Home | History | Annotate | Line # | Download | only in btree
btree.h revision 1.1.1.3
      1 /*-
      2  * Copyright (c) 1991, 1993, 1994
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * This code is derived from software contributed to Berkeley by
      6  * Mike Olson.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by the University of
     19  *	California, Berkeley and its contributors.
     20  * 4. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)btree.h	8.11 (Berkeley) 8/17/94
     37  */
     38 
     39 /* Macros to set/clear/test flags. */
     40 #define	F_SET(p, f)	(p)->flags |= (f)
     41 #define	F_CLR(p, f)	(p)->flags &= ~(f)
     42 #define	F_ISSET(p, f)	((p)->flags & (f))
     43 
     44 #include <mpool.h>
     45 
     46 #define	DEFMINKEYPAGE	(2)		/* Minimum keys per page */
     47 #define	MINCACHE	(5)		/* Minimum cached pages */
     48 #define	MINPSIZE	(512)		/* Minimum page size */
     49 
     50 /*
     51  * Page 0 of a btree file contains a copy of the meta-data.  This page is also
     52  * used as an out-of-band page, i.e. page pointers that point to nowhere point
     53  * to page 0.  Page 1 is the root of the btree.
     54  */
     55 #define	P_INVALID	 0		/* Invalid tree page number. */
     56 #define	P_META		 0		/* Tree metadata page number. */
     57 #define	P_ROOT		 1		/* Tree root page number. */
     58 
     59 /*
     60  * There are five page layouts in the btree: btree internal pages (BINTERNAL),
     61  * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
     62  * (RLEAF) and overflow pages.  All five page types have a page header (PAGE).
     63  * This implementation requires that values within structures NOT be padded.
     64  * (ANSI C permits random padding.)  If your compiler pads randomly you'll have
     65  * to do some work to get this package to run.
     66  */
     67 typedef struct _page {
     68 	pgno_t	pgno;			/* this page's page number */
     69 	pgno_t	prevpg;			/* left sibling */
     70 	pgno_t	nextpg;			/* right sibling */
     71 
     72 #define	P_BINTERNAL	0x01		/* btree internal page */
     73 #define	P_BLEAF		0x02		/* leaf page */
     74 #define	P_OVERFLOW	0x04		/* overflow page */
     75 #define	P_RINTERNAL	0x08		/* recno internal page */
     76 #define	P_RLEAF		0x10		/* leaf page */
     77 #define P_TYPE		0x1f		/* type mask */
     78 #define	P_PRESERVE	0x20		/* never delete this chain of pages */
     79 	u_int32_t flags;
     80 
     81 	indx_t	lower;			/* lower bound of free space on page */
     82 	indx_t	upper;			/* upper bound of free space on page */
     83 	indx_t	linp[1];		/* indx_t-aligned VAR. LENGTH DATA */
     84 } PAGE;
     85 
     86 /* First and next index. */
     87 #define	BTDATAOFF							\
     88 	(sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) +		\
     89 	    sizeof(u_int32_t) + sizeof(indx_t) + sizeof(indx_t))
     90 #define	NEXTINDEX(p)	(((p)->lower - BTDATAOFF) / sizeof(indx_t))
     91 
     92 /*
     93  * For pages other than overflow pages, there is an array of offsets into the
     94  * rest of the page immediately following the page header.  Each offset is to
     95  * an item which is unique to the type of page.  The h_lower offset is just
     96  * past the last filled-in index.  The h_upper offset is the first item on the
     97  * page.  Offsets are from the beginning of the page.
     98  *
     99  * If an item is too big to store on a single page, a flag is set and the item
    100  * is a { page, size } pair such that the page is the first page of an overflow
    101  * chain with size bytes of item.  Overflow pages are simply bytes without any
    102  * external structure.
    103  *
    104  * The page number and size fields in the items are pgno_t-aligned so they can
    105  * be manipulated without copying.  (This presumes that 32 bit items can be
    106  * manipulated on this system.)
    107  */
    108 #define	LALIGN(n)	(((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1))
    109 #define	NOVFLSIZE	(sizeof(pgno_t) + sizeof(u_int32_t))
    110 
    111 /*
    112  * For the btree internal pages, the item is a key.  BINTERNALs are {key, pgno}
    113  * pairs, such that the key compares less than or equal to all of the records
    114  * on that page.  For a tree without duplicate keys, an internal page with two
    115  * consecutive keys, a and b, will have all records greater than or equal to a
    116  * and less than b stored on the page associated with a.  Duplicate keys are
    117  * somewhat special and can cause duplicate internal and leaf page records and
    118  * some minor modifications of the above rule.
