btree.h revision 1.1.1.3 1 1.1 cgd /*-
2 1.1.1.2 cgd * Copyright (c) 1991, 1993, 1994
3 1.1.1.2 cgd * The Regents of the University of California. All rights reserved.
4 1.1 cgd *
5 1.1 cgd * This code is derived from software contributed to Berkeley by
6 1.1 cgd * Mike Olson.
7 1.1 cgd *
8 1.1 cgd * Redistribution and use in source and binary forms, with or without
9 1.1 cgd * modification, are permitted provided that the following conditions
10 1.1 cgd * are met:
11 1.1 cgd * 1. Redistributions of source code must retain the above copyright
12 1.1 cgd * notice, this list of conditions and the following disclaimer.
13 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer in the
15 1.1 cgd * documentation and/or other materials provided with the distribution.
16 1.1 cgd * 3. All advertising materials mentioning features or use of this software
17 1.1 cgd * must display the following acknowledgement:
18 1.1 cgd * This product includes software developed by the University of
19 1.1 cgd * California, Berkeley and its contributors.
20 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
21 1.1 cgd * may be used to endorse or promote products derived from this software
22 1.1 cgd * without specific prior written permission.
23 1.1 cgd *
24 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 cgd * SUCH DAMAGE.
35 1.1.1.2 cgd *
36 1.1.1.3 cgd * @(#)btree.h 8.11 (Berkeley) 8/17/94
37 1.1 cgd */
38 1.1 cgd
39 1.1.1.3 cgd /* Macros to set/clear/test flags. */
40 1.1.1.3 cgd #define F_SET(p, f) (p)->flags |= (f)
41 1.1.1.3 cgd #define F_CLR(p, f) (p)->flags &= ~(f)
42 1.1.1.3 cgd #define F_ISSET(p, f) ((p)->flags & (f))
43 1.1.1.3 cgd
44 1.1.1.2 cgd #include <mpool.h>
45 1.1 cgd
46 1.1.1.2 cgd #define DEFMINKEYPAGE (2) /* Minimum keys per page */
47 1.1.1.2 cgd #define MINCACHE (5) /* Minimum cached pages */
48 1.1.1.2 cgd #define MINPSIZE (512) /* Minimum page size */
49 1.1.1.2 cgd
50 1.1.1.2 cgd /*
51 1.1.1.2 cgd * Page 0 of a btree file contains a copy of the meta-data. This page is also
52 1.1.1.2 cgd * used as an out-of-band page, i.e. page pointers that point to nowhere point
53 1.1.1.2 cgd * to page 0. Page 1 is the root of the btree.
54 1.1.1.2 cgd */
55 1.1.1.2 cgd #define P_INVALID 0 /* Invalid tree page number. */
56 1.1.1.2 cgd #define P_META 0 /* Tree metadata page number. */
57 1.1.1.2 cgd #define P_ROOT 1 /* Tree root page number. */
58 1.1.1.2 cgd
59 1.1.1.2 cgd /*
60 1.1.1.2 cgd * There are five page layouts in the btree: btree internal pages (BINTERNAL),
61 1.1.1.2 cgd * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
62 1.1.1.2 cgd * (RLEAF) and overflow pages. All five page types have a page header (PAGE).
63 1.1.1.2 cgd * This implementation requires that values within structures NOT be padded.
64 1.1.1.2 cgd * (ANSI C permits random padding.) If your compiler pads randomly you'll have
65 1.1.1.2 cgd * to do some work to get this package to run.
