Home | History | Annotate | Line # | Download | only in btree
btree.h revision 1.16.2.1
      1  1.16.2.1      yamt /*	$NetBSD: btree.h,v 1.16.2.1 2014/05/22 11:36:51 yamt Exp $	*/
      2       1.8       cgd 
      3       1.1       cgd /*-
      4       1.7       cgd  * Copyright (c) 1991, 1993, 1994
      5       1.2       cgd  *	The Regents of the University of California.  All rights reserved.
      6       1.1       cgd  *
      7       1.1       cgd  * This code is derived from software contributed to Berkeley by
      8       1.1       cgd  * Mike Olson.
      9       1.1       cgd  *
     10       1.1       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.1       cgd  * modification, are permitted provided that the following conditions
     12       1.1       cgd  * are met:
     13       1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.1       cgd  *    documentation and/or other materials provided with the distribution.
     18      1.13       agc  * 3. Neither the name of the University nor the names of its contributors
     19       1.1       cgd  *    may be used to endorse or promote products derived from this software
     20       1.1       cgd  *    without specific prior written permission.
     21       1.1       cgd  *
     22       1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23       1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24       1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25       1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26       1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27       1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28       1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29       1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30       1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31       1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32       1.1       cgd  * SUCH DAMAGE.
     33       1.2       cgd  *
     34       1.9       cgd  *	@(#)btree.h	8.11 (Berkeley) 8/17/94
     35       1.1       cgd  */
     36      1.12        tv 
     37      1.14     lukem #if HAVE_NBTOOL_CONFIG_H
     38      1.14     lukem #include "nbtool_config.h"
     39      1.12        tv #endif
     40       1.1       cgd 
     41       1.9       cgd /* Macros to set/clear/test flags. */
     42       1.9       cgd #define	F_SET(p, f)	(p)->flags |= (f)
     43       1.9       cgd #define	F_CLR(p, f)	(p)->flags &= ~(f)
     44       1.9       cgd #define	F_ISSET(p, f)	((p)->flags & (f))
     45       1.9       cgd 
     46       1.2       cgd #include <mpool.h>
     47       1.1       cgd 
     48       1.2       cgd #define	DEFMINKEYPAGE	(2)		/* Minimum keys per page */
     49       1.2       cgd #define	MINCACHE	(5)		/* Minimum cached pages */
     50       1.2       cgd #define	MINPSIZE	(512)		/* Minimum page size */
     51       1.1       cgd 
     52       1.1       cgd /*
     53       1.2       cgd  * Page 0 of a btree file contains a copy of the meta-data.  This page is also
     54       1.2       cgd  * used as an out-of-band page, i.e. page pointers that point to nowhere point
     55       1.2       cgd  * to page 0.  Page 1 is the root of the btree.
     56       1.1       cgd  */
     57       1.2       cgd #define	P_INVALID	 0		/* Invalid tree page number. */
     58       1.2       cgd #define	P_META		 0		/* Tree metadata page number. */
     59       1.2       cgd #define	P_ROOT		 1		/* Tree root page number. */
     60       1.1       cgd 
     61       1.1       cgd /*
     62       1.2       cgd  * There are five page layouts in the btree: btree internal pages (BINTERNAL),
     63       1.2       cgd  * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
     64       1.2       cgd  * (RLEAF) and overflow pages.  All five page types have a page header (PAGE).
     65       1.7       cgd  * This implementation requires that values within structures NOT be padded.
     66       1.2       cgd  * (ANSI C permits random padding.)  If your compiler pads randomly you'll have
     67       1.2       cgd  * to do some work to get this package to run.
