btree.h revision 1.6 1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Mike Olson.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * from: @(#)btree.h 8.4 (Berkeley) 12/18/93
37 * $Id: btree.h,v 1.6 1994/01/24 03:59:47 cgd Exp $
38 */
39
40 #include <mpool.h>
41
42 #define DEFMINKEYPAGE (2) /* Minimum keys per page */
43 #define MINCACHE (5) /* Minimum cached pages */
44 #define MINPSIZE (512) /* Minimum page size */
45
46 /*
47 * Page 0 of a btree file contains a copy of the meta-data. This page is also
48 * used as an out-of-band page, i.e. page pointers that point to nowhere point
49 * to page 0. Page 1 is the root of the btree.
50 */
51 #define P_INVALID 0 /* Invalid tree page number. */
52 #define P_META 0 /* Tree metadata page number. */
53 #define P_ROOT 1 /* Tree root page number. */
54
55 /*
56 * There are five page layouts in the btree: btree internal pages (BINTERNAL),
57 * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
58 * (RLEAF) and overflow pages. All five page types have a page header (PAGE).
59 * This implementation requires that longs within structures are NOT padded.
60 * (ANSI C permits random padding.) If your compiler pads randomly you'll have
61 * to do some work to get this package to run.
62 */
63 typedef struct _page {
64 pgno_t pgno; /* this page's page number */
65 pgno_t prevpg; /* left sibling */
66 pgno_t nextpg; /* right sibling */
67
68 #define P_BINTERNAL 0x01 /* btree internal page */
69 #define P_BLEAF 0x02 /* leaf page */
70 #define P_OVERFLOW 0x04 /* overflow page */
71 #define P_RINTERNAL 0x08 /* recno internal page */
72 #define P_RLEAF 0x10 /* leaf page */
73 #define P_TYPE 0x1f /* type mask */
74
75 #define P_PRESERVE 0x20 /* never delete this chain of pages */
76 u_long flags;
77
78 indx_t lower; /* lower bound of free space on page */
79 indx_t upper; /* upper bound of free space on page */
80 indx_t linp[1]; /* long-aligned VARIABLE LENGTH DATA */
81 } PAGE;
82
83 /* First and next index. */
84 #define BTDATAOFF (sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) + \
85 sizeof(u_long) + sizeof(indx_t) + sizeof(indx_t))
86 #define NEXTINDEX(p) (((p)->lower - BTDATAOFF) / sizeof(indx_t))
87
88 /*
89 * For pages other than overflow pages, there is an array of offsets into the
90 * rest of the page immediately following the page header. Each offset is to
91 * an item which is unique to the type of page. The h_lower offset is just
92 * past the last filled-in index. The h_upper offset is the first item on the
93 * page. Offsets are from the beginning of the page.
94 *
95 * If an item is too big to store on a single page, a flag is set and the item
96 * is a { page, size } pair such that the page is the first page of an overflow
97 * chain with size bytes of item. Overflow pages are simply bytes without any
98 * external structure.
99 *
100 * The size and page number fields in the items are long aligned so they can be
101 * manipulated without copying.
102 */
103 #define LALIGN(n) (((n) + sizeof(u_long) - 1) & ~(sizeof(u_long) - 1))
104 #define NOVFLSIZE (sizeof(pgno_t) + sizeof(size_t))
105
106 /*
107 * For the btree internal pages, the item is a key. BINTERNALs are {key, pgno}
108 * pairs, such that the key compares less than or equal to all of the records
109 * on that page. For a tree without duplicate keys, an internal page with two
110 * consecutive keys, a and b, will have all records greater than or equal to a
111 * and less than b stored on the page associated with a. Duplicate keys are
112 * somewhat special and can cause duplicate internal and leaf page records and
113 * some minor modifications of the above rule.
114 */
115 typedef struct _binternal {
116 size_t ksize; /* key size */
117 pgno_t pgno; /* page number stored on */
118 #define P_BIGDATA 0x01 /* overflow data */
119 #define P_BIGKEY 0x02 /* overflow key */
120 u_char flags;
121 char bytes[1]; /* data */
122 } BINTERNAL;
123
124 /* Get the page's BINTERNAL structure at index indx. */
125 #define GETBINTERNAL(pg, indx) \
126 ((BINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
127
128 /* Get the number of bytes in the entry. */
129 #define NBINTERNAL(len) \
130 LALIGN(sizeof(size_t) + sizeof(pgno_t) + sizeof(u_char) + (len))
131
132 /* Copy a BINTERNAL entry to the page. */
133 #define WR_BINTERNAL(p, size, pgno, flags) { \
134 *(size_t *)p = size; \
135 p += sizeof(size_t); \
136 *(pgno_t *)p = pgno; \
137 p += sizeof(pgno_t); \
138 *(u_char *)p = flags; \
139 p += sizeof(u_char); \
140 }
141
142 /*
143 * For the recno internal pages, the item is a page number with the number of
144 * keys found on that page and below.
