btree.h revision 1.12 1 /* $NetBSD: btree.h,v 1.12 2002/01/21 21:33:42 tv Exp $ */
2
3 /*-
4 * Copyright (c) 1991, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Olson.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)btree.h 8.11 (Berkeley) 8/17/94
39 */
40
41 #if HAVE_CONFIG_H
42 #include "config.h"
43 #endif
44
45 /* Macros to set/clear/test flags. */
46 #define F_SET(p, f) (p)->flags |= (f)
47 #define F_CLR(p, f) (p)->flags &= ~(f)
48 #define F_ISSET(p, f) ((p)->flags & (f))
49
50 #include <mpool.h>
51
52 #define DEFMINKEYPAGE (2) /* Minimum keys per page */
53 #define MINCACHE (5) /* Minimum cached pages */
54 #define MINPSIZE (512) /* Minimum page size */
55
56 /*
57 * Page 0 of a btree file contains a copy of the meta-data. This page is also
58 * used as an out-of-band page, i.e. page pointers that point to nowhere point
59 * to page 0. Page 1 is the root of the btree.
60 */
61 #define P_INVALID 0 /* Invalid tree page number. */
62 #define P_META 0 /* Tree metadata page number. */
63 #define P_ROOT 1 /* Tree root page number. */
64
65 /*
66 * There are five page layouts in the btree: btree internal pages (BINTERNAL),
67 * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
68 * (RLEAF) and overflow pages. All five page types have a page header (PAGE).
69 * This implementation requires that values within structures NOT be padded.
70 * (ANSI C permits random padding.) If your compiler pads randomly you'll have
71 * to do some work to get this package to run.
72 */
73 typedef struct _page {
74 pgno_t pgno; /* this page's page number */
75 pgno_t prevpg; /* left sibling */
76 pgno_t nextpg; /* right sibling */
77
78 #define P_BINTERNAL 0x01 /* btree internal page */
79 #define P_BLEAF 0x02 /* leaf page */
80 #define P_OVERFLOW 0x04 /* overflow page */
81 #define P_RINTERNAL 0x08 /* recno internal page */
82 #define P_RLEAF 0x10 /* leaf page */
83 #define P_TYPE 0x1f /* type mask */
84 #define P_PRESERVE 0x20 /* never delete this chain of pages */
85 u_int32_t flags;
86
87 indx_t lower; /* lower bound of free space on page */
88 indx_t upper; /* upper bound of free space on page */
89 indx_t linp[1]; /* indx_t-aligned VAR. LENGTH DATA */
90 } PAGE;
91
92 /* First and next index. */
93 #define BTDATAOFF \
94 (sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) + \
95 sizeof(u_int32_t) + sizeof(indx_t) + sizeof(indx_t))
96 #define NEXTINDEX(p) (((p)->lower - BTDATAOFF) / sizeof(indx_t))
97
98 /*
99 * For pages other than overflow pages, there is an array of offsets into the
100 * rest of the page immediately following the page header. Each offset is to
101 * an item which is unique to the type of page. The h_lower offset is just
102 * past the last filled-in index. The h_upper offset is the first item on the
103 * page. Offsets are from the beginning of the page.
104 *
105 * If an item is too big to store on a single page, a flag is set and the item
106 * is a { page, size } pair such that the page is the first page of an overflow
107 * chain with size bytes of item. Overflow pages are simply bytes without any
108 * external structure.
109 *
110 * The page number and size fields in the items are pgno_t-aligned so they can
111 * be manipulated without copying. (This presumes that 32 bit items can be
112 * manipulated on this system.)
113 */
114 #define BTLALIGN(n) (((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1))
115 #define NOVFLSIZE (sizeof(pgno_t) + sizeof(u_int32_t))
116
117 /*
118 * For the btree internal pages, the item is a key. BINTERNALs are {key, pgno}
119 * pairs, such that the key compares less than or equal to all of the records
120 * on that page. For a tree without duplicate keys, an internal page with two
121 * consecutive keys, a and b, will have all records greater than or equal to a
122 * and less than b stored on the page associated with a. Duplicate keys are
123 * somewhat special and can cause duplicate internal and leaf page records and
124 * some minor modifications of the above rule.