     68       1.1       cgd  */
     69       1.4       cgd typedef struct _page {
     70       1.2       cgd 	pgno_t	pgno;			/* this page's page number */
     71       1.2       cgd 	pgno_t	prevpg;			/* left sibling */
     72       1.2       cgd 	pgno_t	nextpg;			/* right sibling */
     73       1.1       cgd 
     74       1.2       cgd #define	P_BINTERNAL	0x01		/* btree internal page */
     75       1.2       cgd #define	P_BLEAF		0x02		/* leaf page */
     76       1.2       cgd #define	P_OVERFLOW	0x04		/* overflow page */
     77       1.2       cgd #define	P_RINTERNAL	0x08		/* recno internal page */
     78       1.2       cgd #define	P_RLEAF		0x10		/* leaf page */
     79       1.2       cgd #define P_TYPE		0x1f		/* type mask */
     80       1.2       cgd #define	P_PRESERVE	0x20		/* never delete this chain of pages */
     81      1.16     joerg 	uint32_t flags;
     82       1.1       cgd 
     83       1.2       cgd 	indx_t	lower;			/* lower bound of free space on page */
     84       1.2       cgd 	indx_t	upper;			/* upper bound of free space on page */
     85       1.7       cgd 	indx_t	linp[1];		/* indx_t-aligned VAR. LENGTH DATA */
     86       1.2       cgd } PAGE;
     87       1.1       cgd 
     88       1.2       cgd /* First and next index. */
     89       1.9       cgd #define	BTDATAOFF							\
     90       1.9       cgd 	(sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) +		\
     91      1.16     joerg 	    sizeof(uint32_t) + sizeof(indx_t) + sizeof(indx_t))
     92      1.15  christos 
     93      1.15  christos #define	_NEXTINDEX(p) (((p)->lower - BTDATAOFF) / sizeof(indx_t))
     94      1.15  christos #ifdef _DIAGNOSTIC
     95      1.15  christos static __inline indx_t
     96      1.15  christos NEXTINDEX(const PAGE *p) {
     97      1.15  christos 	size_t x = _NEXTINDEX(p);
     98      1.15  christos 	_DBFIT(x, indx_t);
     99      1.15  christos 	return (indx_t)x;
    100      1.15  christos }
    101      1.15  christos #else
    102      1.15  christos #define	NEXTINDEX(p) (indx_t)_NEXTINDEX(p)
    103      1.15  christos #endif
    104       1.1       cgd 
    105       1.1       cgd /*
    106       1.2       cgd  * For pages other than overflow pages, there is an array of offsets into the
    107       1.2       cgd  * rest of the page immediately following the page header.  Each offset is to
    108       1.2       cgd  * an item which is unique to the type of page.  The h_lower offset is just
    109       1.2       cgd  * past the last filled-in index.  The h_upper offset is the first item on the
    110       1.2       cgd  * page.  Offsets are from the beginning of the page.
    111       1.1       cgd  *
    112       1.2       cgd  * If an item is too big to store on a single page, a flag is set and the item
    113       1.2       cgd  * is a { page, size } pair such that the page is the first page of an overflow
    114       1.2       cgd  * chain with size bytes of item.  Overflow pages are simply bytes without any
    115       1.2       cgd  * external structure.
    116       1.1       cgd  *
    117       1.7       cgd  * The page number and size fields in the items are pgno_t-aligned so they can
    118       1.7       cgd  * be manipulated without copying.  (This presumes that 32 bit items can be
    119       1.7       cgd  * manipulated on this system.)
    120       1.1       cgd  */
    121      1.10  christos #define	BTLALIGN(n)	(((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1))
    122      1.16     joerg #define	NOVFLSIZE	(sizeof(pgno_t) + sizeof(uint32_t))
    123       1.1       cgd 
    124       1.1       cgd /*
    125       1.2       cgd  * For the btree internal pages, the item is a key.  BINTERNALs are {key, pgno}
    126       1.2       cgd  * pairs, such that the key compares less than or equal to all of the records
    127       1.2       cgd  * on that page.  For a tree without duplicate keys, an internal page with two
    128       1.2       cgd  * consecutive keys, a and b, will have all records greater than or equal to a
    129       1.2       cgd  * and less than b stored on the page associated with a.  Duplicate keys are
    130       1.2       cgd  * somewhat special and can cause duplicate internal and leaf page records and
    131       1.2       cgd  * some minor modifications of the above rule.
