Home | History | Annotate | Line # | Download | only in btree
btree.h revision 1.11.12.1
      1  1.11.12.1   nathanw /*	$NetBSD: btree.h,v 1.11.12.1 2002/01/28 20:50:23 nathanw Exp $	*/
      2        1.8       cgd 
      3        1.1       cgd /*-
      4        1.7       cgd  * Copyright (c) 1991, 1993, 1994
      5        1.2       cgd  *	The Regents of the University of California.  All rights reserved.
      6        1.1       cgd  *
      7        1.1       cgd  * This code is derived from software contributed to Berkeley by
      8        1.1       cgd  * Mike Olson.
      9        1.1       cgd  *
     10        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     11        1.1       cgd  * modification, are permitted provided that the following conditions
     12        1.1       cgd  * are met:
     13        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     14        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     15        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     17        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     18        1.1       cgd  * 3. All advertising materials mentioning features or use of this software
     19        1.1       cgd  *    must display the following acknowledgement:
     20        1.1       cgd  *	This product includes software developed by the University of
     21        1.1       cgd  *	California, Berkeley and its contributors.
     22        1.1       cgd  * 4. Neither the name of the University nor the names of its contributors
     23        1.1       cgd  *    may be used to endorse or promote products derived from this software
     24        1.1       cgd  *    without specific prior written permission.
     25        1.1       cgd  *
     26        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36        1.1       cgd  * SUCH DAMAGE.
     37        1.2       cgd  *
     38        1.9       cgd  *	@(#)btree.h	8.11 (Berkeley) 8/17/94
     39        1.1       cgd  */
     40  1.11.12.1   nathanw 
     41  1.11.12.1   nathanw #if HAVE_CONFIG_H
     42  1.11.12.1   nathanw #include "config.h"
     43  1.11.12.1   nathanw #endif
     44        1.1       cgd 
     45        1.9       cgd /* Macros to set/clear/test flags. */
     46        1.9       cgd #define	F_SET(p, f)	(p)->flags |= (f)
     47        1.9       cgd #define	F_CLR(p, f)	(p)->flags &= ~(f)
     48        1.9       cgd #define	F_ISSET(p, f)	((p)->flags & (f))
     49        1.9       cgd 
     50        1.2       cgd #include <mpool.h>
     51        1.1       cgd 
     52        1.2       cgd #define	DEFMINKEYPAGE	(2)		/* Minimum keys per page */
     53        1.2       cgd #define	MINCACHE	(5)		/* Minimum cached pages */
     54        1.2       cgd #define	MINPSIZE	(512)		/* Minimum page size */
     55        1.1       cgd 
     56        1.1       cgd /*
     57        1.2       cgd  * Page 0 of a btree file contains a copy of the meta-data.  This page is also
     58        1.2       cgd  * used as an out-of-band page, i.e. page pointers that point to nowhere point
     59        1.2       cgd  * to page 0.  Page 1 is the root of the btree.
     60        1.1       cgd  */
     61        1.2       cgd #define	P_INVALID	 0		/* Invalid tree page number. */
     62        1.2       cgd #define	P_META		 0		/* Tree metadata page number. */
     63        1.2       cgd #define	P_ROOT		 1		/* Tree root page number. */
     64        1.1       cgd 
     65        1.1       cgd /*
     66        1.2       cgd  * There are five page layouts in the btree: btree internal pages (BINTERNAL),
     67        1.2       cgd  * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
     68        1.2       cgd  * (RLEAF) and overflow pages.  All five page types have a page header (PAGE).
     69        1.7       cgd  * This implementation requires that values within structures NOT be padded.
     70        1.2       cgd  * (ANSI C permits random padding.)  If your compiler pads randomly you'll have
     71        1.2       cgd  * to do some work to get this package to run.
