btree.h revision 1.2 1 1.1 cgd /*-
2 1.2 cgd * Copyright (c) 1991, 1993
3 1.2 cgd * The Regents of the University of California. All rights reserved.
4 1.1 cgd *
5 1.1 cgd * This code is derived from software contributed to Berkeley by
6 1.1 cgd * Mike Olson.
7 1.1 cgd *
8 1.1 cgd * Redistribution and use in source and binary forms, with or without
9 1.1 cgd * modification, are permitted provided that the following conditions
10 1.1 cgd * are met:
11 1.1 cgd * 1. Redistributions of source code must retain the above copyright
12 1.1 cgd * notice, this list of conditions and the following disclaimer.
13 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer in the
15 1.1 cgd * documentation and/or other materials provided with the distribution.
16 1.1 cgd * 3. All advertising materials mentioning features or use of this software
17 1.1 cgd * must display the following acknowledgement:
18 1.1 cgd * This product includes software developed by the University of
19 1.1 cgd * California, Berkeley and its contributors.
20 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
21 1.1 cgd * may be used to endorse or promote products derived from this software
22 1.1 cgd * without specific prior written permission.
23 1.1 cgd *
24 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 cgd * SUCH DAMAGE.
35 1.2 cgd *
36 1.2 cgd * @(#)btree.h 8.1 (Berkeley) 6/4/93
37 1.1 cgd */
38 1.1 cgd
39 1.2 cgd #include <mpool.h>
40 1.1 cgd
41 1.2 cgd #define DEFMINKEYPAGE (2) /* Minimum keys per page */
42 1.2 cgd #define MINCACHE (5) /* Minimum cached pages */
43 1.2 cgd #define MINPSIZE (512) /* Minimum page size */
44 1.1 cgd
45 1.1 cgd /*
46 1.2 cgd * Page 0 of a btree file contains a copy of the meta-data. This page is also
47 1.2 cgd * used as an out-of-band page, i.e. page pointers that point to nowhere point
48 1.2 cgd * to page 0. Page 1 is the root of the btree.
49 1.1 cgd */
50 1.2 cgd #define P_INVALID 0 /* Invalid tree page number. */
51 1.2 cgd #define P_META 0 /* Tree metadata page number. */
52 1.2 cgd #define P_ROOT 1 /* Tree root page number. */
53 1.1 cgd
54 1.1 cgd /*
55 1.2 cgd * There are five page layouts in the btree: btree internal pages (BINTERNAL),
56 1.2 cgd * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
57 1.2 cgd * (RLEAF) and overflow pages. All five page types have a page header (PAGE).
58 1.2 cgd * This implementation requires that longs within structures are NOT padded.
59 1.2 cgd * (ANSI C permits random padding.) If your compiler pads randomly you'll have
60 1.2 cgd * to do some work to get this package to run.
61 1.1 cgd */
62 1.2 cgd typedef struct PAGE {
63 1.2 cgd pgno_t pgno; /* this page's page number */
64 1.2 cgd pgno_t prevpg; /* left sibling */
65 1.2 cgd pgno_t nextpg; /* right sibling */
66 1.1 cgd
67 1.2 cgd #define P_BINTERNAL 0x01 /* btree internal page */
68 1.2 cgd #define P_BLEAF 0x02 /* leaf page */
69 1.2 cgd #define P_OVERFLOW 0x04 /* overflow page */
70 1.2 cgd #define P_RINTERNAL 0x08 /* recno internal page */
71 1.2 cgd #define P_RLEAF 0x10 /* leaf page */
72 1.2 cgd #define P_TYPE 0x1f /* type mask */
73 1.1 cgd
74 1.2 cgd #define P_PRESERVE 0x20 /* never delete this chain of pages */
75 1.2 cgd u_long flags;
76 1.1 cgd
77 1.2 cgd indx_t lower; /* lower bound of free space on page */
78 1.2 cgd indx_t upper; /* upper bound of free space on page */
79 1.2 cgd indx_t linp[1]; /* long-aligned VARIABLE LENGTH DATA */
80 1.2 cgd } PAGE;
81 1.1 cgd
82 1.2 cgd /* First and next index. */
83 1.2 cgd #define BTDATAOFF (sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) + \
84 1.2 cgd sizeof(u_long) + sizeof(indx_t) + sizeof(indx_t))
85 1.2 cgd #define NEXTINDEX(p) (((p)->lower - BTDATAOFF) / sizeof(indx_t))
86 1.1 cgd
87 1.1 cgd /*
88 1.2 cgd * For pages other than overflow pages, there is an array of offsets into the
89 1.2 cgd * rest of the page immediately following the page header. Each offset is to
90 1.2 cgd * an item which is unique to the type of page. The h_lower offset is just
91 1.2 cgd * past the last filled-in index. The h_upper offset is the first item on the
92 1.2 cgd * page. Offsets are from the beginning of the page.