145 */
146 typedef struct _rinternal {
147 recno_t nrecs; /* number of records */
148 pgno_t pgno; /* page number stored below */
149 } RINTERNAL;
150
151 /* Get the page's RINTERNAL structure at index indx. */
152 #define GETRINTERNAL(pg, indx) \
153 ((RINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
154
155 /* Get the number of bytes in the entry. */
156 #define NRINTERNAL \
157 LALIGN(sizeof(recno_t) + sizeof(pgno_t))
158
159 /* Copy a RINTERAL entry to the page. */
160 #define WR_RINTERNAL(p, nrecs, pgno) { \
161 *(recno_t *)p = nrecs; \
162 p += sizeof(recno_t); \
163 *(pgno_t *)p = pgno; \
164 }
165
166 /* For the btree leaf pages, the item is a key and data pair. */
167 typedef struct _bleaf {
168 size_t ksize; /* size of key */
169 size_t dsize; /* size of data */
170 u_char flags; /* P_BIGDATA, P_BIGKEY */
171 char bytes[1]; /* data */
172 } BLEAF;
173
174 /* Get the page's BLEAF structure at index indx. */
175 #define GETBLEAF(pg, indx) \
176 ((BLEAF *)((char *)(pg) + (pg)->linp[indx]))
177
178 /* Get the number of bytes in the entry. */
179 #define NBLEAF(p) NBLEAFDBT((p)->ksize, (p)->dsize)
180
181 /* Get the number of bytes in the user's key/data pair. */
182 #define NBLEAFDBT(ksize, dsize) \
183 LALIGN(sizeof(size_t) + sizeof(size_t) + sizeof(u_char) + \
184 (ksize) + (dsize))
185
186 /* Copy a BLEAF entry to the page. */
187 #define WR_BLEAF(p, key, data, flags) { \
188 *(size_t *)p = key->size; \
189 p += sizeof(size_t); \
190 *(size_t *)p = data->size; \
191 p += sizeof(size_t); \
192 *(u_char *)p = flags; \
193 p += sizeof(u_char); \
194 memmove(p, key->data, key->size); \
195 p += key->size; \
196 memmove(p, data->data, data->size); \
197 }
198
199 /* For the recno leaf pages, the item is a data entry. */
200 typedef struct _rleaf {
201 size_t dsize; /* size of data */
202 u_char flags; /* P_BIGDATA */
203 char bytes[1];
204 } RLEAF;
205
206 /* Get the page's RLEAF structure at index indx. */
207 #define GETRLEAF(pg, indx) \
208 ((RLEAF *)((char *)(pg) + (pg)->linp[indx]))
209
210 /* Get the number of bytes in the entry. */
211 #define NRLEAF(p) NRLEAFDBT((p)->dsize)
212
213 /* Get the number of bytes from the user's data. */
214 #define NRLEAFDBT(dsize) \
215 LALIGN(sizeof(size_t) + sizeof(u_char) + (dsize))
216
217 /* Copy a RLEAF entry to the page. */
218 #define WR_RLEAF(p, data, flags) { \
219 *(size_t *)p = data->size; \
220 p += sizeof(size_t); \
221 *(u_char *)p = flags; \
222 p += sizeof(u_char); \
223 memmove(p, data->data, data->size); \
224 }
225
226 /*
227 * A record in the tree is either a pointer to a page and an index in the page
228 * or a page number and an index. These structures are used as a cursor, stack
229 * entry and search returns as well as to pass records to other routines.
230 *
231 * One comment about searches. Internal page searches must find the largest
232 * record less than key in the tree so that descents work. Leaf page searches
233 * must find the smallest record greater than key so that the returned index
234 * is the record's correct position for insertion.
235 *
236 * One comment about cursors. The cursor key is never removed from the tree,
237 * even if deleted. This is because it is quite difficult to decide where the
238 * cursor should be when other keys have been inserted/deleted in the tree;
239 * duplicate keys make it impossible. This scheme does require extra work
240 * though, to make sure that we don't perform an operation on a deleted key.
241 */
242 typedef struct _epgno {
243 pgno_t pgno; /* the page number */
244 indx_t index; /* the index on the page */
245 } EPGNO;
246
247 typedef struct _epg {
248 PAGE *page; /* the (pinned) page */
249 indx_t index; /* the index on the page */
250 } EPG;
251
252 /*
253 * The metadata of the tree. The m_nrecs field is used only by the RECNO code.