     72        1.1       cgd  */
     73        1.4       cgd typedef struct _page {
     74        1.2       cgd 	pgno_t	pgno;			/* this page's page number */
     75        1.2       cgd 	pgno_t	prevpg;			/* left sibling */
     76        1.2       cgd 	pgno_t	nextpg;			/* right sibling */
     77        1.1       cgd 
     78        1.2       cgd #define	P_BINTERNAL	0x01		/* btree internal page */
     79        1.2       cgd #define	P_BLEAF		0x02		/* leaf page */
     80        1.2       cgd #define	P_OVERFLOW	0x04		/* overflow page */
     81        1.2       cgd #define	P_RINTERNAL	0x08		/* recno internal page */
     82        1.2       cgd #define	P_RLEAF		0x10		/* leaf page */
     83        1.2       cgd #define P_TYPE		0x1f		/* type mask */
     84        1.2       cgd #define	P_PRESERVE	0x20		/* never delete this chain of pages */
     85        1.7       cgd 	u_int32_t flags;
     86        1.1       cgd 
     87        1.2       cgd 	indx_t	lower;			/* lower bound of free space on page */
     88        1.2       cgd 	indx_t	upper;			/* upper bound of free space on page */
     89        1.7       cgd 	indx_t	linp[1];		/* indx_t-aligned VAR. LENGTH DATA */
     90        1.2       cgd } PAGE;
     91        1.1       cgd 
     92        1.2       cgd /* First and next index. */
     93        1.9       cgd #define	BTDATAOFF							\
     94        1.9       cgd 	(sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) +		\
     95        1.9       cgd 	    sizeof(u_int32_t) + sizeof(indx_t) + sizeof(indx_t))
     96        1.2       cgd #define	NEXTINDEX(p)	(((p)->lower - BTDATAOFF) / sizeof(indx_t))
     97        1.1       cgd 
     98        1.1       cgd /*
     99        1.2       cgd  * For pages other than overflow pages, there is an array of offsets into the
    100        1.2       cgd  * rest of the page immediately following the page header.  Each offset is to
    101        1.2       cgd  * an item which is unique to the type of page.  The h_lower offset is just
    102        1.2       cgd  * past the last filled-in index.  The h_upper offset is the first item on the
    103        1.2       cgd  * page.  Offsets are from the beginning of the page.
    104        1.1       cgd  *
    105        1.2       cgd  * If an item is too big to store on a single page, a flag is set and the item
    106        1.2       cgd  * is a { page, size } pair such that the page is the first page of an overflow
    107        1.2       cgd  * chain with size bytes of item.  Overflow pages are simply bytes without any
    108        1.2       cgd  * external structure.
    109        1.1       cgd  *
    110        1.7       cgd  * The page number and size fields in the items are pgno_t-aligned so they can
    111        1.7       cgd  * be manipulated without copying.  (This presumes that 32 bit items can be
    112        1.7       cgd  * manipulated on this system.)
    113        1.1       cgd  */
    114       1.10  christos #define	BTLALIGN(n)	(((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1))
    115        1.7       cgd #define	NOVFLSIZE	(sizeof(pgno_t) + sizeof(u_int32_t))
    116        1.1       cgd 
    117        1.1       cgd /*
    118        1.2       cgd  * For the btree internal pages, the item is a key.  BINTERNALs are {key, pgno}
    119        1.2       cgd  * pairs, such that the key compares less than or equal to all of the records
    120        1.2       cgd  * on that page.  For a tree without duplicate keys, an internal page with two
    121        1.2       cgd  * consecutive keys, a and b, will have all records greater than or equal to a
    122        1.2       cgd  * and less than b stored on the page associated with a.  Duplicate keys are
    123        1.2       cgd  * somewhat special and can cause duplicate internal and leaf page records and
    124        1.2       cgd  * some minor modifications of the above rule.