    132       1.2       cgd  */
    133       1.4       cgd typedef struct _binternal {
    134      1.16     joerg 	uint32_t ksize;			/* key size */
    135       1.2       cgd 	pgno_t	pgno;			/* page number stored on */
    136       1.2       cgd #define	P_BIGDATA	0x01		/* overflow data */
    137       1.2       cgd #define	P_BIGKEY	0x02		/* overflow key */
    138      1.16     joerg 	uint8_t	flags;
    139       1.2       cgd 	char	bytes[1];		/* data */
    140       1.2       cgd } BINTERNAL;
    141       1.2       cgd 
    142       1.2       cgd /* Get the page's BINTERNAL structure at index indx. */
    143       1.9       cgd #define	GETBINTERNAL(pg, indx)						\
    144      1.11  christos 	((BINTERNAL *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
    145       1.2       cgd 
    146       1.2       cgd /* Get the number of bytes in the entry. */
    147      1.15  christos #define _NBINTERNAL(len)						\
    148      1.16     joerg     BTLALIGN(sizeof(uint32_t) + sizeof(pgno_t) + sizeof(uint8_t) + (len))
    149      1.15  christos #ifdef _DIAGNOSTIC
    150      1.16     joerg static __inline uint32_t
    151      1.16     joerg NBINTERNAL(uint32_t len) {
    152      1.15  christos 	size_t x = _NBINTERNAL(len);
    153      1.16     joerg 	_DBFIT(x, uint32_t);
    154      1.16     joerg 	return (uint32_t)x;
    155      1.15  christos }
    156      1.15  christos #else
    157      1.16     joerg #define NBINTERNAL(len)	(uint32_t)_NBINTERNAL(len)
    158      1.15  christos #endif
    159       1.2       cgd 
    160       1.2       cgd /* Copy a BINTERNAL entry to the page. */
    161      1.15  christos #define	WR_BINTERNAL(p, size, pgno, flags) do {				\
    162      1.16     joerg 	_DBFIT(size, uint32_t);						\
    163      1.16     joerg 	*(uint32_t *)(void *)p = (uint32_t)size;			\
    164      1.16     joerg 	p += sizeof(uint32_t);						\
    165      1.11  christos 	*(pgno_t *)(void *)p = pgno;					\
    166       1.7       cgd 	p += sizeof(pgno_t);						\
    167      1.16     joerg 	*(uint8_t *)(void *)p = flags;					\
    168      1.16     joerg 	p += sizeof(uint8_t);						\
    169      1.15  christos } while (/*CONSTCOND*/0)
    170       1.2       cgd 
    171       1.2       cgd /*
    172       1.2       cgd  * For the recno internal pages, the item is a page number with the number of
    173       1.2       cgd  * keys found on that page and below.
    174       1.2       cgd  */
    175       1.4       cgd typedef struct _rinternal {
    176       1.2       cgd 	recno_t	nrecs;			/* number of records */
    177       1.2       cgd 	pgno_t	pgno;			/* page number stored below */
    178       1.2       cgd } RINTERNAL;
    179       1.2       cgd 
    180       1.2       cgd /* Get the page's RINTERNAL structure at index indx. */
    181       1.9       cgd #define	GETRINTERNAL(pg, indx)						\
    182      1.11  christos 	((RINTERNAL *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
    183       1.2       cgd 
    184       1.2       cgd /* Get the number of bytes in the entry. */
    185       1.9       cgd #define NRINTERNAL							\
    186      1.10  christos 	BTLALIGN(sizeof(recno_t) + sizeof(pgno_t))
    187       1.2       cgd 
    188  1.16.2.1      yamt /* Copy a RINTERNAL entry to the page. */
    189      1.15  christos #define	WR_RINTERNAL(p, nrecs, pgno) do {				\
    190      1.11  christos 	*(recno_t *)(void *)p = nrecs;					\
    191       1.9       cgd 	p += sizeof(recno_t);						\
    192      1.11  christos 	*(pgno_t *)(void *)p = pgno;					\
    193      1.15  christos } while (/*CONSTCOND*/0)
    194       1.2       cgd 
    195       1.2       cgd /* For the btree leaf pages, the item is a key and data pair. */
    196       1.4       cgd typedef struct _bleaf {
    197      1.16     joerg 	uint32_t	ksize;		/* size of key */