93 1.1 cgd *
94 1.2 cgd * If an item is too big to store on a single page, a flag is set and the item
95 1.2 cgd * is a { page, size } pair such that the page is the first page of an overflow
96 1.2 cgd * chain with size bytes of item. Overflow pages are simply bytes without any
97 1.2 cgd * external structure.
98 1.1 cgd *
99 1.2 cgd * The size and page number fields in the items are long aligned so they can be
100 1.2 cgd * manipulated without copying.
101 1.1 cgd */
102 1.2 cgd #define LALIGN(n) (((n) + sizeof(u_long) - 1) & ~(sizeof(u_long) - 1))
103 1.2 cgd #define NOVFLSIZE (sizeof(pgno_t) + sizeof(size_t))
104 1.1 cgd
105 1.1 cgd /*
106 1.2 cgd * For the btree internal pages, the item is a key. BINTERNALs are {key, pgno}
107 1.2 cgd * pairs, such that the key compares less than or equal to all of the records
108 1.2 cgd * on that page. For a tree without duplicate keys, an internal page with two
109 1.2 cgd * consecutive keys, a and b, will have all records greater than or equal to a
110 1.2 cgd * and less than b stored on the page associated with a. Duplicate keys are
111 1.2 cgd * somewhat special and can cause duplicate internal and leaf page records and
112 1.2 cgd * some minor modifications of the above rule.
113 1.2 cgd */
114 1.2 cgd typedef struct BINTERNAL {
115 1.2 cgd size_t ksize; /* key size */
116 1.2 cgd pgno_t pgno; /* page number stored on */
117 1.2 cgd #define P_BIGDATA 0x01 /* overflow data */
118 1.2 cgd #define P_BIGKEY 0x02 /* overflow key */
119 1.2 cgd u_char flags;
120 1.2 cgd char bytes[1]; /* data */
121 1.2 cgd } BINTERNAL;
122 1.2 cgd
123 1.2 cgd /* Get the page's BINTERNAL structure at index indx. */
124 1.2 cgd #define GETBINTERNAL(pg, indx) \
125 1.2 cgd ((BINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
126 1.2 cgd
127 1.2 cgd /* Get the number of bytes in the entry. */
128 1.2 cgd #define NBINTERNAL(len) \
129 1.2 cgd LALIGN(sizeof(size_t) + sizeof(pgno_t) + sizeof(u_char) + (len))
130 1.2 cgd
131 1.2 cgd /* Copy a BINTERNAL entry to the page. */
132 1.2 cgd #define WR_BINTERNAL(p, size, pgno, flags) { \
133 1.2 cgd *(size_t *)p = size; \
134 1.2 cgd p += sizeof(size_t); \
135 1.2 cgd *(pgno_t *)p = pgno; \
136 1.2 cgd p += sizeof(pgno_t); \
137 1.2 cgd *(u_char *)p = flags; \
138 1.2 cgd p += sizeof(u_char); \
139 1.2 cgd }
140 1.2 cgd
141 1.2 cgd /*
142 1.2 cgd * For the recno internal pages, the item is a page number with the number of
143 1.2 cgd * keys found on that page and below.