66 1.1.1.2 cgd */
67 1.1.1.2 cgd typedef struct _page {
68 1.1.1.2 cgd pgno_t pgno; /* this page's page number */
69 1.1.1.2 cgd pgno_t prevpg; /* left sibling */
70 1.1.1.2 cgd pgno_t nextpg; /* right sibling */
71 1.1.1.2 cgd
72 1.1.1.2 cgd #define P_BINTERNAL 0x01 /* btree internal page */
73 1.1.1.2 cgd #define P_BLEAF 0x02 /* leaf page */
74 1.1.1.2 cgd #define P_OVERFLOW 0x04 /* overflow page */
75 1.1.1.2 cgd #define P_RINTERNAL 0x08 /* recno internal page */
76 1.1.1.2 cgd #define P_RLEAF 0x10 /* leaf page */
77 1.1.1.2 cgd #define P_TYPE 0x1f /* type mask */
78 1.1.1.2 cgd #define P_PRESERVE 0x20 /* never delete this chain of pages */
79 1.1.1.2 cgd u_int32_t flags;
80 1.1.1.2 cgd
81 1.1.1.2 cgd indx_t lower; /* lower bound of free space on page */
82 1.1.1.2 cgd indx_t upper; /* upper bound of free space on page */
83 1.1.1.2 cgd indx_t linp[1]; /* indx_t-aligned VAR. LENGTH DATA */
84 1.1.1.2 cgd } PAGE;
85 1.1.1.2 cgd
86 1.1.1.2 cgd /* First and next index. */
87 1.1.1.3 cgd #define BTDATAOFF \
88 1.1.1.3 cgd (sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) + \
89 1.1.1.3 cgd sizeof(u_int32_t) + sizeof(indx_t) + sizeof(indx_t))
90 1.1.1.2 cgd #define NEXTINDEX(p) (((p)->lower - BTDATAOFF) / sizeof(indx_t))
91 1.1.1.2 cgd
92 1.1.1.2 cgd /*
93 1.1.1.2 cgd * For pages other than overflow pages, there is an array of offsets into the
94 1.1.1.2 cgd * rest of the page immediately following the page header. Each offset is to
95 1.1.1.2 cgd * an item which is unique to the type of page. The h_lower offset is just
96 1.1.1.2 cgd * past the last filled-in index. The h_upper offset is the first item on the
97 1.1.1.2 cgd * page. Offsets are from the beginning of the page.
98 1.1 cgd *
99 1.1.1.2 cgd * If an item is too big to store on a single page, a flag is set and the item
100 1.1.1.2 cgd * is a { page, size } pair such that the page is the first page of an overflow
101 1.1.1.2 cgd * chain with size bytes of item. Overflow pages are simply bytes without any
102 1.1.1.2 cgd * external structure.
103 1.1 cgd *
104 1.1.1.2 cgd * The page number and size fields in the items are pgno_t-aligned so they can
105 1.1.1.2 cgd * be manipulated without copying. (This presumes that 32 bit items can be
106 1.1.1.2 cgd * manipulated on this system.)
107 1.1.1.2 cgd */
108 1.1.1.3 cgd #define LALIGN(n) (((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1))
109 1.1.1.2 cgd #define NOVFLSIZE (sizeof(pgno_t) + sizeof(u_int32_t))
110 1.1.1.2 cgd
111 1.1.1.2 cgd /*
112 1.1.1.2 cgd * For the btree internal pages, the item is a key. BINTERNALs are {key, pgno}
113 1.1.1.2 cgd * pairs, such that the key compares less than or equal to all of the records
114 1.1.1.2 cgd * on that page. For a tree without duplicate keys, an internal page with two
115 1.1.1.2 cgd * consecutive keys, a and b, will have all records greater than or equal to a
116 1.1.1.2 cgd * and less than b stored on the page associated with a. Duplicate keys are
117 1.1.1.2 cgd * somewhat special and can cause duplicate internal and leaf page records and
118 1.1.1.2 cgd * some minor modifications of the above rule.
119 1.1.1.2 cgd */
120 1.1.1.2 cgd typedef struct _binternal {
121 1.1.1.2 cgd u_int32_t ksize; /* key size */
122 1.1.1.2 cgd pgno_t pgno; /* page number stored on */
123 1.1.1.2 cgd #define P_BIGDATA 0x01 /* overflow data */
124 1.1.1.2 cgd #define P_BIGKEY 0x02 /* overflow key */
125 1.1.1.2 cgd u_char flags;
126 1.1.1.2 cgd char bytes[1]; /* data */
127 1.1.1.2 cgd } BINTERNAL;
128 1.1.1.2 cgd
129 1.1.1.2 cgd /* Get the page's BINTERNAL structure at index indx. */
130 1.1.1.3 cgd #define GETBINTERNAL(pg, indx) \
131 1.1.1.2 cgd ((BINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
132 1.1.1.2 cgd
133 1.1.1.2 cgd /* Get the number of bytes in the entry. */
134 1.1.1.3 cgd #define NBINTERNAL(len) \
135 1.1.1.2 cgd LALIGN(sizeof(u_int32_t) + sizeof(pgno_t) + sizeof(u_char) + (len))
136 1.1.1.2 cgd
137 1.1.1.2 cgd /* Copy a BINTERNAL entry to the page. */
138 1.1.1.2 cgd #define WR_BINTERNAL(p, size, pgno, flags) { \
139 1.1.1.2 cgd *(u_int32_t *)p = size; \
140 1.1.1.2 cgd p += sizeof(u_int32_t); \
141 1.1.1.2 cgd *(pgno_t *)p = pgno; \
142 1.1.1.2 cgd p += sizeof(pgno_t); \
143 1.1.1.2 cgd *(u_char *)p = flags; \
144 1.1.1.2 cgd p += sizeof(u_char); \
145 1.1.1.2 cgd }
146 1.1.1.2 cgd
147 1.1.1.2 cgd /*
148 1.1.1.2 cgd * For the recno internal pages, the item is a page number with the number of
149 1.1.1.2 cgd * keys found on that page and below.