    198      1.16     joerg 	uint32_t	dsize;		/* size of data */
    199      1.16     joerg 	uint8_t	flags;			/* P_BIGDATA, P_BIGKEY */
    200       1.2       cgd 	char	bytes[1];		/* data */
    201       1.2       cgd } BLEAF;
    202       1.2       cgd 
    203       1.2       cgd /* Get the page's BLEAF structure at index indx. */
    204       1.9       cgd #define	GETBLEAF(pg, indx)						\
    205      1.11  christos 	((BLEAF *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
    206       1.2       cgd 
    207       1.2       cgd 
    208       1.2       cgd /* Get the number of bytes in the user's key/data pair. */
    209      1.15  christos #define _NBLEAFDBT(ksize, dsize)					\
    210      1.16     joerg     BTLALIGN(sizeof(uint32_t) + sizeof(uint32_t) + sizeof(uint8_t) +	\
    211       1.2       cgd 	    (ksize) + (dsize))
    212      1.15  christos #ifdef _DIAGNOSTIC
    213      1.16     joerg static __inline uint32_t
    214      1.15  christos NBLEAFDBT(size_t k, size_t d) {
    215      1.15  christos 	size_t x = _NBLEAFDBT(k, d);
    216      1.16     joerg 	_DBFIT(x, uint32_t);
    217      1.16     joerg 	return (uint32_t)x;
    218      1.15  christos }
    219      1.15  christos #else
    220      1.16     joerg #define NBLEAFDBT(p, q)	(uint32_t)_NBLEAFDBT(p, q)
    221      1.15  christos #endif
    222      1.15  christos 
    223      1.15  christos /* Get the number of bytes in the entry. */
    224      1.15  christos #define NBLEAF(p)	NBLEAFDBT((p)->ksize, (p)->dsize)
    225       1.2       cgd 
    226       1.2       cgd /* Copy a BLEAF entry to the page. */
    227      1.15  christos #define	WR_BLEAF(p, key, data, flags) do {				\
    228      1.16     joerg 	_DBFIT(key->size, uint32_t);					\
    229      1.16     joerg 	*(uint32_t *)(void *)p = (uint32_t)key->size;			\
    230      1.16     joerg 	p += sizeof(uint32_t);						\
    231      1.16     joerg 	_DBFIT(data->size, uint32_t);					\
    232      1.16     joerg 	*(uint32_t *)(void *)p = (uint32_t)data->size;			\
    233      1.16     joerg 	p += sizeof(uint32_t);						\
    234      1.16     joerg 	*(uint8_t *)(void *)p = flags;					\
    235      1.16     joerg 	p += sizeof(uint8_t);						\
    236      1.15  christos 	(void)memmove(p, key->data, key->size);				\
    237       1.7       cgd 	p += key->size;							\
    238      1.15  christos 	(void)memmove(p, data->data, data->size);			\
    239      1.15  christos } while (/*CONSTCOND*/0)
    240       1.2       cgd 
    241       1.2       cgd /* For the recno leaf pages, the item is a data entry. */
    242       1.4       cgd typedef struct _rleaf {
    243      1.16     joerg 	uint32_t	dsize;		/* size of data */
    244      1.16     joerg 	uint8_t	flags;			/* P_BIGDATA */
    245       1.2       cgd 	char	bytes[1];
    246       1.2       cgd } RLEAF;
    247       1.2       cgd 
    248       1.2       cgd /* Get the page's RLEAF structure at index indx. */
    249       1.9       cgd #define	GETRLEAF(pg, indx)						\
    250      1.11  christos 	((RLEAF *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
    251       1.2       cgd 
    252      1.15  christos #define	_NRLEAFDBT(dsize)						\
    253      1.16     joerg 	BTLALIGN(sizeof(uint32_t) + sizeof(uint8_t) + (dsize))
    254      1.15  christos 
    255      1.15  christos #ifdef _DIAGNOSTIC
    256      1.16     joerg static __inline uint32_t
    257      1.15  christos NRLEAFDBT(size_t d) {
    258      1.15  christos 	size_t x = _NRLEAFDBT(d);
    259      1.16     joerg 	_DBFIT(x, uint32_t);
    260      1.16     joerg 	return (uint32_t)x;
    261      1.15  christos }
    262      1.15  christos #else
    263      1.16     joerg #define NRLEAFDBT(d)	(uint32_t)_NRLEAFDBT(d)
    264      1.15  christos #endif
    265      1.15  christos 