    119  */
    120 typedef struct _binternal {
    121 	u_int32_t ksize;		/* key size */
    122 	pgno_t	pgno;			/* page number stored on */
    123 #define	P_BIGDATA	0x01		/* overflow data */
    124 #define	P_BIGKEY	0x02		/* overflow key */
    125 	u_char	flags;
    126 	char	bytes[1];		/* data */
    127 } BINTERNAL;
    128 
    129 /* Get the page's BINTERNAL structure at index indx. */
    130 #define	GETBINTERNAL(pg, indx)						\
    131 	((BINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
    132 
    133 /* Get the number of bytes in the entry. */
    134 #define NBINTERNAL(len)							\
    135 	LALIGN(sizeof(u_int32_t) + sizeof(pgno_t) + sizeof(u_char) + (len))
    136 
    137 /* Copy a BINTERNAL entry to the page. */
    138 #define	WR_BINTERNAL(p, size, pgno, flags) {				\
    139 	*(u_int32_t *)p = size;						\
    140 	p += sizeof(u_int32_t);						\
    141 	*(pgno_t *)p = pgno;						\
    142 	p += sizeof(pgno_t);						\
    143 	*(u_char *)p = flags;						\
    144 	p += sizeof(u_char);						\
    145 }
    146 
    147 /*
    148  * For the recno internal pages, the item is a page number with the number of
    149  * keys found on that page and below.
    150  */
    151 typedef struct _rinternal {
    152 	recno_t	nrecs;			/* number of records */
    153 	pgno_t	pgno;			/* page number stored below */
    154 } RINTERNAL;
    155 
    156 /* Get the page's RINTERNAL structure at index indx. */
    157 #define	GETRINTERNAL(pg, indx)						\
    158 	((RINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
    159 
    160 /* Get the number of bytes in the entry. */
    161 #define NRINTERNAL							\
    162 	LALIGN(sizeof(recno_t) + sizeof(pgno_t))
    163 
    164 /* Copy a RINTERAL entry to the page. */
    165 #define	WR_RINTERNAL(p, nrecs, pgno) {					\
    166 	*(recno_t *)p = nrecs;						\
    167 	p += sizeof(recno_t);						\
    168 	*(pgno_t *)p = pgno;						\
    169 }
    170 
    171 /* For the btree leaf pages, the item is a key and data pair. */
    172 typedef struct _bleaf {
    173 	u_int32_t	ksize;		/* size of key */
    174 	u_int32_t	dsize;		/* size of data */
    175 	u_char	flags;			/* P_BIGDATA, P_BIGKEY */
    176 	char	bytes[1];		/* data */
    177 } BLEAF;
    178 
    179 /* Get the page's BLEAF structure at index indx. */
    180 #define	GETBLEAF(pg, indx)						\
    181 	((BLEAF *)((char *)(pg) + (pg)->linp[indx]))
    182 
    183 /* Get the number of bytes in the entry. */
    184 #define NBLEAF(p)	NBLEAFDBT((p)->ksize, (p)->dsize)
    185 
    186 /* Get the number of bytes in the user's key/data pair. */
    187 #define NBLEAFDBT(ksize, dsize)						\
    188 	LALIGN(sizeof(u_int32_t) + sizeof(u_int32_t) + sizeof(u_char) +	\
    189 	    (ksize) + (dsize))
    190 
    191 /* Copy a BLEAF entry to the page. */
    192 #define	WR_BLEAF(p, key, data, flags) {					\
    193 	*(u_int32_t *)p = key->size;					\
    194 	p += sizeof(u_int32_t);						\
    195 	*(u_int32_t *)p = data->size;					\
    196 	p += sizeof(u_int32_t);						\
    197 	*(u_char *)p = flags;						\
    198 	p += sizeof(u_char);						\
    199 	memmove(p, key->data, key->size);				\
    200 	p += key->size;							\
    201 	memmove(p, data->data, data->size);				\
    202 }
    203 
    204 /* For the recno leaf pages, the item is a data entry. */
    205 typedef struct _rleaf {
    206 	u_int32_t	dsize;		/* size of data */
    207 	u_char	flags;			/* P_BIGDATA */
    208 	char	bytes[1];
    209 } RLEAF;
    210 
    211 /* Get the page's RLEAF structure at index indx. */
    212 #define	GETRLEAF(pg, indx)						\
    213 	((RLEAF *)((char *)(pg) + (pg)->linp[indx]))
    214 
    215 /* Get the number of bytes in the entry. */
    216 #define NRLEAF(p)	NRLEAFDBT((p)->dsize)
    217 
    218 /* Get the number of bytes from the user's data. */
    219 #define	NRLEAFDBT(dsize)						\
    220 	LALIGN(sizeof(u_int32_t) + sizeof(u_char) + (dsize))
    221 
    222 /* Copy a RLEAF entry to the page. */
    223 #define	WR_RLEAF(p, data, flags) {					\
    224 	*(u_int32_t *)p = data->size;					\
    225 	p += sizeof(u_int32_t);						\
    226 	*(u_char *)p = flags;						\
    227 	p += sizeof(u_char);						\
    228 	memmove(p, data->data, data->size);				\
    229 }
    230 
    231 /*
    232  * A record in the tree is either a pointer to a page and an index in the page
    233  * or a page number and an index.  These structures are used as a cursor, stack
    234  * entry and search returns as well as to pass records to other routines.