150 1.1.1.2 cgd */
151 1.1.1.2 cgd typedef struct _rinternal {
152 1.1.1.2 cgd recno_t nrecs; /* number of records */
153 1.1.1.2 cgd pgno_t pgno; /* page number stored below */
154 1.1.1.2 cgd } RINTERNAL;
155 1.1.1.2 cgd
156 1.1.1.2 cgd /* Get the page's RINTERNAL structure at index indx. */
157 1.1.1.3 cgd #define GETRINTERNAL(pg, indx) \
158 1.1.1.2 cgd ((RINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
159 1.1.1.2 cgd
160 1.1.1.2 cgd /* Get the number of bytes in the entry. */
161 1.1.1.3 cgd #define NRINTERNAL \
162 1.1.1.2 cgd LALIGN(sizeof(recno_t) + sizeof(pgno_t))
163 1.1.1.2 cgd
164 1.1.1.2 cgd /* Copy a RINTERAL entry to the page. */
165 1.1.1.3 cgd #define WR_RINTERNAL(p, nrecs, pgno) { \
166 1.1.1.3 cgd *(recno_t *)p = nrecs; \
167 1.1.1.3 cgd p += sizeof(recno_t); \
168 1.1.1.3 cgd *(pgno_t *)p = pgno; \
169 1.1.1.2 cgd }
170 1.1.1.2 cgd
171 1.1.1.2 cgd /* For the btree leaf pages, the item is a key and data pair. */
172 1.1.1.2 cgd typedef struct _bleaf {
173 1.1.1.2 cgd u_int32_t ksize; /* size of key */
174 1.1.1.2 cgd u_int32_t dsize; /* size of data */
175 1.1.1.2 cgd u_char flags; /* P_BIGDATA, P_BIGKEY */
176 1.1.1.2 cgd char bytes[1]; /* data */
177 1.1.1.2 cgd } BLEAF;
178 1.1.1.2 cgd
179 1.1.1.2 cgd /* Get the page's BLEAF structure at index indx. */
180 1.1.1.3 cgd #define GETBLEAF(pg, indx) \
181 1.1.1.2 cgd ((BLEAF *)((char *)(pg) + (pg)->linp[indx]))
182 1.1.1.2 cgd
183 1.1.1.2 cgd /* Get the number of bytes in the entry. */
184 1.1.1.2 cgd #define NBLEAF(p) NBLEAFDBT((p)->ksize, (p)->dsize)
185 1.1.1.2 cgd
186 1.1.1.2 cgd /* Get the number of bytes in the user's key/data pair. */
187 1.1.1.3 cgd #define NBLEAFDBT(ksize, dsize) \
188 1.1.1.3 cgd LALIGN(sizeof(u_int32_t) + sizeof(u_int32_t) + sizeof(u_char) + \
189 1.1.1.2 cgd (ksize) + (dsize))
190 1.1.1.2 cgd
191 1.1.1.2 cgd /* Copy a BLEAF entry to the page. */
192 1.1.1.2 cgd #define WR_BLEAF(p, key, data, flags) { \
193 1.1.1.2 cgd *(u_int32_t *)p = key->size; \
194 1.1.1.2 cgd p += sizeof(u_int32_t); \
195 1.1.1.2 cgd *(u_int32_t *)p = data->size; \
196 1.1.1.2 cgd p += sizeof(u_int32_t); \
197 1.1.1.2 cgd *(u_char *)p = flags; \
198 1.1.1.2 cgd p += sizeof(u_char); \
199 1.1.1.2 cgd memmove(p, key->data, key->size); \
200 1.1.1.2 cgd p += key->size; \
201 1.1.1.2 cgd memmove(p, data->data, data->size); \
202 1.1.1.2 cgd }
203 1.1.1.2 cgd
204 1.1.1.2 cgd /* For the recno leaf pages, the item is a data entry. */
205 1.1.1.2 cgd typedef struct _rleaf {
206 1.1.1.2 cgd u_int32_t dsize; /* size of data */
207 1.1.1.2 cgd u_char flags; /* P_BIGDATA */
208 1.1.1.2 cgd char bytes[1];
209 1.1.1.2 cgd } RLEAF;
210 1.1.1.2 cgd
211 1.1.1.2 cgd /* Get the page's RLEAF structure at index indx. */
212 1.1.1.3 cgd #define GETRLEAF(pg, indx) \