125 */
126 typedef struct _binternal {
127 u_int32_t ksize; /* key size */
128 pgno_t pgno; /* page number stored on */
129 #define P_BIGDATA 0x01 /* overflow data */
130 #define P_BIGKEY 0x02 /* overflow key */
131 u_char flags;
132 char bytes[1]; /* data */
133 } BINTERNAL;
134
135 /* Get the page's BINTERNAL structure at index indx. */
136 #define GETBINTERNAL(pg, indx) \
137 ((BINTERNAL *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
138
139 /* Get the number of bytes in the entry. */
140 #define NBINTERNAL(len) \
141 BTLALIGN(sizeof(u_int32_t) + sizeof(pgno_t) + sizeof(u_char) + (len))
142
143 /* Copy a BINTERNAL entry to the page. */
144 #define WR_BINTERNAL(p, size, pgno, flags) { \
145 *(u_int32_t *)(void *)p = size; \
146 p += sizeof(u_int32_t); \
147 *(pgno_t *)(void *)p = pgno; \
148 p += sizeof(pgno_t); \
149 *(u_char *)(void *)p = flags; \
150 p += sizeof(u_char); \
151 }
152
153 /*
154 * For the recno internal pages, the item is a page number with the number of
155 * keys found on that page and below.
156 */
157 typedef struct _rinternal {
158 recno_t nrecs; /* number of records */
159 pgno_t pgno; /* page number stored below */
160 } RINTERNAL;
161
162 /* Get the page's RINTERNAL structure at index indx. */
163 #define GETRINTERNAL(pg, indx) \
164 ((RINTERNAL *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
165
166 /* Get the number of bytes in the entry. */
167 #define NRINTERNAL \
168 BTLALIGN(sizeof(recno_t) + sizeof(pgno_t))
169
170 /* Copy a RINTERAL entry to the page. */
171 #define WR_RINTERNAL(p, nrecs, pgno) { \
172 *(recno_t *)(void *)p = nrecs; \
173 p += sizeof(recno_t); \
174 *(pgno_t *)(void *)p = pgno; \
175 }
176
177 /* For the btree leaf pages, the item is a key and data pair. */
178 typedef struct _bleaf {
179 u_int32_t ksize; /* size of key */
180 u_int32_t dsize; /* size of data */
181 u_char flags; /* P_BIGDATA, P_BIGKEY */
182 char bytes[1]; /* data */
183 } BLEAF;
184
185 /* Get the page's BLEAF structure at index indx. */
186 #define GETBLEAF(pg, indx) \
187 ((BLEAF *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
188
189 /* Get the number of bytes in the entry. */
190 #define NBLEAF(p) NBLEAFDBT((p)->ksize, (p)->dsize)
191
192 /* Get the number of bytes in the user's key/data pair. */
193 #define NBLEAFDBT(ksize, dsize) \
194 BTLALIGN(sizeof(u_int32_t) + sizeof(u_int32_t) + sizeof(u_char) + \
195 (ksize) + (dsize))
196
197 /* Copy a BLEAF entry to the page. */
198 #define WR_BLEAF(p, key, data, flags) { \
199 *(u_int32_t *)(void *)p = key->size; \
200 p += sizeof(u_int32_t); \
201 *(u_int32_t *)(void *)p = data->size; \
202 p += sizeof(u_int32_t); \
203 *(u_char *)(void *)p = flags; \
204 p += sizeof(u_char); \
205 memmove(p, key->data, key->size); \
206 p += key->size; \
207 memmove(p, data->data, data->size); \
208 }
209
210 /* For the recno leaf pages, the item is a data entry. */
211 typedef struct _rleaf {
212 u_int32_t dsize; /* size of data */
213 u_char flags; /* P_BIGDATA */
214 char bytes[1];
215 } RLEAF;
216
217 /* Get the page's RLEAF structure at index indx. */
218 #define GETRLEAF(pg, indx) \
219 ((RLEAF *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
220
221 /* Get the number of bytes in the entry. */
