004 /* tree modified */ 413 1.9 cgd #define B_NEEDSWAP 0x00008 /* if byte order requires swapping */ 414 1.9 cgd #define B_RDONLY 0x00010 /* read-only tree */ 415 1.9 cgd 416 1.2 cgd #define B_NODUPS 0x00020 /* no duplicate keys permitted */ 417 1.4 cgd #define R_RECNO 0x00080 /* record oriented tree */ 418 1.2 cgd 419 1.9 cgd #define R_CLOSEFP 0x00040 /* opened a file pointer */ 420 1.9 cgd #define R_EOF 0x00100 /* end of input file reached. */ 421 1.9 cgd #define R_FIXLEN 0x00200 /* fixed length records */ 422 1.9 cgd #define R_MEMMAPPED 0x00400 /* memory mapped file. */ 423 1.9 cgd #define R_INMEM 0x00800 /* in-memory file */ 424 1.9 cgd #define R_MODIFIED 0x01000 /* modified file */ 425 1.9 cgd #define R_RDONLY 0x02000 /* read-only file */ 426 1.9 cgd 427 1.9 cgd #define B_DB_LOCK 0x04000 /* DB_LOCK specified. */ 428 1.9 cgd #define B_DB_SHMEM 0x08000 /* DB_SHMEM specified. */ 429 1.9 cgd #define B_DB_TXN 0x10000 /* DB_TXN specified. */ 430 1.16 joerg uint32_t flags; 431 1.2 cgd } BTREE; 432 1.1 cgd 433 1.2 cgd #include "extern.h" 434