213 1.1.1.2 cgd ((RLEAF *)((char *)(pg) + (pg)->linp[indx]))
214 1.1.1.2 cgd
215 1.1.1.2 cgd /* Get the number of bytes in the entry. */
216 1.1.1.2 cgd #define NRLEAF(p) NRLEAFDBT((p)->dsize)
217 1.1.1.2 cgd
218 1.1.1.2 cgd /* Get the number of bytes from the user's data. */
219 1.1.1.3 cgd #define NRLEAFDBT(dsize) \
220 1.1.1.2 cgd LALIGN(sizeof(u_int32_t) + sizeof(u_char) + (dsize))
221 1.1.1.2 cgd
222 1.1.1.2 cgd /* Copy a RLEAF entry to the page. */
223 1.1.1.2 cgd #define WR_RLEAF(p, data, flags) { \
224 1.1.1.2 cgd *(u_int32_t *)p = data->size; \
225 1.1.1.2 cgd p += sizeof(u_int32_t); \
226 1.1.1.2 cgd *(u_char *)p = flags; \
227 1.1.1.2 cgd p += sizeof(u_char); \
228 1.1.1.2 cgd memmove(p, data->data, data->size); \
229 1.1.1.2 cgd }
230 1.1.1.2 cgd
231 1.1.1.2 cgd /*
232 1.1.1.2 cgd * A record in the tree is either a pointer to a page and an index in the page
233 1.1.1.2 cgd * or a page number and an index. These structures are used as a cursor, stack
234 1.1.1.2 cgd * entry and search returns as well as to pass records to other routines.
235 1.1 cgd *
236 1.1.1.2 cgd * One comment about searches. Internal page searches must find the largest
237 1.1.1.2 cgd * record less than key in the tree so that descents work. Leaf page searches
238 1.1.1.2 cgd * must find the smallest record greater than key so that the returned index
239 1.1.1.2 cgd * is the record's correct position for insertion.
240 1.1.1.2 cgd */
241 1.1.1.2 cgd typedef struct _epgno {
242 1.1.1.2 cgd pgno_t pgno; /* the page number */
243 1.1.1.2 cgd indx_t index; /* the index on the page */
244 1.1.1.2 cgd } EPGNO;
245 1.1.1.2 cgd
246 1.1.1.2 cgd typedef struct _epg {
247 1.1.1.2 cgd PAGE *page; /* the (pinned) page */
248 1.1.1.2 cgd indx_t index; /* the index on the page */
249 1.1.1.2 cgd } EPG;
250 1.1.1.2 cgd
251 1.1.1.2 cgd /*
252 1.1.1.3 cgd * About cursors. The cursor (and the page that contained the key/data pair
253 1.1.1.3 cgd * that it referenced) can be deleted, which makes things a bit tricky. If
254 1.1.1.3 cgd * there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set
255 1.1.1.3 cgd * or there simply aren't any duplicates of the key) we copy the key that it
256 1.1.1.3 cgd * referenced when it's deleted, and reacquire a new cursor key if the cursor
257 1.1.1.3 cgd * is used again. If there are duplicates keys, we move to the next/previous
258 1.1.1.3 cgd * key, and set a flag so that we know what happened. NOTE: if duplicate (to
259 1.1.1.3 cgd * the cursor) keys are added to the tree during this process, it is undefined
260 1.1.1.3 cgd * if they will be returned or not in a cursor scan.
261 1.1.1.3 cgd *
262 1.1.1.3 cgd * The flags determine the possible states of the cursor:
263 1.1.1.3 cgd *
264 1.1.1.3 cgd * CURS_INIT The cursor references *something*.