222 #define NRLEAF(p) NRLEAFDBT((p)->dsize)
223
224 /* Get the number of bytes from the user's data. */
225 #define NRLEAFDBT(dsize) \
226 BTLALIGN(sizeof(u_int32_t) + sizeof(u_char) + (dsize))
227
228 /* Copy a RLEAF entry to the page. */
229 #define WR_RLEAF(p, data, flags) { \
230 *(u_int32_t *)(void *)p = data->size; \
231 p += sizeof(u_int32_t); \
232 *(u_char *)(void *)p = flags; \
233 p += sizeof(u_char); \
234 memmove(p, data->data, data->size); \
235 }
236
237 /*
238 * A record in the tree is either a pointer to a page and an index in the page
239 * or a page number and an index. These structures are used as a cursor, stack
240 * entry and search returns as well as to pass records to other routines.
241 *
242 * One comment about searches. Internal page searches must find the largest
243 * record less than key in the tree so that descents work. Leaf page searches
244 * must find the smallest record greater than key so that the returned index
245 * is the record's correct position for insertion.
246 */
247 typedef struct _epgno {
248 pgno_t pgno; /* the page number */
249 indx_t index; /* the index on the page */
250 } EPGNO;
251
252 typedef struct _epg {
253 PAGE *page; /* the (pinned) page */
254 indx_t index; /* the index on the page */
255 } EPG;
256
257 /*
258 * About cursors. The cursor (and the page that contained the key/data pair
259 * that it referenced) can be deleted, which makes things a bit tricky. If
260 * there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set
261 * or there simply aren't any duplicates of the key) we copy the key that it
262 * referenced when it's deleted, and reacquire a new cursor key if the cursor
263 * is used again. If there are duplicates keys, we move to the next/previous
264 * key, and set a flag so that we know what happened. NOTE: if duplicate (to
265 * the cursor) keys are added to the tree during this process, it is undefined
266 * if they will be returned or not in a cursor scan.
267 *
268 * The flags determine the possible states of the cursor:
269 *
270 * CURS_INIT The cursor references *something*.
271 * CURS_ACQUIRE The cursor was deleted, and a key has been saved so that
272 * we can reacquire the right position in the tree.
273 * CURS_AFTER, CURS_BEFORE
274 * The cursor was deleted, and now references a key/data pair
275 * that has not yet been returned, either before or after the
276 * deleted key/data pair.
277 * XXX
278 * This structure is broken out so that we can eventually offer multiple
279 * cursors as part of the DB interface.
280 */
281 typedef struct _cursor {
282 EPGNO pg; /* B: Saved tree reference. */
283 DBT key; /* B: Saved key, or key.data == NULL. */
284 recno_t rcursor; /* R: recno cursor (1-based) */
285
286 #define CURS_ACQUIRE 0x01 /* B: Cursor needs to be reacquired. */
287 #define CURS_AFTER 0x02 /* B: Unreturned cursor after key. */
288 #define CURS_BEFORE 0x04 /* B: Unreturned cursor before key. */
289 #define CURS_INIT 0x08 /* RB: Cursor initialized. */
290 u_int8_t flags;
291 } CURSOR;
292
293 /*
294 * The metadata of the tree. The nrecs field is used only by the RECNO code.
295 * This is because the btree doesn't really need it and it requires that every
296 * put or delete call modify the metadata.