144 1.2 cgd */
145 1.2 cgd typedef struct RINTERNAL {
146 1.2 cgd recno_t nrecs; /* number of records */
147 1.2 cgd pgno_t pgno; /* page number stored below */
148 1.2 cgd } RINTERNAL;
149 1.2 cgd
150 1.2 cgd /* Get the page's RINTERNAL structure at index indx. */
151 1.2 cgd #define GETRINTERNAL(pg, indx) \
152 1.2 cgd ((RINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
153 1.2 cgd
154 1.2 cgd /* Get the number of bytes in the entry. */
155 1.2 cgd #define NRINTERNAL \
156 1.2 cgd LALIGN(sizeof(recno_t) + sizeof(pgno_t))
157 1.2 cgd
158 1.2 cgd /* Copy a RINTERAL entry to the page. */
159 1.2 cgd #define WR_RINTERNAL(p, nrecs, pgno) { \
160 1.2 cgd *(recno_t *)p = nrecs; \
161 1.2 cgd p += sizeof(recno_t); \
162 1.2 cgd *(pgno_t *)p = pgno; \
163 1.2 cgd }
164 1.2 cgd
165 1.2 cgd /* For the btree leaf pages, the item is a key and data pair. */
166 1.2 cgd typedef struct BLEAF {
167 1.2 cgd size_t ksize; /* size of key */
168 1.2 cgd size_t dsize; /* size of data */
169 1.2 cgd u_char flags; /* P_BIGDATA, P_BIGKEY */
170 1.2 cgd char bytes[1]; /* data */
171 1.2 cgd } BLEAF;
172 1.2 cgd
173 1.2 cgd /* Get the page's BLEAF structure at index indx. */
174 1.2 cgd #define GETBLEAF(pg, indx) \
175 1.2 cgd ((BLEAF *)((char *)(pg) + (pg)->linp[indx]))
176 1.2 cgd
177 1.2 cgd /* Get the number of bytes in the entry. */
178 1.2 cgd #define NBLEAF(p) NBLEAFDBT((p)->ksize, (p)->dsize)
179 1.2 cgd
180 1.2 cgd /* Get the number of bytes in the user's key/data pair. */
181 1.2 cgd #define NBLEAFDBT(ksize, dsize) \
182 1.2 cgd LALIGN(sizeof(size_t) + sizeof(size_t) + sizeof(u_char) + \
183 1.2 cgd (ksize) + (dsize))
184 1.2 cgd
185 1.2 cgd /* Copy a BLEAF entry to the page. */
186 1.2 cgd #define WR_BLEAF(p, key, data, flags) { \
187 1.2 cgd *(size_t *)p = key->size; \
188 1.2 cgd p += sizeof(size_t); \
189 1.2 cgd *(size_t *)p = data->size; \
190 1.2 cgd p += sizeof(size_t); \
191 1.2 cgd *(u_char *)p = flags; \
192 1.2 cgd p += sizeof(u_char); \
193 1.2 cgd memmove(p, key->data, key->size); \
194 1.2 cgd p += key->size; \
195 1.2 cgd memmove(p, data->data, data->size); \
196 1.2 cgd }
197 1.2 cgd
198 1.2 cgd /* For the recno leaf pages, the item is a data entry. */
199 1.2 cgd typedef struct RLEAF {
200 1.2 cgd size_t dsize; /* size of data */
201 1.2 cgd u_char flags; /* P_BIGDATA */
202 1.2 cgd char bytes[1];
203 1.2 cgd } RLEAF;
204 1.2 cgd
205 1.2 cgd /* Get the page's RLEAF structure at index indx. */
206 1.2 cgd #define GETRLEAF(pg, indx) \
207 1.2 cgd ((RLEAF *)((char *)(pg) + (pg)->linp[indx]))
208 1.2 cgd
209 1.2 cgd /* Get the number of bytes in the entry. */
210 1.2 cgd #define NRLEAF(p) NRLEAFDBT((p)->dsize)
211 1.2 cgd
212 1.2 cgd /* Get the number of bytes from the user's data. */
213 1.2 cgd #define NRLEAFDBT(dsize) \
214 1.2 cgd LALIGN(sizeof(size_t) + sizeof(u_char) + (dsize))
215 1.2 cgd
216 1.2 cgd /* Copy a RLEAF entry to the page. */
217 1.2 cgd #define WR_RLEAF(p, data, flags) { \
218 1.2 cgd *(size_t *)p = data->size; \
219 1.2 cgd p += sizeof(size_t); \
220 1.2 cgd *(u_char *)p = flags; \
221 1.2 cgd p += sizeof(u_char); \
222 1.2 cgd memmove(p, data->data, data->size); \
223 1.2 cgd }
224 1.2 cgd
225 1.2 cgd /*
226 1.2 cgd * A record in the tree is either a pointer to a page and an index in the page
227 1.2 cgd * or a page number and an index. These structures are used as a cursor, stack
228 1.2 cgd * entry and search returns as well as to pass records to other routines.