265 1.1.1.3 cgd * CURS_ACQUIRE The cursor was deleted, and a key has been saved so that
266 1.1.1.3 cgd * we can reacquire the right position in the tree.
267 1.1.1.3 cgd * CURS_AFTER, CURS_BEFORE
268 1.1.1.3 cgd * The cursor was deleted, and now references a key/data pair
269 1.1.1.3 cgd * that has not yet been returned, either before or after the
270 1.1.1.3 cgd * deleted key/data pair.
271 1.1.1.3 cgd * XXX
272 1.1.1.3 cgd * This structure is broken out so that we can eventually offer multiple
273 1.1.1.3 cgd * cursors as part of the DB interface.
274 1.1.1.3 cgd */
275 1.1.1.3 cgd typedef struct _cursor {
276 1.1.1.3 cgd EPGNO pg; /* B: Saved tree reference. */
277 1.1.1.3 cgd DBT key; /* B: Saved key, or key.data == NULL. */
278 1.1.1.3 cgd recno_t rcursor; /* R: recno cursor (1-based) */
279 1.1.1.3 cgd
280 1.1.1.3 cgd #define CURS_ACQUIRE 0x01 /* B: Cursor needs to be reacquired. */
281 1.1.1.3 cgd #define CURS_AFTER 0x02 /* B: Unreturned cursor after key. */
282 1.1.1.3 cgd #define CURS_BEFORE 0x04 /* B: Unreturned cursor before key. */
283 1.1.1.3 cgd #define CURS_INIT 0x08 /* RB: Cursor initialized. */
284 1.1.1.3 cgd u_int8_t flags;
285 1.1.1.3 cgd } CURSOR;
286 1.1.1.3 cgd
287 1.1.1.3 cgd /*
288 1.1.1.3 cgd * The metadata of the tree. The nrecs field is used only by the RECNO code.
289 1.1.1.2 cgd * This is because the btree doesn't really need it and it requires that every
290 1.1.1.2 cgd * put or delete call modify the metadata.
291 1.1.1.2 cgd */
292 1.1.1.2 cgd typedef struct _btmeta {
293 1.1.1.3 cgd u_int32_t magic; /* magic number */
294 1.1.1.3 cgd u_int32_t version; /* version */
295 1.1.1.3 cgd u_int32_t psize; /* page size */
296 1.1.1.3 cgd u_int32_t free; /* page number of first free page */
297 1.1.1.3 cgd u_int32_t nrecs; /* R: number of records */
298 1.1.1.3 cgd
299 1.1.1.2 cgd #define SAVEMETA (B_NODUPS | R_RECNO)
300 1.1.1.3 cgd u_int32_t flags; /* bt_flags & SAVEMETA */
301 1.1.1.2 cgd } BTMETA;
302 1.1 cgd
303 1.1.1.2 cgd /* The in-memory btree/recno data structure. */
304 1.1.1.2 cgd typedef struct _btree {
305 1.1.1.3 cgd MPOOL *bt_mp; /* memory pool cookie */
306 1.1.1.2 cgd
307 1.1.1.3 cgd DB *bt_dbp; /* pointer to enclosing DB */
308 1.1.1.2 cgd
309 1.1.1.3 cgd EPG bt_cur; /* current (pinned) page */
310 1.1.1.3 cgd PAGE *bt_pinned; /* page pinned across calls */
311 1.1.1.2 cgd
312 1.1.1.3 cgd CURSOR bt_cursor; /* cursor */
313 1.1.1.2 cgd
314 1.1.1.3 cgd #define BT_PUSH(t, p, i) { \
315 1.1.1.3 cgd t->bt_sp->pgno = p; \
316 1.1.1.3 cgd t->bt_sp->index = i; \
317 1.1.1.3 cgd ++t->bt_sp; \
318 1.1.1.3 cgd }
319 1.1.1.3 cgd #define BT_POP(t) (t->bt_sp == t->bt_stack ? NULL : --t->bt_sp)
320 1.1.1.3 cgd #define BT_CLR(t) (t->bt_sp = t->bt_stack)
321 1.1.1.3 cgd EPGNO bt_stack[50]; /* stack of parent pages */
322 1.1.1.3 cgd EPGNO *bt_sp; /* current stack pointer */
323 1.1.1.2 cgd
324 1.1.1.3 cgd DBT bt_rkey; /* returned key */
