Home | History | Annotate | Line # | Download | only in btree
btree.h revision 1.13
      1 /*	$NetBSD: btree.h,v 1.13 2003/08/07 16:42:41 agc Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1991, 1993, 1994
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Mike Olson.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *	@(#)btree.h	8.11 (Berkeley) 8/17/94
     35  */
     36 
     37 #if HAVE_CONFIG_H
     38 #include "config.h"
     39 #endif
     40 
     41 /* Macros to set/clear/test flags. */
     42 #define	F_SET(p, f)	(p)->flags |= (f)
     43 #define	F_CLR(p, f)	(p)->flags &= ~(f)
     44 #define	F_ISSET(p, f)	((p)->flags & (f))
     45 
     46 #include <mpool.h>
     47 
     48 #define	DEFMINKEYPAGE	(2)		/* Minimum keys per page */
     49 #define	MINCACHE	(5)		/* Minimum cached pages */
     50 #define	MINPSIZE	(512)		/* Minimum page size */
     51 
     52 /*
     53  * Page 0 of a btree file contains a copy of the meta-data.  This page is also
     54  * used as an out-of-band page, i.e. page pointers that point to nowhere point
     55  * to page 0.  Page 1 is the root of the btree.
     56  */
     57 #define	P_INVALID	 0		/* Invalid tree page number. */
     58 #define	P_META		 0		/* Tree metadata page number. */
     59 #define	P_ROOT		 1		/* Tree root page number. */
     60 
     61 /*
     62  * There are five page layouts in the btree: btree internal pages (BINTERNAL),
     63  * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
     64  * (RLEAF) and overflow pages.  All five page types have a page header (PAGE).
     65  * This implementation requires that values within structures NOT be padded.
     66  * (ANSI C permits random padding.)  If your compiler pads randomly you'll have
     67  * to do some work to get this package to run.
     68  */
     69 typedef struct _page {
     70 	pgno_t	pgno;			/* this page's page number */
     71 	pgno_t	prevpg;			/* left sibling */
     72 	pgno_t	nextpg;			/* right sibling */
     73 
     74 #define	P_BINTERNAL	0x01		/* btree internal page */
     75 #define	P_BLEAF		0x02		/* leaf page */
     76 #define	P_OVERFLOW	0x04		/* overflow page */
     77 #define	P_RINTERNAL	0x08		/* recno internal page */
     78 #define	P_RLEAF		0x10		/* leaf page */
     79 #define P_TYPE		0x1f		/* type mask */
     80 #define	P_PRESERVE	0x20		/* never delete this chain of pages */
     81 	u_int32_t flags;
     82 
     83 	indx_t	lower;			/* lower bound of free space on page */
     84 	indx_t	upper;			/* upper bound of free space on page */
     85 	indx_t	linp[1];		/* indx_t-aligned VAR. LENGTH DATA */
     86 } PAGE;
     87 
     88 /* First and next index. */
     89 #define	BTDATAOFF							\
     90 	(sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) +		\
     91 	    sizeof(u_int32_t) + sizeof(indx_t) + sizeof(indx_t))
     92 #define	NEXTINDEX(p)	(((p)->lower - BTDATAOFF) / sizeof(indx_t))
     93 
     94 /*
     95  * For pages other than overflow pages, there is an array of offsets into the
     96  * rest of the page immediately following the page header.  Each offset is to
     97  * an item which is unique to the type of page.  The h_lower offset is just
     98  * past the last filled-in index.  The h_upper offset is the first item on the
     99  * page.  Offsets are from the beginning of the page.
    100  *
    101  * If an item is too big to store on a single page, a flag is set and the item
    102  * is a { page, size } pair such that the page is the first page of an overflow
    103  * chain with size bytes of item.  Overflow pages are simply bytes without any
    104  * external structure.
    105  *
    106  * The page number and size fields in the items are pgno_t-aligned so they can
    107  * be manipulated without copying.  (This presumes that 32 bit items can be
    108  * manipulated on this system.)
    109  */
    110 #define	BTLALIGN(n)	(((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1))
    111 #define	NOVFLSIZE	(sizeof(pgno_t) + sizeof(u_int32_t))
    112 
    113 /*
    114  * For the btree internal pages, the item is a key.  BINTERNALs are {key, pgno}
    115  * pairs, such that the key compares less than or equal to all of the records
    116  * on that page.  For a tree without duplicate keys, an internal page with two
    117  * consecutive keys, a and b, will have all records greater than or equal to a
    118  * and less than b stored on the page associated with a.  Duplicate keys are
    119  * somewhat special and can cause duplicate internal and leaf page records and
    120  * some minor modifications of the above rule.