254 * This is because the btree doesn't really need it and it requires that every
255 * put or delete call modify the metadata.
256 */
257 typedef struct _btmeta {
258 u_long m_magic; /* magic number */
259 u_long m_version; /* version */
260 u_long m_psize; /* page size */
261 u_long m_free; /* page number of first free page */
262 u_long m_nrecs; /* R: number of records */
263 #define SAVEMETA (B_NODUPS | R_RECNO)
264 u_long m_flags; /* bt_flags & SAVEMETA */
265 u_long m_unused; /* unused */
266 } BTMETA;
267
268 /* The in-memory btree/recno data structure. */
269 typedef struct _btree {
270 MPOOL *bt_mp; /* memory pool cookie */
271
272 DB *bt_dbp; /* pointer to enclosing DB */
273
274 EPG bt_cur; /* current (pinned) page */
275 PAGE *bt_pinned; /* page pinned across calls */
276
277 EPGNO bt_bcursor; /* B: btree cursor */
278 recno_t bt_rcursor; /* R: recno cursor (1-based) */
279
280 #define BT_POP(t) (t->bt_sp ? t->bt_stack + --t->bt_sp : NULL)
281 #define BT_CLR(t) (t->bt_sp = 0)
282 EPGNO *bt_stack; /* stack of parent pages */
283 u_int bt_sp; /* current stack pointer */
284 u_int bt_maxstack; /* largest stack */
285
286 char *bt_kbuf; /* key buffer */
287 size_t bt_kbufsz; /* key buffer size */
288 char *bt_dbuf; /* data buffer */
289 size_t bt_dbufsz; /* data buffer size */
290
291 int bt_fd; /* tree file descriptor */
292
293 pgno_t bt_free; /* next free page */
294 u_long bt_psize; /* page size */
295 indx_t bt_ovflsize; /* cut-off for key/data overflow */
296 int bt_lorder; /* byte order */
297 /* sorted order */
298 enum { NOT, BACK, FORWARD } bt_order;
299 EPGNO bt_last; /* last insert */
300
301 /* B: key comparison function */
302 int (*bt_cmp) __P((const DBT *, const DBT *));
303 /* B: prefix comparison function */
304 int (*bt_pfx) __P((const DBT *, const DBT *));
305 /* R: recno input function */
306 int (*bt_irec) __P((struct _btree *, recno_t));
307
308 FILE *bt_rfp; /* R: record FILE pointer */
309 int bt_rfd; /* R: record file descriptor */
310
311 caddr_t bt_cmap; /* R: current point in mapped space */
312 caddr_t bt_smap; /* R: start of mapped space */
313 caddr_t bt_emap; /* R: end of mapped space */
314 size_t bt_msize; /* R: size of mapped region. */
315
316 recno_t bt_nrecs; /* R: number of records */
317 size_t bt_reclen; /* R: fixed record length */
318 u_char bt_bval; /* R: delimiting byte/pad character */
319
320 /*
321 * NB:
322 * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
323 */
324 #define B_DELCRSR 0x00001 /* cursor has been deleted */
325 #define B_INMEM 0x00002 /* in-memory tree */
326 #define B_METADIRTY 0x00004 /* need to write metadata */
327 #define B_MODIFIED 0x00008 /* tree modified */
328 #define B_NEEDSWAP 0x00010 /* if byte order requires swapping */
329 #define B_NODUPS 0x00020 /* no duplicate keys permitted */
330 #define B_RDONLY 0x00040 /* read-only tree */
331 #define R_RECNO 0x00080 /* record oriented tree */
332 #define B_SEQINIT 0x00100 /* sequential scan initialized */
333
334 #define R_CLOSEFP 0x00200 /* opened a file pointer */
335 #define R_EOF 0x00400 /* end of input file reached. */
336 #define R_FIXLEN 0x00800 /* fixed length records */
337 #define R_MEMMAPPED 0x01000 /* memory mapped file. */
338 #define R_INMEM 0x02000 /* in-memory file */
339 #define R_MODIFIED 0x04000 /* modified file */
340 #define R_RDONLY 0x08000 /* read-only file */
341
342 #define B_DB_LOCK 0x10000 /* DB_LOCK specified. */
343 #define B_DB_SHMEM 0x20000 /* DB_SHMEM specified. */
344 #define B_DB_TXN 0x40000 /* DB_TXN specified. */
345
346 u_long bt_flags; /* btree state */
347 } BTREE;
348
349 #define SET(t, f) ((t)->bt_flags |= (f))
350 #define CLR(t, f) ((t)->bt_flags &= ~(f))
351 #define ISSET(t, f) ((t)->bt_flags & (f))
352
353 #include "extern.h"
354