297 */
298 typedef struct _btmeta {
299 u_int32_t magic; /* magic number */
300 u_int32_t version; /* version */
301 u_int32_t psize; /* page size */
302 u_int32_t free; /* page number of first free page */
303 u_int32_t nrecs; /* R: number of records */
304
305 #define SAVEMETA (B_NODUPS | R_RECNO)
306 u_int32_t flags; /* bt_flags & SAVEMETA */
307 } BTMETA;
308
309 /* The in-memory btree/recno data structure. */
310 typedef struct _btree {
311 MPOOL *bt_mp; /* memory pool cookie */
312
313 DB *bt_dbp; /* pointer to enclosing DB */
314
315 EPG bt_cur; /* current (pinned) page */
316 PAGE *bt_pinned; /* page pinned across calls */
317
318 CURSOR bt_cursor; /* cursor */
319
320 #define BT_PUSH(t, p, i) { \
321 t->bt_sp->pgno = p; \
322 t->bt_sp->index = i; \
323 ++t->bt_sp; \
324 }
325 #define BT_POP(t) (t->bt_sp == t->bt_stack ? NULL : --t->bt_sp)
326 #define BT_CLR(t) (t->bt_sp = t->bt_stack)
327 EPGNO bt_stack[50]; /* stack of parent pages */
328 EPGNO *bt_sp; /* current stack pointer */
329
330 DBT bt_rkey; /* returned key */
331 DBT bt_rdata; /* returned data */
332
333 int bt_fd; /* tree file descriptor */
334
335 pgno_t bt_free; /* next free page */
336 u_int32_t bt_psize; /* page size */
337 indx_t bt_ovflsize; /* cut-off for key/data overflow */
338 int bt_lorder; /* byte order */
339 /* sorted order */
340 enum { NOT, BACK, FORWARD } bt_order;
341 EPGNO bt_last; /* last insert */
342
343 /* B: key comparison function */
344 int (*bt_cmp) __P((const DBT *, const DBT *));
345 /* B: prefix comparison function */
346 size_t (*bt_pfx) __P((const DBT *, const DBT *));
347 /* R: recno input function */
348 int (*bt_irec) __P((struct _btree *, recno_t));
349
350 FILE *bt_rfp; /* R: record FILE pointer */
351 int bt_rfd; /* R: record file descriptor */
352
353 caddr_t bt_cmap; /* R: current point in mapped space */
354 caddr_t bt_smap; /* R: start of mapped space */
355 caddr_t bt_emap; /* R: end of mapped space */
356 size_t bt_msize; /* R: size of mapped region. */
357
358 recno_t bt_nrecs; /* R: number of records */
359 size_t bt_reclen; /* R: fixed record length */
360 u_char bt_bval; /* R: delimiting byte/pad character */
361
362 /*
363 * NB:
364 * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
365 */
366 #define B_INMEM 0x00001 /* in-memory tree */
367 #define B_METADIRTY 0x00002 /* need to write metadata */
368 #define B_MODIFIED 0x00004 /* tree modified */
369 #define B_NEEDSWAP 0x00008 /* if byte order requires swapping */
370 #define B_RDONLY 0x00010 /* read-only tree */
371
372 #define B_NODUPS 0x00020 /* no duplicate keys permitted */
373 #define R_RECNO 0x00080 /* record oriented tree */
374
375 #define R_CLOSEFP 0x00040 /* opened a file pointer */
376 #define R_EOF 0x00100 /* end of input file reached. */
377 #define R_FIXLEN 0x00200 /* fixed length records */
378 #define R_MEMMAPPED 0x00400 /* memory mapped file. */
379 #define R_INMEM 0x00800 /* in-memory file */
380 #define R_MODIFIED 0x01000 /* modified file */
381 #define R_RDONLY 0x02000 /* read-only file */
382
383 #define B_DB_LOCK 0x04000 /* DB_LOCK specified. */
384 #define B_DB_SHMEM 0x08000 /* DB_SHMEM specified. */
385 #define B_DB_TXN 0x10000 /* DB_TXN specified. */
386 u_int32_t flags;
387 } BTREE;
388
389 #include "extern.h"
390