btree.h revision 1.14 1 /* $NetBSD: btree.h,v 1.14 2003/10/27 00:12:42 lukem Exp $ */
2
3 /*-
4 * Copyright (c) 1991, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Olson.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)btree.h 8.11 (Berkeley) 8/17/94
35 */
36
37 #if HAVE_NBTOOL_CONFIG_H
38 #include "nbtool_config.h"
39 #endif
40
41 /* Macros to set/clear/test flags. */
42 #define F_SET(p, f) (p)->flags |= (f)
43 #define F_CLR(p, f) (p)->flags &= ~(f)
44 #define F_ISSET(p, f) ((p)->flags & (f))
45
46 #include <mpool.h>
47
48 #define DEFMINKEYPAGE (2) /* Minimum keys per page */
49 #define MINCACHE (5) /* Minimum cached pages */
50 #define MINPSIZE (512) /* Minimum page size */
51
52 /*
53 * Page 0 of a btree file contains a copy of the meta-data. This page is also
54 * used as an out-of-band page, i.e. page pointers that point to nowhere point
55 * to page 0. Page 1 is the root of the btree.
56 */
57 #define P_INVALID 0 /* Invalid tree page number. */
58 #define P_META 0 /* Tree metadata page number. */
59 #define P_ROOT 1 /* Tree root page number. */
60
61 /*
62 * There are five page layouts in the btree: btree internal pages (BINTERNAL),
63 * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
64 * (RLEAF) and overflow pages. All five page types have a page header (PAGE).
65 * This implementation requires that values within structures NOT be padded.
66 * (ANSI C permits random padding.) If your compiler pads randomly you'll have
67 * to do some work to get this package to run.
68 */
69 typedef struct _page {
70 pgno_t pgno; /* this page's page number */
71 pgno_t prevpg; /* left sibling */
72 pgno_t nextpg; /* right sibling */
73
74 #define P_BINTERNAL 0x01 /* btree internal page */
75 #define P_BLEAF 0x02 /* leaf page */
76 #define P_OVERFLOW 0x04 /* overflow page */
77 #define P_RINTERNAL 0x08 /* recno internal page */
78 #define P_RLEAF 0x10 /* leaf page */
79 #define P_TYPE 0x1f /* type mask */
80 #define P_PRESERVE 0x20 /* never delete this chain of pages */
81 u_int32_t flags;
82
83 indx_t lower; /* lower bound of free space on page */
84 indx_t upper; /* upper bound of free space on page */
85 indx_t linp[1]; /* indx_t-aligned VAR. LENGTH DATA */
86 } PAGE;
87
88 /* First and next index. */
89 #define BTDATAOFF \
90 (sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) + \
91 sizeof(u_int32_t) + sizeof(indx_t) + sizeof(indx_t))
92 #define NEXTINDEX(p) (((p)->lower - BTDATAOFF) / sizeof(indx_t))
93
94 /*
95 * For pages other than overflow pages, there is an array of offsets into the
96 * rest of the page immediately following the page header. Each offset is to
97 * an item which is unique to the type of page. The h_lower offset is just
98 * past the last filled-in index. The h_upper offset is the first item on the
99 * page. Offsets are from the beginning of the page.
100 *
101 * If an item is too big to store on a single page, a flag is set and the item
102 * is a { page, size } pair such that the page is the first page of an overflow
103 * chain with size bytes of item. Overflow pages are simply bytes without any
104 * external structure.
105 *
106 * The page number and size fields in the items are pgno_t-aligned so they can
107 * be manipulated without copying. (This presumes that 32 bit items can be
108 * manipulated on this system.)
109 */
110 #define BTLALIGN(n) (((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1))
111 #define NOVFLSIZE (sizeof(pgno_t) + sizeof(u_int32_t))
112
113 /*
114 * For the btree internal pages, the item is a key. BINTERNALs are {key, pgno}
115 * pairs, such that the key compares less than or equal to all of the records
116 * on that page. For a tree without duplicate keys, an internal page with two
117 * consecutive keys, a and b, will have all records greater than or equal to a
118 * and less than b stored on the page associated with a. Duplicate keys are
119 * somewhat special and can cause duplicate internal and leaf page records and
120 * some minor modifications of the above rule.