    121  */
    122 typedef struct _binternal {
    123 	u_int32_t ksize;		/* key size */
    124 	pgno_t	pgno;			/* page number stored on */
    125 #define	P_BIGDATA	0x01		/* overflow data */
    126 #define	P_BIGKEY	0x02		/* overflow key */
    127 	u_char	flags;
    128 	char	bytes[1];		/* data */
    129 } BINTERNAL;
    130 
    131 /* Get the page's BINTERNAL structure at index indx. */
    132 #define	GETBINTERNAL(pg, indx)						\
    133 	((BINTERNAL *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
    134 
    135 /* Get the number of bytes in the entry. */
    136 #define NBINTERNAL(len)							\
    137 	BTLALIGN(sizeof(u_int32_t) + sizeof(pgno_t) + sizeof(u_char) + (len))
    138 
    139 /* Copy a BINTERNAL entry to the page. */
    140 #define	WR_BINTERNAL(p, size, pgno, flags) {				\
    141 	*(u_int32_t *)(void *)p = size;					\
    142 	p += sizeof(u_int32_t);						\
    143 	*(pgno_t *)(void *)p = pgno;					\
    144 	p += sizeof(pgno_t);						\
    145 	*(u_char *)(void *)p = flags;					\
    146 	p += sizeof(u_char);						\
    147 }
    148 
    149 /*
    150  * For the recno internal pages, the item is a page number with the number of
    151  * keys found on that page and below.
    152  */
    153 typedef struct _rinternal {
    154 	recno_t	nrecs;			/* number of records */
    155 	pgno_t	pgno;			/* page number stored below */
    156 } RINTERNAL;
    157 
    158 /* Get the page's RINTERNAL structure at index indx. */
    159 #define	GETRINTERNAL(pg, indx)						\
    160 	((RINTERNAL *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
    161 
    162 /* Get the number of bytes in the entry. */
    163 #define NRINTERNAL							\
    164 	BTLALIGN(sizeof(recno_t) + sizeof(pgno_t))
    165 
    166 /* Copy a RINTERAL entry to the page. */
    167 #define	WR_RINTERNAL(p, nrecs, pgno) {					\
    168 	*(recno_t *)(void *)p = nrecs;					\
    169 	p += sizeof(recno_t);						\
    170 	*(pgno_t *)(void *)p = pgno;					\
    171 }
    172 
    173 /* For the btree leaf pages, the item is a key and data pair. */
    174 typedef struct _bleaf {
    175 	u_int32_t	ksize;		/* size of key */
    176 	u_int32_t	dsize;		/* size of data */
    177 	u_char	flags;			/* P_BIGDATA, P_BIGKEY */
    178 	char	bytes[1];		/* data */
    179 } BLEAF;
    180 
    181 /* Get the page's BLEAF structure at index indx. */
    182 #define	GETBLEAF(pg, indx)						\
    183 	((BLEAF *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
    184 
    185 /* Get the number of bytes in the entry. */
    186 #define NBLEAF(p)	NBLEAFDBT((p)->ksize, (p)->dsize)
    187 
    188 /* Get the number of bytes in the user's key/data pair. */
    189 #define NBLEAFDBT(ksize, dsize)						\
    190 	BTLALIGN(sizeof(u_int32_t) + sizeof(u_int32_t) + sizeof(u_char) +	\
    191 	    (ksize) + (dsize))
    192 
    193 /* Copy a BLEAF entry to the page. */
    194 #define	WR_BLEAF(p, key, data, flags) {					\
    195 	*(u_int32_t *)(void *)p = key->size;				\
    196 	p += sizeof(u_int32_t);						\
    197 	*(u_int32_t *)(void *)p = data->size;				\
    198 	p += sizeof(u_int32_t);						\
    199 	*(u_char *)(void *)p = flags;					\
    200 	p += sizeof(u_char);						\
    201 	memmove(p, key->data, key->size);				\
    202 	p += key->size;							\
    203 	memmove(p, data->data, data->size);				\
    204 }
    205 
    206 /* For the recno leaf pages, the item is a data entry. */
    207 typedef struct _rleaf {
    208 	u_int32_t	dsize;		/* size of data */
    209 	u_char	flags;			/* P_BIGDATA */
    210 	char	bytes[1];
    211 } RLEAF;
    212 
    213 /* Get the page's RLEAF structure at index indx. */
    214 #define	GETRLEAF(pg, indx)						\
    215 	((RLEAF *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
    216 
    217 /* Get the number of bytes in the entry. */
    218 #define NRLEAF(p)	NRLEAFDBT((p)->dsize)
    219 
    220 /* Get the number of bytes from the user's data. */
    221 #define	NRLEAFDBT(dsize)						\
    222 	BTLALIGN(sizeof(u_int32_t) + sizeof(u_char) + (dsize))
    223 
    224 /* Copy a RLEAF entry to the page. */
    225 #define	WR_RLEAF(p, data, flags) {					\
    226 	*(u_int32_t *)(void *)p = data->size;				\
    227 	p += sizeof(u_int32_t);						\
    228 	*(u_char *)(void *)p = flags;					\
    229 	p += sizeof(u_char);						\
    230 	memmove(p, data->data, data->size);				\
    231 }
    232 
    233 /*
    234  * A record in the tree is either a pointer to a page and an index in the page
    235  * or a page number and an index.  These structures are used as a cursor, stack
    236  * entry and search returns as well as to pass records to other routines.