229 1.1 cgd *
230 1.2 cgd * One comment about searches. Internal page searches must find the largest
231 1.2 cgd * record less than key in the tree so that descents work. Leaf page searches
232 1.2 cgd * must find the smallest record greater than key so that the returned index
233 1.2 cgd * is the record's correct position for insertion.
234 1.1 cgd *
235 1.2 cgd * One comment about cursors. The cursor key is never removed from the tree,
236 1.2 cgd * even if deleted. This is because it is quite difficult to decide where the
237 1.2 cgd * cursor should be when other keys have been inserted/deleted in the tree;
238 1.2 cgd * duplicate keys make it impossible. This scheme does require extra work
239 1.2 cgd * though, to make sure that we don't perform an operation on a deleted key.
240 1.2 cgd */
241 1.2 cgd typedef struct EPGNO {
242 1.2 cgd pgno_t pgno; /* the page number */
243 1.2 cgd indx_t index; /* the index on the page */
244 1.2 cgd } EPGNO;
245 1.2 cgd
246 1.2 cgd typedef struct EPG {
247 1.2 cgd PAGE *page; /* the (pinned) page */
248 1.2 cgd indx_t index; /* the index on the page */
249 1.2 cgd } EPG;
250 1.2 cgd
251 1.2 cgd /*
252 1.2 cgd * The metadata of the tree. The m_nrecs field is used only by the RECNO code.
253 1.2 cgd * This is because the btree doesn't really need it and it requires that every
254 1.2 cgd * put or delete call modify the metadata.
255 1.1 cgd */
256 1.2 cgd typedef struct BTMETA {
257 1.2 cgd u_long m_magic; /* magic number */
258 1.2 cgd u_long m_version; /* version */
259 1.2 cgd u_long m_psize; /* page size */
260 1.2 cgd u_long m_free; /* page number of first free page */
261 1.2 cgd u_long m_nrecs; /* R: number of records */
262 1.2 cgd #define SAVEMETA (B_NODUPS | R_RECNO)
263 1.2 cgd u_long m_flags; /* bt_flags & SAVEMETA */
264 1.2 cgd u_long m_unused; /* unused */
265 1.2 cgd } BTMETA;
266 1.1 cgd
267 1.2 cgd /* The in-memory btree/recno data structure. */
268 1.2 cgd typedef struct BTREE {
269 1.2 cgd MPOOL *bt_mp; /* memory pool cookie */
270 1.2 cgd
271 1.2 cgd DB *bt_dbp; /* pointer to enclosing DB */
272 1.2 cgd
273 1.2 cgd EPGNO bt_bcursor; /* B: btree cursor */
274 1.2 cgd recno_t bt_rcursor; /* R: recno cursor (1-based) */
275 1.2 cgd
276 1.2 cgd #define BT_POP(t) (t->bt_sp ? t->bt_stack + --t->bt_sp : NULL)
277 1.2 cgd #define BT_CLR(t) (t->bt_sp = 0)
278 1.2 cgd EPGNO *bt_stack; /* stack of parent pages */
279 1.2 cgd u_int bt_sp; /* current stack pointer */
280 1.2 cgd u_int bt_maxstack; /* largest stack */
281 1.2 cgd
282 1.2 cgd char *bt_kbuf; /* key buffer */
283 1.2 cgd size_t bt_kbufsz; /* key buffer size */
284 1.2 cgd char *bt_dbuf; /* data buffer */
285 1.2 cgd size_t bt_dbufsz; /* data buffer size */
286 1.2 cgd