    266       1.2       cgd /* Get the number of bytes in the entry. */
    267       1.2       cgd #define NRLEAF(p)	NRLEAFDBT((p)->dsize)
    268       1.2       cgd 
    269       1.2       cgd /* Get the number of bytes from the user's data. */
    270       1.2       cgd 
    271       1.2       cgd /* Copy a RLEAF entry to the page. */
    272      1.15  christos #define	WR_RLEAF(p, data, flags) do {					\
    273      1.16     joerg 	_DBFIT(data->size, uint32_t);					\
    274      1.16     joerg 	*(uint32_t *)(void *)p = (uint32_t)data->size;			\
    275      1.16     joerg 	p += sizeof(uint32_t);						\
    276      1.16     joerg 	*(uint8_t *)(void *)p = flags;					\
    277      1.16     joerg 	p += sizeof(uint8_t);						\
    278       1.7       cgd 	memmove(p, data->data, data->size);				\
    279      1.15  christos } while (/*CONSTCOND*/0)
    280       1.2       cgd 
    281       1.2       cgd /*
    282       1.2       cgd  * A record in the tree is either a pointer to a page and an index in the page
    283       1.2       cgd  * or a page number and an index.  These structures are used as a cursor, stack
    284       1.2       cgd  * entry and search returns as well as to pass records to other routines.
    285       1.1       cgd  *
    286       1.2       cgd  * One comment about searches.  Internal page searches must find the largest
    287       1.2       cgd  * record less than key in the tree so that descents work.  Leaf page searches
    288       1.2       cgd  * must find the smallest record greater than key so that the returned index
    289       1.2       cgd  * is the record's correct position for insertion.
    290       1.2       cgd  */
    291       1.4       cgd typedef struct _epgno {
    292       1.2       cgd 	pgno_t	pgno;			/* the page number */
    293       1.2       cgd 	indx_t	index;			/* the index on the page */
    294       1.2       cgd } EPGNO;
    295       1.2       cgd 
    296       1.4       cgd typedef struct _epg {
    297       1.2       cgd 	PAGE	*page;			/* the (pinned) page */
    298       1.2       cgd 	indx_t	 index;			/* the index on the page */
    299       1.2       cgd } EPG;
    300       1.2       cgd 
    301       1.2       cgd /*
    302       1.9       cgd  * About cursors.  The cursor (and the page that contained the key/data pair
    303       1.9       cgd  * that it referenced) can be deleted, which makes things a bit tricky.  If
    304       1.9       cgd  * there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set
    305       1.9       cgd  * or there simply aren't any duplicates of the key) we copy the key that it
    306       1.9       cgd  * referenced when it's deleted, and reacquire a new cursor key if the cursor
    307       1.9       cgd  * is used again.  If there are duplicates keys, we move to the next/previous
    308       1.9       cgd  * key, and set a flag so that we know what happened.  NOTE: if duplicate (to
    309       1.9       cgd  * the cursor) keys are added to the tree during this process, it is undefined
    310       1.9       cgd  * if they will be returned or not in a cursor scan.
    311       1.9       cgd  *
    312       1.9       cgd  * The flags determine the possible states of the cursor:
    313       1.9       cgd  *
    314       1.9       cgd  * CURS_INIT	The cursor references *something*.
    315       1.9       cgd  * CURS_ACQUIRE	The cursor was deleted, and a key has been saved so that
    316       1.9       cgd  *		we can reacquire the right position in the tree.
    317       1.9       cgd  * CURS_AFTER, CURS_BEFORE
    318       1.9       cgd  *		The cursor was deleted, and now references a key/data pair
    319       1.9       cgd  *		that has not yet been returned, either before or after the
    320       1.9       cgd  *		deleted key/data pair.