    125        1.2       cgd  */
    126        1.4       cgd typedef struct _binternal {
    127        1.7       cgd 	u_int32_t ksize;		/* key size */
    128        1.2       cgd 	pgno_t	pgno;			/* page number stored on */
    129        1.2       cgd #define	P_BIGDATA	0x01		/* overflow data */
    130        1.2       cgd #define	P_BIGKEY	0x02		/* overflow key */
    131        1.2       cgd 	u_char	flags;
    132        1.2       cgd 	char	bytes[1];		/* data */
    133        1.2       cgd } BINTERNAL;
    134        1.2       cgd 
    135        1.2       cgd /* Get the page's BINTERNAL structure at index indx. */
    136        1.9       cgd #define	GETBINTERNAL(pg, indx)						\
    137       1.11  christos 	((BINTERNAL *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
    138        1.2       cgd 
    139        1.2       cgd /* Get the number of bytes in the entry. */
    140        1.9       cgd #define NBINTERNAL(len)							\
    141       1.10  christos 	BTLALIGN(sizeof(u_int32_t) + sizeof(pgno_t) + sizeof(u_char) + (len))
    142        1.2       cgd 
    143        1.2       cgd /* Copy a BINTERNAL entry to the page. */
    144        1.7       cgd #define	WR_BINTERNAL(p, size, pgno, flags) {				\
    145       1.11  christos 	*(u_int32_t *)(void *)p = size;					\
    146        1.7       cgd 	p += sizeof(u_int32_t);						\
    147       1.11  christos 	*(pgno_t *)(void *)p = pgno;					\
    148        1.7       cgd 	p += sizeof(pgno_t);						\
    149       1.11  christos 	*(u_char *)(void *)p = flags;					\
    150        1.7       cgd 	p += sizeof(u_char);						\
    151        1.2       cgd }
    152        1.2       cgd 
    153        1.2       cgd /*
    154        1.2       cgd  * For the recno internal pages, the item is a page number with the number of
    155        1.2       cgd  * keys found on that page and below.
    156        1.2       cgd  */
    157        1.4       cgd typedef struct _rinternal {
    158        1.2       cgd 	recno_t	nrecs;			/* number of records */
    159        1.2       cgd 	pgno_t	pgno;			/* page number stored below */
    160        1.2       cgd } RINTERNAL;
    161        1.2       cgd 
    162        1.2       cgd /* Get the page's RINTERNAL structure at index indx. */
    163        1.9       cgd #define	GETRINTERNAL(pg, indx)						\
    164       1.11  christos 	((RINTERNAL *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
    165        1.2       cgd 
    166        1.2       cgd /* Get the number of bytes in the entry. */
    167        1.9       cgd #define NRINTERNAL							\
    168       1.10  christos 	BTLALIGN(sizeof(recno_t) + sizeof(pgno_t))
    169        1.2       cgd 
    170        1.2       cgd /* Copy a RINTERAL entry to the page. */
    171        1.9       cgd #define	WR_RINTERNAL(p, nrecs, pgno) {					\
    172       1.11  christos 	*(recno_t *)(void *)p = nrecs;					\
    173        1.9       cgd 	p += sizeof(recno_t);						\
    174       1.11  christos 	*(pgno_t *)(void *)p = pgno;					\
    175        1.2       cgd }
    176        1.2       cgd 
    177        1.2       cgd /* For the btree leaf pages, the item is a key and data pair. */
    178        1.4       cgd typedef struct _bleaf {
    179        1.7       cgd 	u_int32_t	ksize;		/* size of key */
    180        1.7       cgd 	u_int32_t	dsize;		/* size of data */
    181        1.2       cgd 	u_char	flags;			/* P_BIGDATA, P_BIGKEY */
    182        1.2       cgd 	char	bytes[1];		/* data */
    183        1.2       cgd } BLEAF;
    184        1.2       cgd 
    185        1.2       cgd /* Get the page's BLEAF structure at index indx. */
    186        1.9       cgd #define	GETBLEAF(pg, indx)						\
    187       1.11  christos 	((BLEAF *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
    188        1.2       cgd 
    189        1.2       cgd /* Get the number of bytes in the entry. */
    190        1.2       cgd #define NBLEAF(p)	NBLEAFDBT((p)->ksize, (p)->dsize)
    191        1.2       cgd 
    192        1.2       cgd /* Get the number of bytes in the user's key/data pair. */
    193        1.9       cgd #define NBLEAFDBT(ksize, dsize)						\
    194       1.10  christos 	BTLALIGN(sizeof(u_int32_t) + sizeof(u_int32_t) + sizeof(u_char) +	\
    195        1.2       cgd 	    (ksize) + (dsize))
    196        1.2       cgd 
    197        1.2       cgd /* Copy a BLEAF entry to the page. */
    198        1.7       cgd #define	WR_BLEAF(p, key, data, flags) {					\
    199       1.11  christos 	*(u_int32_t *)(void *)p = key->size;				\
    200        1.7       cgd 	p += sizeof(u_int32_t);						\