    237  *
    238  * One comment about searches.  Internal page searches must find the largest
    239  * record less than key in the tree so that descents work.  Leaf page searches
    240  * must find the smallest record greater than key so that the returned index
    241  * is the record's correct position for insertion.
    242  */
    243 typedef struct _epgno {
    244 	pgno_t	pgno;			/* the page number */
    245 	indx_t	index;			/* the index on the page */
    246 } EPGNO;
    247 
    248 typedef struct _epg {
    249 	PAGE	*page;			/* the (pinned) page */
    250 	indx_t	 index;			/* the index on the page */
    251 } EPG;
    252 
    253 /*
    254  * About cursors.  The cursor (and the page that contained the key/data pair
    255  * that it referenced) can be deleted, which makes things a bit tricky.  If
    256  * there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set
    257  * or there simply aren't any duplicates of the key) we copy the key that it
    258  * referenced when it's deleted, and reacquire a new cursor key if the cursor
    259  * is used again.  If there are duplicates keys, we move to the next/previous
    260  * key, and set a flag so that we know what happened.  NOTE: if duplicate (to
    261  * the cursor) keys are added to the tree during this process, it is undefined
    262  * if they will be returned or not in a cursor scan.
    263  *
    264  * The flags determine the possible states of the cursor:
    265  *
    266  * CURS_INIT	The cursor references *something*.
    267  * CURS_ACQUIRE	The cursor was deleted, and a key has been saved so that
    268  *		we can reacquire the right position in the tree.
    269  * CURS_AFTER, CURS_BEFORE
    270  *		The cursor was deleted, and now references a key/data pair
    271  *		that has not yet been returned, either before or after the
    272  *		deleted key/data pair.
    273  * XXX
    274  * This structure is broken out so that we can eventually offer multiple
    275  * cursors as part of the DB interface.
    276  */
    277 typedef struct _cursor {
    278 	EPGNO	 pg;			/* B: Saved tree reference. */
    279 	DBT	 key;			/* B: Saved key, or key.data == NULL. */
    280 	recno_t	 rcursor;		/* R: recno cursor (1-based) */
    281 
    282 #define	CURS_ACQUIRE	0x01		/*  B: Cursor needs to be reacquired. */
    283 #define	CURS_AFTER	0x02		/*  B: Unreturned cursor after key. */
    284 #define	CURS_BEFORE	0x04		/*  B: Unreturned cursor before key. */
    285 #define	CURS_INIT	0x08		/* RB: Cursor initialized. */
    286 	u_int8_t flags;
    287 } CURSOR;
    288 
    289 /*
    290  * The metadata of the tree.  The nrecs field is used only by the RECNO code.
    291  * This is because the btree doesn't really need it and it requires that every
    292  * put or delete call modify the metadata.