    321       1.9       cgd  * XXX
    322       1.9       cgd  * This structure is broken out so that we can eventually offer multiple
    323       1.9       cgd  * cursors as part of the DB interface.
    324       1.9       cgd  */
    325       1.9       cgd typedef struct _cursor {
    326       1.9       cgd 	EPGNO	 pg;			/* B: Saved tree reference. */
    327       1.9       cgd 	DBT	 key;			/* B: Saved key, or key.data == NULL. */
    328       1.9       cgd 	recno_t	 rcursor;		/* R: recno cursor (1-based) */
    329       1.9       cgd 
    330       1.9       cgd #define	CURS_ACQUIRE	0x01		/*  B: Cursor needs to be reacquired. */
    331       1.9       cgd #define	CURS_AFTER	0x02		/*  B: Unreturned cursor after key. */
    332       1.9       cgd #define	CURS_BEFORE	0x04		/*  B: Unreturned cursor before key. */
    333       1.9       cgd #define	CURS_INIT	0x08		/* RB: Cursor initialized. */
    334      1.16     joerg 	uint8_t flags;
    335       1.9       cgd } CURSOR;
    336       1.9       cgd 
    337       1.9       cgd /*
    338       1.9       cgd  * The metadata of the tree.  The nrecs field is used only by the RECNO code.
    339       1.2       cgd  * This is because the btree doesn't really need it and it requires that every
    340       1.2       cgd  * put or delete call modify the metadata.
    341       1.1       cgd  */
    342       1.4       cgd typedef struct _btmeta {
    343      1.16     joerg 	uint32_t	magic;		/* magic number */
    344      1.16     joerg 	uint32_t	version;	/* version */
    345      1.16     joerg 	uint32_t	psize;		/* page size */
    346      1.16     joerg 	uint32_t	free;		/* page number of first free page */
    347      1.16     joerg 	uint32_t	nrecs;		/* R: number of records */
    348       1.9       cgd 
    349       1.2       cgd #define	SAVEMETA	(B_NODUPS | R_RECNO)
    350      1.16     joerg 	uint32_t	flags;		/* bt_flags & SAVEMETA */
    351       1.2       cgd } BTMETA;
    352       1.1       cgd 
    353       1.2       cgd /* The in-memory btree/recno data structure. */
    354       1.4       cgd typedef struct _btree {
    355       1.9       cgd 	MPOOL	 *bt_mp;		/* memory pool cookie */
    356       1.2       cgd 
    357       1.9       cgd 	DB	 *bt_dbp;		/* pointer to enclosing DB */
    358       1.2       cgd 
    359       1.9       cgd 	EPG	  bt_cur;		/* current (pinned) page */
    360       1.9       cgd 	PAGE	 *bt_pinned;		/* page pinned across calls */
    361       1.4       cgd 
    362       1.9       cgd 	CURSOR	  bt_cursor;		/* cursor */
    363       1.2       cgd 
    364       1.9       cgd #define	BT_PUSH(t, p, i) {						\
    365       1.9       cgd 	t->bt_sp->pgno = p; 						\
    366       1.9       cgd 	t->bt_sp->index = i; 						\
    367       1.9       cgd 	++t->bt_sp;							\
    368       1.9       cgd }
    369       1.9       cgd #define	BT_POP(t)	(t->bt_sp == t->bt_stack ? NULL : --t->bt_sp)
    370       1.9       cgd #define	BT_CLR(t)	(t->bt_sp = t->bt_stack)
    371       1.9       cgd 	EPGNO	  bt_stack[50];		/* stack of parent pages */
    372       1.9       cgd 	EPGNO	 *bt_sp;		/* current stack pointer */
    373       1.2       cgd 
    374       1.9       cgd 	DBT	  bt_rkey;		/* returned key */
    375       1.9       cgd 	DBT	  bt_rdata;		/* returned data */
    376       1.2       cgd 
    377       1.9       cgd 	int	  bt_fd;		/* tree file descriptor */
    378       1.2       cgd 
    379       1.9       cgd 	pgno_t	  bt_free;		/* next free page */