    201       1.11  christos 	*(u_int32_t *)(void *)p = data->size;				\
    202        1.7       cgd 	p += sizeof(u_int32_t);						\
    203       1.11  christos 	*(u_char *)(void *)p = flags;					\
    204        1.7       cgd 	p += sizeof(u_char);						\
    205        1.7       cgd 	memmove(p, key->data, key->size);				\
    206        1.7       cgd 	p += key->size;							\
    207        1.7       cgd 	memmove(p, data->data, data->size);				\
    208        1.2       cgd }
    209        1.2       cgd 
    210        1.2       cgd /* For the recno leaf pages, the item is a data entry. */
    211        1.4       cgd typedef struct _rleaf {
    212        1.7       cgd 	u_int32_t	dsize;		/* size of data */
    213        1.2       cgd 	u_char	flags;			/* P_BIGDATA */
    214        1.2       cgd 	char	bytes[1];
    215        1.2       cgd } RLEAF;
    216        1.2       cgd 
    217        1.2       cgd /* Get the page's RLEAF structure at index indx. */
    218        1.9       cgd #define	GETRLEAF(pg, indx)						\
    219       1.11  christos 	((RLEAF *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
    220        1.2       cgd 
    221        1.2       cgd /* Get the number of bytes in the entry. */
    222        1.2       cgd #define NRLEAF(p)	NRLEAFDBT((p)->dsize)
    223        1.2       cgd 
    224        1.2       cgd /* Get the number of bytes from the user's data. */
    225        1.9       cgd #define	NRLEAFDBT(dsize)						\
    226       1.10  christos 	BTLALIGN(sizeof(u_int32_t) + sizeof(u_char) + (dsize))
    227        1.2       cgd 
    228        1.2       cgd /* Copy a RLEAF entry to the page. */
    229        1.7       cgd #define	WR_RLEAF(p, data, flags) {					\
    230       1.11  christos 	*(u_int32_t *)(void *)p = data->size;				\
    231        1.7       cgd 	p += sizeof(u_int32_t);						\
    232       1.11  christos 	*(u_char *)(void *)p = flags;					\
    233        1.7       cgd 	p += sizeof(u_char);						\
    234        1.7       cgd 	memmove(p, data->data, data->size);				\
    235        1.2       cgd }
    236        1.2       cgd 
    237        1.2       cgd /*
    238        1.2       cgd  * A record in the tree is either a pointer to a page and an index in the page
    239        1.2       cgd  * or a page number and an index.  These structures are used as a cursor, stack
    240        1.2       cgd  * entry and search returns as well as to pass records to other routines.
    241        1.1       cgd  *
    242        1.2       cgd  * One comment about searches.  Internal page searches must find the largest
    243        1.2       cgd  * record less than key in the tree so that descents work.  Leaf page searches
    244        1.2       cgd  * must find the smallest record greater than key so that the returned index
    245        1.2       cgd  * is the record's correct position for insertion.
    246        1.2       cgd  */
    247        1.4       cgd typedef struct _epgno {
    248        1.2       cgd 	pgno_t	pgno;			/* the page number */
    249        1.2       cgd 	indx_t	index;			/* the index on the page */
    250        1.2       cgd } EPGNO;
    251        1.2       cgd 
    252        1.4       cgd typedef struct _epg {
    253        1.2       cgd 	PAGE	*page;			/* the (pinned) page */
    254        1.2       cgd 	indx_t	 index;			/* the index on the page */
    255        1.2       cgd } EPG;
    256        1.2       cgd 
    257        1.2       cgd /*
    258        1.9       cgd  * About cursors.  The cursor (and the page that contained the key/data pair
    259        1.9       cgd  * that it referenced) can be deleted, which makes things a bit tricky.  If
    260        1.9       cgd  * there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set
    261        1.9       cgd  * or there simply aren't any duplicates of the key) we copy the key that it
    262        1.9       cgd  * referenced when it's deleted, and reacquire a new cursor key if the cursor
    263        1.9       cgd  * is used again.  If there are duplicates keys, we move to the next/previous
    264        1.9       cgd  * key, and set a flag so that we know what happened.  NOTE: if duplicate (to
    265        1.9       cgd  * the cursor) keys are added to the tree during this process, it is undefined
    266        1.9       cgd  * if they will be returned or not in a cursor scan.
    267        1.9       cgd  *
    268        1.9       cgd  * The flags determine the possible states of the cursor:
    269        1.9       cgd  *
    270        1.9       cgd  * CURS_INIT	The cursor references *something*.