325 1.1.1.3 cgd DBT bt_rdata; /* returned data */
326 1.1.1.2 cgd
327 1.1.1.3 cgd int bt_fd; /* tree file descriptor */
328 1.1.1.2 cgd
329 1.1.1.3 cgd pgno_t bt_free; /* next free page */
330 1.1.1.2 cgd u_int32_t bt_psize; /* page size */
331 1.1.1.3 cgd indx_t bt_ovflsize; /* cut-off for key/data overflow */
332 1.1.1.3 cgd int bt_lorder; /* byte order */
333 1.1.1.2 cgd /* sorted order */
334 1.1.1.2 cgd enum { NOT, BACK, FORWARD } bt_order;
335 1.1.1.3 cgd EPGNO bt_last; /* last insert */
336 1.1.1.2 cgd
337 1.1.1.2 cgd /* B: key comparison function */
338 1.1.1.2 cgd int (*bt_cmp) __P((const DBT *, const DBT *));
339 1.1.1.2 cgd /* B: prefix comparison function */
340 1.1.1.2 cgd size_t (*bt_pfx) __P((const DBT *, const DBT *));
341 1.1.1.2 cgd /* R: recno input function */
342 1.1.1.2 cgd int (*bt_irec) __P((struct _btree *, recno_t));
343 1.1.1.2 cgd
344 1.1.1.3 cgd FILE *bt_rfp; /* R: record FILE pointer */
345 1.1.1.3 cgd int bt_rfd; /* R: record file descriptor */
346 1.1.1.2 cgd
347 1.1.1.3 cgd caddr_t bt_cmap; /* R: current point in mapped space */
348 1.1.1.3 cgd caddr_t bt_smap; /* R: start of mapped space */
349 1.1.1.3 cgd caddr_t bt_emap; /* R: end of mapped space */
350 1.1.1.3 cgd size_t bt_msize; /* R: size of mapped region. */
351 1.1.1.3 cgd
352 1.1.1.3 cgd recno_t bt_nrecs; /* R: number of records */
353 1.1.1.3 cgd size_t bt_reclen; /* R: fixed record length */
354 1.1.1.3 cgd u_char bt_bval; /* R: delimiting byte/pad character */
355 1.1.1.2 cgd
356 1.1.1.2 cgd /*
357 1.1.1.2 cgd * NB:
358 1.1.1.2 cgd * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
359 1.1.1.2 cgd */
360 1.1.1.3 cgd #define B_INMEM 0x00001 /* in-memory tree */
361 1.1.1.3 cgd #define B_METADIRTY 0x00002 /* need to write metadata */
362 1.1.1.3 cgd #define B_MODIFIED 0x00004 /* tree modified */
363 1.1.1.3 cgd #define B_NEEDSWAP 0x00008 /* if byte order requires swapping */
364 1.1.1.3 cgd #define B_RDONLY 0x00010 /* read-only tree */
365 1.1.1.3 cgd
366 1.1.1.2 cgd #define B_NODUPS 0x00020 /* no duplicate keys permitted */
367 1.1.1.2 cgd #define R_RECNO 0x00080 /* record oriented tree */
368 1.1.1.2 cgd
369 1.1.1.3 cgd #define R_CLOSEFP 0x00040 /* opened a file pointer */
370 1.1.1.3 cgd #define R_EOF 0x00100 /* end of input file reached. */
371 1.1.1.3 cgd #define R_FIXLEN 0x00200 /* fixed length records */
372 1.1.1.3 cgd #define R_MEMMAPPED 0x00400 /* memory mapped file. */
373 1.1.1.3 cgd #define R_INMEM 0x00800 /* in-memory file */
374 1.1.1.3 cgd #define R_MODIFIED 0x01000 /* modified file */
375 1.1.1.3 cgd #define R_RDONLY 0x02000 /* read-only file */
376 1.1.1.3 cgd
377 1.1.1.3 cgd #define B_DB_LOCK 0x04000 /* DB_LOCK specified. */
378 1.1.1.3 cgd #define B_DB_SHMEM 0x08000 /* DB_SHMEM specified. */
379 1.1.1.3 cgd #define B_DB_TXN 0x10000 /* DB_TXN specified. */
380 1.1.1.3 cgd u_int32_t flags;
381 1.1.1.2 cgd } BTREE;
382 1.1 cgd
383 1.1.1.2 cgd #include "extern.h"
384