121 */
122 typedef struct _binternal {
123 u_int32_t ksize; /* key size */
124 pgno_t pgno; /* page number stored on */
125 #define P_BIGDATA 0x01 /* overflow data */
126 #define P_BIGKEY 0x02 /* overflow key */
127 u_char flags;
128 char bytes[1]; /* data */
129 } BINTERNAL;
130
131 /* Get the page's BINTERNAL structure at index indx. */
132 #define GETBINTERNAL(pg, indx) \
133 ((BINTERNAL *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
134
135 /* Get the number of bytes in the entry. */
136 #define NBINTERNAL(len) \
137 BTLALIGN(sizeof(u_int32_t) + sizeof(pgno_t) + sizeof(u_char) + (len))
138
139 /* Copy a BINTERNAL entry to the page. */
140 #define WR_BINTERNAL(p, size, pgno, flags) { \
141 *(u_int32_t *)(void *)p = size; \
142 p += sizeof(u_int32_t); \
143 *(pgno_t *)(void *)p = pgno; \
144 p += sizeof(pgno_t); \
145 *(u_char *)(void *)p = flags; \
146 p += sizeof(u_char); \
147 }
148
149 /*
150 * For the recno internal pages, the item is a page number with the number of
151 * keys found on that page and below.
152 */
153 typedef struct _rinternal {
154 recno_t nrecs; /* number of records */
155 pgno_t pgno; /* page number stored below */
156 } RINTERNAL;
157
158 /* Get the page's RINTERNAL structure at index indx. */
159 #define GETRINTERNAL(pg, indx) \
160 ((RINTERNAL *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
161
162 /* Get the number of bytes in the entry. */
163 #define NRINTERNAL \
164 BTLALIGN(sizeof(recno_t) + sizeof(pgno_t))
165
166 /* Copy a RINTERAL entry to the page. */
167 #define WR_RINTERNAL(p, nrecs, pgno) { \
168 *(recno_t *)(void *)p = nrecs; \
169 p += sizeof(recno_t); \
170 *(pgno_t *)(void *)p = pgno; \
171 }
172
173 /* For the btree leaf pages, the item is a key and data pair. */
174 typedef struct _bleaf {
175 u_int32_t ksize; /* size of key */
176 u_int32_t dsize; /* size of data */
177 u_char flags; /* P_BIGDATA, P_BIGKEY */
178 char bytes[1]; /* data */
179 } BLEAF;
180
181 /* Get the page's BLEAF structure at index indx. */
182 #define GETBLEAF(pg, indx) \
183 ((BLEAF *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
184
185 /* Get the number of bytes in the entry. */
186 #define NBLEAF(p) NBLEAFDBT((p)->ksize, (p)->dsize)
187
188 /* Get the number of bytes in the user's key/data pair. */
189 #define NBLEAFDBT(ksize, dsize) \
190 BTLALIGN(sizeof(u_int32_t) + sizeof(u_int32_t) + sizeof(u_char) + \
191 (ksize) + (dsize))
192
193 /* Copy a BLEAF entry to the page. */
194 #define WR_BLEAF(p, key, data, flags) { \
195 *(u_int32_t *)(void *)p = key->size; \
196 p += sizeof(u_int32_t); \
197 *(u_int32_t *)(void *)p = data->size; \
198 p += sizeof(u_int32_t); \
199 *(u_char *)(void *)p = flags; \
200 p += sizeof(u_char); \
201 memmove(p, key->data, key->size); \
202 p += key->size; \
203 memmove(p, data->data, data->size); \
204 }
205
206 /* For the recno leaf pages, the item is a data entry. */
207 typedef struct _rleaf {
208 u_int32_t dsize; /* size of data */
209 u_char flags; /* P_BIGDATA */
210 char bytes[1];
211 } RLEAF;
212
213 /* Get the page's RLEAF structure at index indx. */
214 #define GETRLEAF(pg, indx) \
215 ((RLEAF *)(void *)((char *)(void *)(pg) + (pg)->linp[indx]))
216
217 /* Get the number of bytes in the entry. */