287 1.2 cgd int bt_fd; /* tree file descriptor */
288 1.2 cgd
289 1.2 cgd pgno_t bt_free; /* next free page */
290 1.2 cgd u_long bt_psize; /* page size */
291 1.2 cgd indx_t bt_ovflsize; /* cut-off for key/data overflow */
292 1.2 cgd int bt_lorder; /* byte order */
293 1.2 cgd /* sorted order */
294 1.2 cgd enum { NOT, BACK, FORWARD, } bt_order;
295 1.2 cgd EPGNO bt_last; /* last insert */
296 1.2 cgd
297 1.2 cgd /* B: key comparison function */
298 1.2 cgd int (*bt_cmp) __P((const DBT *, const DBT *));
299 1.2 cgd /* B: prefix comparison function */
300 1.2 cgd int (*bt_pfx) __P((const DBT *, const DBT *));
301 1.2 cgd /* R: recno input function */
302 1.2 cgd int (*bt_irec) __P((struct BTREE *, recno_t));
303 1.2 cgd
304 1.2 cgd FILE *bt_rfp; /* R: record FILE pointer */
305 1.2 cgd int bt_rfd; /* R: record file descriptor */
306 1.2 cgd
307 1.2 cgd caddr_t bt_cmap; /* R: current point in mapped space */
308 1.2 cgd caddr_t bt_smap; /* R: start of mapped space */
309 1.2 cgd caddr_t bt_emap; /* R: end of mapped space */
310 1.2 cgd size_t bt_msize; /* R: size of mapped region. */
311 1.2 cgd
312 1.2 cgd recno_t bt_nrecs; /* R: number of records */
313 1.2 cgd size_t bt_reclen; /* R: fixed record length */
314 1.2 cgd u_char bt_bval; /* R: delimiting byte/pad character */
315 1.2 cgd
316 1.2 cgd /*
317 1.2 cgd * NB:
318 1.2 cgd * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
319 1.2 cgd */
320 1.2 cgd #define B_DELCRSR 0x00001 /* cursor has been deleted */
321 1.2 cgd #define B_INMEM 0x00002 /* in-memory tree */
322 1.2 cgd #define B_METADIRTY 0x00004 /* need to write metadata */
323 1.2 cgd #define B_MODIFIED 0x00008 /* tree modified */
324 1.2 cgd #define B_NEEDSWAP 0x00010 /* if byte order requires swapping */
325 1.2 cgd #define B_NODUPS 0x00020 /* no duplicate keys permitted */
326 1.2 cgd #define B_RDONLY 0x00040 /* read-only tree */
327 1.2 cgd #define B_SEQINIT 0x00100 /* sequential scan initialized */
328 1.2 cgd
329 1.2 cgd #define R_CLOSEFP 0x00200 /* opened a file pointer */
330 1.2 cgd #define R_EOF 0x00400 /* end of input file reached. */
331 1.2 cgd #define R_FIXLEN 0x00800 /* fixed length records */
332 1.2 cgd #define R_MEMMAPPED 0x01000 /* memory mapped file. */
333 1.2 cgd #define R_RECNO 0x00080 /* record oriented tree */
334 1.2 cgd #define R_INMEM 0x02000 /* in-memory file */
335 1.2 cgd #define R_MODIFIED 0x04000 /* modified file */
336 1.2 cgd #define R_RDONLY 0x08000 /* read-only file */
337 1.2 cgd
338 1.2 cgd u_long bt_flags; /* btree state */
339 1.2 cgd } BTREE;
340 1.2 cgd
341 1.2 cgd #define SET(t, f) ((t)->bt_flags |= (f))
342 1.2 cgd #define CLR(t, f) ((t)->bt_flags &= ~(f))
343 1.2 cgd #define ISSET(t, f) ((t)->bt_flags & (f))
344 1.1 cgd
345 1.2 cgd #include "extern.h"
346