    380      1.16     joerg 	uint32_t bt_psize;		/* page size */
    381       1.9       cgd 	indx_t	  bt_ovflsize;		/* cut-off for key/data overflow */
    382       1.9       cgd 	int	  bt_lorder;		/* byte order */
    383       1.2       cgd 					/* sorted order */
    384       1.6       cgd 	enum { NOT, BACK, FORWARD } bt_order;
    385       1.9       cgd 	EPGNO	  bt_last;		/* last insert */
    386       1.2       cgd 
    387       1.2       cgd 					/* B: key comparison function */
    388      1.15  christos 	int	(*bt_cmp)(const DBT *, const DBT *);
    389       1.2       cgd 					/* B: prefix comparison function */
    390      1.15  christos 	size_t	(*bt_pfx)(const DBT *, const DBT *);
    391       1.2       cgd 					/* R: recno input function */
    392      1.15  christos 	int	(*bt_irec)(struct _btree *, recno_t);
    393       1.2       cgd 
    394       1.9       cgd 	FILE	 *bt_rfp;		/* R: record FILE pointer */
    395       1.9       cgd 	int	  bt_rfd;		/* R: record file descriptor */
    396       1.2       cgd 
    397       1.9       cgd 	caddr_t	  bt_cmap;		/* R: current point in mapped space */
    398       1.9       cgd 	caddr_t	  bt_smap;		/* R: start of mapped space */
    399       1.9       cgd 	caddr_t   bt_emap;		/* R: end of mapped space */
    400       1.9       cgd 	size_t	  bt_msize;		/* R: size of mapped region. */
    401       1.9       cgd 
    402       1.9       cgd 	recno_t	  bt_nrecs;		/* R: number of records */
    403       1.9       cgd 	size_t	  bt_reclen;		/* R: fixed record length */
    404      1.16     joerg 	uint8_t	  bt_bval;		/* R: delimiting byte/pad character */
    405       1.2       cgd 
    406       1.2       cgd /*
    407       1.2       cgd  * NB:
    408       1.2       cgd  * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
    409       1.2       cgd  */
    410       1.9       cgd #define	B_INMEM		0x00001		/* in-memory tree */
    411       1.9       cgd #define	B_METADIRTY	0x00002		/* need to write metadata */
    412       1.9       cgd #define	B_MODIFIED	0x00004		/* tree modified */
    413       1.9       cgd #define	B_NEEDSWAP	0x00008		/* if byte order requires swapping */
    414       1.9       cgd #define	B_RDONLY	0x00010		/* read-only tree */
    415       1.9       cgd 
    416       1.2       cgd #define	B_NODUPS	0x00020		/* no duplicate keys permitted */
    417       1.4       cgd #define	R_RECNO		0x00080		/* record oriented tree */
    418       1.2       cgd 
    419       1.9       cgd #define	R_CLOSEFP	0x00040		/* opened a file pointer */
    420       1.9       cgd #define	R_EOF		0x00100		/* end of input file reached. */
    421       1.9       cgd #define	R_FIXLEN	0x00200		/* fixed length records */
    422       1.9       cgd #define	R_MEMMAPPED	0x00400		/* memory mapped file. */
    423       1.9       cgd #define	R_INMEM		0x00800		/* in-memory file */
    424       1.9       cgd #define	R_MODIFIED	0x01000		/* modified file */
    425       1.9       cgd #define	R_RDONLY	0x02000		/* read-only file */
    426       1.9       cgd 
    427       1.9       cgd #define	B_DB_LOCK	0x04000		/* DB_LOCK specified. */
    428       1.9       cgd #define	B_DB_SHMEM	0x08000		/* DB_SHMEM specified. */
    429       1.9       cgd #define	B_DB_TXN	0x10000		/* DB_TXN specified. */
    430      1.16     joerg 	uint32_t flags;
    431       1.2       cgd } BTREE;
    432       1.1       cgd 
    433       1.2       cgd #include "extern.h"
    434