218 #define NRLEAF(p) NRLEAFDBT((p)->dsize)
219
220 /* Get the number of bytes from the user's data. */
221 #define NRLEAFDBT(dsize) \
222 BTLALIGN(sizeof(u_int32_t) + sizeof(u_char) + (dsize))
223
224 /* Copy a RLEAF entry to the page. */
225 #define WR_RLEAF(p, data, flags) { \
226 *(u_int32_t *)(void *)p = data->size; \
227 p += sizeof(u_int32_t); \
228 *(u_char *)(void *)p = flags; \
229 p += sizeof(u_char); \
230 memmove(p, data->data, data->size); \
231 }
232
233 /*
234 * A record in the tree is either a pointer to a page and an index in the page
235 * or a page number and an index. These structures are used as a cursor, stack
236 * entry and search returns as well as to pass records to other routines.
237 *
238 * One comment about searches. Internal page searches must find the largest
239 * record less than key in the tree so that descents work. Leaf page searches
240 * must find the smallest record greater than key so that the returned index
241 * is the record's correct position for insertion.
242 */
243 typedef struct _epgno {
244 pgno_t pgno; /* the page number */
245 indx_t index; /* the index on the page */
246 } EPGNO;
247
248 typedef struct _epg {
249 PAGE *page; /* the (pinned) page */
250 indx_t index; /* the index on the page */
251 } EPG;
252
253 /*
254 * About cursors. The cursor (and the page that contained the key/data pair
255 * that it referenced) can be deleted, which makes things a bit tricky. If
256 * there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set
257 * or there simply aren't any duplicates of the key) we copy the key that it
258 * referenced when it's deleted, and reacquire a new cursor key if the cursor
259 * is used again. If there are duplicates keys, we move to the next/previous
260 * key, and set a flag so that we know what happened. NOTE: if duplicate (to
261 * the cursor) keys are added to the tree during this process, it is undefined
262 * if they will be returned or not in a cursor scan.
263 *
264 * The flags determine the possible states of the cursor:
265 *
266 * CURS_INIT The cursor references *something*.
267 * CURS_ACQUIRE The cursor was deleted, and a key has been saved so that
268 * we can reacquire the right position in the tree.
269 * CURS_AFTER, CURS_BEFORE
270 * The cursor was deleted, and now references a key/data pair
271 * that has not yet been returned, either before or after the
272 * deleted key/data pair.
273 * XXX
274 * This structure is broken out so that we can eventually offer multiple
275 * cursors as part of the DB interface.
276 */
277 typedef struct _cursor {
278 EPGNO pg; /* B: Saved tree reference. */
279 DBT key; /* B: Saved key, or key.data == NULL. */
280 recno_t rcursor; /* R: recno cursor (1-based) */
281
282 #define CURS_ACQUIRE 0x01 /* B: Cursor needs to be reacquired. */
283 #define CURS_AFTER 0x02 /* B: Unreturned cursor after key. */
284 #define CURS_BEFORE 0x04 /* B: Unreturned cursor before key. */
285 #define CURS_INIT 0x08 /* RB: Cursor initialized. */
286 u_int8_t flags;
287 } CURSOR;
288
289 /*
290 * The metadata of the tree. The nrecs field is used only by the RECNO code.
291 * This is because the btree doesn't really need it and it requires that every
292 * put or delete call modify the metadata.