    271        1.9       cgd  * CURS_ACQUIRE	The cursor was deleted, and a key has been saved so that
    272        1.9       cgd  *		we can reacquire the right position in the tree.
    273        1.9       cgd  * CURS_AFTER, CURS_BEFORE
    274        1.9       cgd  *		The cursor was deleted, and now references a key/data pair
    275        1.9       cgd  *		that has not yet been returned, either before or after the
    276        1.9       cgd  *		deleted key/data pair.
    277        1.9       cgd  * XXX
    278        1.9       cgd  * This structure is broken out so that we can eventually offer multiple
    279        1.9       cgd  * cursors as part of the DB interface.
    280        1.9       cgd  */
    281        1.9       cgd typedef struct _cursor {
    282        1.9       cgd 	EPGNO	 pg;			/* B: Saved tree reference. */
    283        1.9       cgd 	DBT	 key;			/* B: Saved key, or key.data == NULL. */
    284        1.9       cgd 	recno_t	 rcursor;		/* R: recno cursor (1-based) */
    285        1.9       cgd 
    286        1.9       cgd #define	CURS_ACQUIRE	0x01		/*  B: Cursor needs to be reacquired. */
    287        1.9       cgd #define	CURS_AFTER	0x02		/*  B: Unreturned cursor after key. */
    288        1.9       cgd #define	CURS_BEFORE	0x04		/*  B: Unreturned cursor before key. */
    289        1.9       cgd #define	CURS_INIT	0x08		/* RB: Cursor initialized. */
    290        1.9       cgd 	u_int8_t flags;
    291        1.9       cgd } CURSOR;
    292        1.9       cgd 
    293        1.9       cgd /*
    294        1.9       cgd  * The metadata of the tree.  The nrecs field is used only by the RECNO code.
    295        1.2       cgd  * This is because the btree doesn't really need it and it requires that every
    296        1.2       cgd  * put or delete call modify the metadata.
    297        1.1       cgd  */
    298        1.4       cgd typedef struct _btmeta {
    299        1.9       cgd 	u_int32_t	magic;		/* magic number */
    300        1.9       cgd 	u_int32_t	version;	/* version */
    301        1.9       cgd 	u_int32_t	psize;		/* page size */
    302        1.9       cgd 	u_int32_t	free;		/* page number of first free page */
    303        1.9       cgd 	u_int32_t	nrecs;		/* R: number of records */
    304        1.9       cgd 
    305        1.2       cgd #define	SAVEMETA	(B_NODUPS | R_RECNO)
    306        1.9       cgd 	u_int32_t	flags;		/* bt_flags & SAVEMETA */
    307        1.2       cgd } BTMETA;
    308        1.1       cgd 
    309        1.2       cgd /* The in-memory btree/recno data structure. */
    310        1.4       cgd typedef struct _btree {
    311        1.9       cgd 	MPOOL	 *bt_mp;		/* memory pool cookie */
    312        1.2       cgd 
    313        1.9       cgd 	DB	 *bt_dbp;		/* pointer to enclosing DB */
    314        1.2       cgd 
    315        1.9       cgd 	EPG	  bt_cur;		/* current (pinned) page */
    316        1.9       cgd 	PAGE	 *bt_pinned;		/* page pinned across calls */
    317        1.4       cgd 
    318        1.9       cgd 	CURSOR	  bt_cursor;		/* cursor */
    319        1.2       cgd 
    320        1.9       cgd #define	BT_PUSH(t, p, i) {						\
    321        1.9       cgd 	t->bt_sp->pgno = p; 						\
    322        1.9       cgd 	t->bt_sp->index = i; 						\
    323        1.9       cgd 	++t->bt_sp;							\
    324        1.9       cgd }
    325        1.9       cgd #define	BT_POP(t)	(t->bt_sp == t->bt_stack ? NULL : --t->bt_sp)
    326        1.9       cgd #define	BT_CLR(t)	(t->bt_sp = t->bt_stack)
    327        1.9       cgd 	EPGNO	  bt_stack[50];		/* stack of parent pages */
    328        1.9       cgd 	EPGNO	 *bt_sp;		/* current stack pointer */
    329        1.2       cgd 
    330        1.9       cgd 	DBT	  bt_rkey;		/* returned key */