    293  */
    294 typedef struct _btmeta {
    295 	u_int32_t	magic;		/* magic number */
    296 	u_int32_t	version;	/* version */
    297 	u_int32_t	psize;		/* page size */
    298 	u_int32_t	free;		/* page number of first free page */
    299 	u_int32_t	nrecs;		/* R: number of records */
    300 
    301 #define	SAVEMETA	(B_NODUPS | R_RECNO)
    302 	u_int32_t	flags;		/* bt_flags & SAVEMETA */
    303 } BTMETA;
    304 
    305 /* The in-memory btree/recno data structure. */
    306 typedef struct _btree {
    307 	MPOOL	 *bt_mp;		/* memory pool cookie */
    308 
    309 	DB	 *bt_dbp;		/* pointer to enclosing DB */
    310 
    311 	EPG	  bt_cur;		/* current (pinned) page */
    312 	PAGE	 *bt_pinned;		/* page pinned across calls */
    313 
    314 	CURSOR	  bt_cursor;		/* cursor */
    315 
    316 #define	BT_PUSH(t, p, i) {						\
    317 	t->bt_sp->pgno = p; 						\
    318 	t->bt_sp->index = i; 						\
    319 	++t->bt_sp;							\
    320 }
    321 #define	BT_POP(t)	(t->bt_sp == t->bt_stack ? NULL : --t->bt_sp)
    322 #define	BT_CLR(t)	(t->bt_sp = t->bt_stack)
    323 	EPGNO	  bt_stack[50];		/* stack of parent pages */
    324 	EPGNO	 *bt_sp;		/* current stack pointer */
    325 
    326 	DBT	  bt_rkey;		/* returned key */
    327 	DBT	  bt_rdata;		/* returned data */
    328 
    329 	int	  bt_fd;		/* tree file descriptor */
    330 
    331 	pgno_t	  bt_free;		/* next free page */
    332 	u_int32_t bt_psize;		/* page size */
    333 	indx_t	  bt_ovflsize;		/* cut-off for key/data overflow */
    334 	int	  bt_lorder;		/* byte order */
    335 					/* sorted order */
    336 	enum { NOT, BACK, FORWARD } bt_order;
    337 	EPGNO	  bt_last;		/* last insert */
    338 
    339 					/* B: key comparison function */
    340 	int	(*bt_cmp) __P((const DBT *, const DBT *));
    341 					/* B: prefix comparison function */
    342 	size_t	(*bt_pfx) __P((const DBT *, const DBT *));
    343 					/* R: recno input function */
    344 	int	(*bt_irec) __P((struct _btree *, recno_t));
    345 
    346 	FILE	 *bt_rfp;		/* R: record FILE pointer */
    347 	int	  bt_rfd;		/* R: record file descriptor */
    348 
    349 	caddr_t	  bt_cmap;		/* R: current point in mapped space */
    350 	caddr_t	  bt_smap;		/* R: start of mapped space */
    351 	caddr_t   bt_emap;		/* R: end of mapped space */
    352 	size_t	  bt_msize;		/* R: size of mapped region. */
    353 
    354 	recno_t	  bt_nrecs;		/* R: number of records */
    355 	size_t	  bt_reclen;		/* R: fixed record length */
    356 	u_char	  bt_bval;		/* R: delimiting byte/pad character */
    357 
    358 /*
    359  * NB:
    360  * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
    361  */
    362 #define	B_INMEM		0x00001		/* in-memory tree */
    363 #define	B_METADIRTY	0x00002		/* need to write metadata */
    364 #define	B_MODIFIED	0x00004		/* tree modified */
    365 #define	B_NEEDSWAP	0x00008		/* if byte order requires swapping */
    366 #define	B_RDONLY	0x00010		/* read-only tree */
    367 
    368 #define	B_NODUPS	0x00020		/* no duplicate keys permitted */
    369 #define	R_RECNO		0x00080		/* record oriented tree */
    370 
    371 #define	R_CLOSEFP	0x00040		/* opened a file pointer */
    372 #define	R_EOF		0x00100		/* end of input file reached. */
    373 #define	R_FIXLEN	0x00200		/* fixed length records */
    374 #define	R_MEMMAPPED	0x00400		/* memory mapped file. */
    375 #define	R_INMEM		0x00800		/* in-memory file */
    376 #define	R_MODIFIED	0x01000		/* modified file */
    377 #define	R_RDONLY	0x02000		/* read-only file */
    378 
    379 #define	B_DB_LOCK	0x04000		/* DB_LOCK specified. */
    380 #define	B_DB_SHMEM	0x08000		/* DB_SHMEM specified. */
    381 #define	B_DB_TXN	0x10000		/* DB_TXN specified. */
    382 	u_int32_t flags;
    383 } BTREE;
    384 
    385 #include "extern.h"
    386