293 */
294 typedef struct _btmeta {
295 u_int32_t magic; /* magic number */
296 u_int32_t version; /* version */
297 u_int32_t psize; /* page size */
298 u_int32_t free; /* page number of first free page */
299 u_int32_t nrecs; /* R: number of records */
300
301 #define SAVEMETA (B_NODUPS | R_RECNO)
302 u_int32_t flags; /* bt_flags & SAVEMETA */
303 } BTMETA;
304
305 /* The in-memory btree/recno data structure. */
306 typedef struct _btree {
307 MPOOL *bt_mp; /* memory pool cookie */
308
309 DB *bt_dbp; /* pointer to enclosing DB */
310
311 EPG bt_cur; /* current (pinned) page */
312 PAGE *bt_pinned; /* page pinned across calls */
313
314 CURSOR bt_cursor; /* cursor */
315
316 #define BT_PUSH(t, p, i) { \
317 t->bt_sp->pgno = p; \
318 t->bt_sp->index = i; \
319 ++t->bt_sp; \
320 }
321 #define BT_POP(t) (t->bt_sp == t->bt_stack ? NULL : --t->bt_sp)
322 #define BT_CLR(t) (t->bt_sp = t->bt_stack)
323 EPGNO bt_stack[50]; /* stack of parent pages */
324 EPGNO *bt_sp; /* current stack pointer */
325
326 DBT bt_rkey; /* returned key */
327 DBT bt_rdata; /* returned data */
328
329 int bt_fd; /* tree file descriptor */
330
331 pgno_t bt_free; /* next free page */
332 u_int32_t bt_psize; /* page size */
333 indx_t bt_ovflsize; /* cut-off for key/data overflow */
334 int bt_lorder; /* byte order */
335 /* sorted order */
336 enum { NOT, BACK, FORWARD } bt_order;
337 EPGNO bt_last; /* last insert */
338
339 /* B: key comparison function */
340 int (*bt_cmp) __P((const DBT *, const DBT *));
341 /* B: prefix comparison function */
342 size_t (*bt_pfx) __P((const DBT *, const DBT *));
343 /* R: recno input function */
344 int (*bt_irec) __P((struct _btree *, recno_t));
345
346 FILE *bt_rfp; /* R: record FILE pointer */
347 int bt_rfd; /* R: record file descriptor */
348
349 caddr_t bt_cmap; /* R: current point in mapped space */
350 caddr_t bt_smap; /* R: start of mapped space */
351 caddr_t bt_emap; /* R: end of mapped space */
352 size_t bt_msize; /* R: size of mapped region. */
353
354 recno_t bt_nrecs; /* R: number of records */
355 size_t bt_reclen; /* R: fixed record length */
356 u_char bt_bval; /* R: delimiting byte/pad character */
357
358 /*
359 * NB:
360 * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
361 */
362 #define B_INMEM 0x00001 /* in-memory tree */
363 #define B_METADIRTY 0x00002 /* need to write metadata */
364 #define B_MODIFIED 0x00004 /* tree modified */
365 #define B_NEEDSWAP 0x00008 /* if byte order requires swapping */
366 #define B_RDONLY 0x00010 /* read-only tree */
367
368 #define B_NODUPS 0x00020 /* no duplicate keys permitted */
369 #define R_RECNO 0x00080 /* record oriented tree */
370
371 #define R_CLOSEFP 0x00040 /* opened a file pointer */
372 #define R_EOF 0x00100 /* end of input file reached. */
373 #define R_FIXLEN 0x00200 /* fixed length records */
374 #define R_MEMMAPPED 0x00400 /* memory mapped file. */
375 #define R_INMEM 0x00800 /* in-memory file */
376 #define R_MODIFIED 0x01000 /* modified file */
377 #define R_RDONLY 0x02000 /* read-only file */
378
379 #define B_DB_LOCK 0x04000 /* DB_LOCK specified. */
380 #define B_DB_SHMEM 0x08000 /* DB_SHMEM specified. */
381 #define B_DB_TXN 0x10000 /* DB_TXN specified. */
382 u_int32_t flags;
383 } BTREE;
384
385 #include "extern.h"
386