    235  *
    236  * One comment about searches.  Internal page searches must find the largest
    237  * record less than key in the tree so that descents work.  Leaf page searches
    238  * must find the smallest record greater than key so that the returned index
    239  * is the record's correct position for insertion.
    240  */
    241 typedef struct _epgno {
    242 	pgno_t	pgno;			/* the page number */
    243 	indx_t	index;			/* the index on the page */
    244 } EPGNO;
    245 
    246 typedef struct _epg {
    247 	PAGE	*page;			/* the (pinned) page */
    248 	indx_t	 index;			/* the index on the page */
    249 } EPG;
    250 
    251 /*
    252  * About cursors.  The cursor (and the page that contained the key/data pair
    253  * that it referenced) can be deleted, which makes things a bit tricky.  If
    254  * there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set
    255  * or there simply aren't any duplicates of the key) we copy the key that it
    256  * referenced when it's deleted, and reacquire a new cursor key if the cursor
    257  * is used again.  If there are duplicates keys, we move to the next/previous
    258  * key, and set a flag so that we know what happened.  NOTE: if duplicate (to
    259  * the cursor) keys are added to the tree during this process, it is undefined
    260  * if they will be returned or not in a cursor scan.
    261  *
    262  * The flags determine the possible states of the cursor:
    263  *
    264  * CURS_INIT	The cursor references *something*.
    265  * CURS_ACQUIRE	The cursor was deleted, and a key has been saved so that
    266  *		we can reacquire the right position in the tree.
    267  * CURS_AFTER, CURS_BEFORE
    268  *		The cursor was deleted, and now references a key/data pair
    269  *		that has not yet been returned, either before or after the
    270  *		deleted key/data pair.
    271  * XXX
    272  * This structure is broken out so that we can eventually offer multiple
    273  * cursors as part of the DB interface.
    274  */
    275 typedef struct _cursor {
    276 	EPGNO	 pg;			/* B: Saved tree reference. */
    277 	DBT	 key;			/* B: Saved key, or key.data == NULL. */
    278 	recno_t	 rcursor;		/* R: recno cursor (1-based) */
    279 
    280 #define	CURS_ACQUIRE	0x01		/*  B: Cursor needs to be reacquired. */
    281 #define	CURS_AFTER	0x02		/*  B: Unreturned cursor after key. */
    282 #define	CURS_BEFORE	0x04		/*  B: Unreturned cursor before key. */
    283 #define	CURS_INIT	0x08		/* RB: Cursor initialized. */
    284 	u_int8_t flags;
    285 } CURSOR;
    286 
    287 /*
    288  * The metadata of the tree.  The nrecs field is used only by the RECNO code.
    289  * This is because the btree doesn't really need it and it requires that every
    290  * put or delete call modify the metadata.