    331        1.9       cgd 	DBT	  bt_rdata;		/* returned data */
    332        1.2       cgd 
    333        1.9       cgd 	int	  bt_fd;		/* tree file descriptor */
    334        1.2       cgd 
    335        1.9       cgd 	pgno_t	  bt_free;		/* next free page */
    336        1.7       cgd 	u_int32_t bt_psize;		/* page size */
    337        1.9       cgd 	indx_t	  bt_ovflsize;		/* cut-off for key/data overflow */
    338        1.9       cgd 	int	  bt_lorder;		/* byte order */
    339        1.2       cgd 					/* sorted order */
    340        1.6       cgd 	enum { NOT, BACK, FORWARD } bt_order;
    341        1.9       cgd 	EPGNO	  bt_last;		/* last insert */
    342        1.2       cgd 
    343        1.2       cgd 					/* B: key comparison function */
    344        1.2       cgd 	int	(*bt_cmp) __P((const DBT *, const DBT *));
    345        1.2       cgd 					/* B: prefix comparison function */
    346        1.7       cgd 	size_t	(*bt_pfx) __P((const DBT *, const DBT *));
    347        1.2       cgd 					/* R: recno input function */
    348        1.4       cgd 	int	(*bt_irec) __P((struct _btree *, recno_t));
    349        1.2       cgd 
    350        1.9       cgd 	FILE	 *bt_rfp;		/* R: record FILE pointer */
    351        1.9       cgd 	int	  bt_rfd;		/* R: record file descriptor */
    352        1.2       cgd 
    353        1.9       cgd 	caddr_t	  bt_cmap;		/* R: current point in mapped space */
    354        1.9       cgd 	caddr_t	  bt_smap;		/* R: start of mapped space */
    355        1.9       cgd 	caddr_t   bt_emap;		/* R: end of mapped space */
    356        1.9       cgd 	size_t	  bt_msize;		/* R: size of mapped region. */
    357        1.9       cgd 
    358        1.9       cgd 	recno_t	  bt_nrecs;		/* R: number of records */
    359        1.9       cgd 	size_t	  bt_reclen;		/* R: fixed record length */
    360        1.9       cgd 	u_char	  bt_bval;		/* R: delimiting byte/pad character */
    361        1.2       cgd 
    362        1.2       cgd /*
    363        1.2       cgd  * NB:
    364        1.2       cgd  * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
    365        1.2       cgd  */
    366        1.9       cgd #define	B_INMEM		0x00001		/* in-memory tree */
    367        1.9       cgd #define	B_METADIRTY	0x00002		/* need to write metadata */
    368        1.9       cgd #define	B_MODIFIED	0x00004		/* tree modified */
    369        1.9       cgd #define	B_NEEDSWAP	0x00008		/* if byte order requires swapping */
    370        1.9       cgd #define	B_RDONLY	0x00010		/* read-only tree */
    371        1.9       cgd 
    372        1.2       cgd #define	B_NODUPS	0x00020		/* no duplicate keys permitted */
    373        1.4       cgd #define	R_RECNO		0x00080		/* record oriented tree */
    374        1.2       cgd 
    375        1.9       cgd #define	R_CLOSEFP	0x00040		/* opened a file pointer */
    376        1.9       cgd #define	R_EOF		0x00100		/* end of input file reached. */
    377        1.9       cgd #define	R_FIXLEN	0x00200		/* fixed length records */
    378        1.9       cgd #define	R_MEMMAPPED	0x00400		/* memory mapped file. */
    379        1.9       cgd #define	R_INMEM		0x00800		/* in-memory file */
    380        1.9       cgd #define	R_MODIFIED	0x01000		/* modified file */
    381        1.9       cgd #define	R_RDONLY	0x02000		/* read-only file */
    382        1.9       cgd 
    383        1.9       cgd #define	B_DB_LOCK	0x04000		/* DB_LOCK specified. */
    384        1.9       cgd #define	B_DB_SHMEM	0x08000		/* DB_SHMEM specified. */
    385        1.9       cgd #define	B_DB_TXN	0x10000		/* DB_TXN specified. */
    386        1.9       cgd 	u_int32_t flags;
    387        1.2       cgd } BTREE;
    388        1.1       cgd 
    389        1.2       cgd #include "extern.h"
    390