    291  */
    292 typedef struct _btmeta {
    293 	u_int32_t	magic;		/* magic number */
    294 	u_int32_t	version;	/* version */
    295 	u_int32_t	psize;		/* page size */
    296 	u_int32_t	free;		/* page number of first free page */
    297 	u_int32_t	nrecs;		/* R: number of records */
    298 
    299 #define	SAVEMETA	(B_NODUPS | R_RECNO)
    300 	u_int32_t	flags;		/* bt_flags & SAVEMETA */
    301 } BTMETA;
    302 
    303 /* The in-memory btree/recno data structure. */
    304 typedef struct _btree {
    305 	MPOOL	 *bt_mp;		/* memory pool cookie */
    306 
    307 	DB	 *bt_dbp;		/* pointer to enclosing DB */
    308 
    309 	EPG	  bt_cur;		/* current (pinned) page */
    310 	PAGE	 *bt_pinned;		/* page pinned across calls */
    311 
    312 	CURSOR	  bt_cursor;		/* cursor */
    313 
    314 #define	BT_PUSH(t, p, i) {						\
    315 	t->bt_sp->pgno = p; 						\
    316 	t->bt_sp->index = i; 						\
    317 	++t->bt_sp;							\
    318 }
    319 #define	BT_POP(t)	(t->bt_sp == t->bt_stack ? NULL : --t->bt_sp)
    320 #define	BT_CLR(t)	(t->bt_sp = t->bt_stack)
    321 	EPGNO	  bt_stack[50];		/* stack of parent pages */
    322 	EPGNO	 *bt_sp;		/* current stack pointer */
    323 
    324 	DBT	  bt_rkey;		/* returned key */
    325 	DBT	  bt_rdata;		/* returned data */
    326 
    327 	int	  bt_fd;		/* tree file descriptor */
    328 
    329 	pgno_t	  bt_free;		/* next free page */
    330 	u_int32_t bt_psize;		/* page size */
    331 	indx_t	  bt_ovflsize;		/* cut-off for key/data overflow */
    332 	int	  bt_lorder;		/* byte order */
    333 					/* sorted order */
    334 	enum { NOT, BACK, FORWARD } bt_order;
    335 	EPGNO	  bt_last;		/* last insert */
    336 
    337 					/* B: key comparison function */
    338 	int	(*bt_cmp) __P((const DBT *, const DBT *));
    339 					/* B: prefix comparison function */
    340 	size_t	(*bt_pfx) __P((const DBT *, const DBT *));
    341 					/* R: recno input function */
    342 	int	(*bt_irec) __P((struct _btree *, recno_t));
    343 
    344 	FILE	 *bt_rfp;		/* R: record FILE pointer */
    345 	int	  bt_rfd;		/* R: record file descriptor */
    346 
    347 	caddr_t	  bt_cmap;		/* R: current point in mapped space */
    348 	caddr_t	  bt_smap;		/* R: start of mapped space */
    349 	caddr_t   bt_emap;		/* R: end of mapped space */
    350 	size_t	  bt_msize;		/* R: size of mapped region. */
    351 
    352 	recno_t	  bt_nrecs;		/* R: number of records */
    353 	size_t	  bt_reclen;		/* R: fixed record length */
    354 	u_char	  bt_bval;		/* R: delimiting byte/pad character */
    355 
    356 /*
    357  * NB:
    358  * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
    359  */
    360 #define	B_INMEM		0x00001		/* in-memory tree */
    361 #define	B_METADIRTY	0x00002		/* need to write metadata */
    362 #define	B_MODIFIED	0x00004		/* tree modified */
    363 #define	B_NEEDSWAP	0x00008		/* if byte order requires swapping */
    364 #define	B_RDONLY	0x00010		/* read-only tree */
    365 
    366 #define	B_NODUPS	0x00020		/* no duplicate keys permitted */
    367 #define	R_RECNO		0x00080		/* record oriented tree */
    368 
    369 #define	R_CLOSEFP	0x00040		/* opened a file pointer */
    370 #define	R_EOF		0x00100		/* end of input file reached. */
    371 #define	R_FIXLEN	0x00200		/* fixed length records */
    372 #define	R_MEMMAPPED	0x00400		/* memory mapped file. */
    373 #define	R_INMEM		0x00800		/* in-memory file */
    374 #define	R_MODIFIED	0x01000		/* modified file */
    375 #define	R_RDONLY	0x02000		/* read-only file */
    376 
    377 #define	B_DB_LOCK	0x04000		/* DB_LOCK specified. */
    378 #define	B_DB_SHMEM	0x08000		/* DB_SHMEM specified. */
    379 #define	B_DB_TXN	0x10000		/* DB_TXN specified. */
    380 	u_int32_t flags;
    381 } BTREE;
    382 
    383 #include "extern.h"
    384