Home | History | Annotate | Line # | Download | only in btree
btree.h revision 1.6
      1 /*-
      2  * Copyright (c) 1991, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * This code is derived from software contributed to Berkeley by
      6  * Mike Olson.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by the University of
     19  *	California, Berkeley and its contributors.
     20  * 4. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	from: @(#)btree.h	8.4 (Berkeley) 12/18/93
     37  *	$Id: btree.h,v 1.6 1994/01/24 03:59:47 cgd Exp $
     38  */
     39 
     40 #include <mpool.h>
     41 
     42 #define	DEFMINKEYPAGE	(2)		/* Minimum keys per page */
     43 #define	MINCACHE	(5)		/* Minimum cached pages */
     44 #define	MINPSIZE	(512)		/* Minimum page size */
     45 
     46 /*
     47  * Page 0 of a btree file contains a copy of the meta-data.  This page is also
     48  * used as an out-of-band page, i.e. page pointers that point to nowhere point
     49  * to page 0.  Page 1 is the root of the btree.
     50  */
     51 #define	P_INVALID	 0		/* Invalid tree page number. */
     52 #define	P_META		 0		/* Tree metadata page number. */
     53 #define	P_ROOT		 1		/* Tree root page number. */
     54 
     55 /*
     56  * There are five page layouts in the btree: btree internal pages (BINTERNAL),
     57  * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
     58  * (RLEAF) and overflow pages.  All five page types have a page header (PAGE).
     59  * This implementation requires that longs within structures are NOT padded.
     60  * (ANSI C permits random padding.)  If your compiler pads randomly you'll have
     61  * to do some work to get this package to run.
     62  */
     63 typedef struct _page {
     64 	pgno_t	pgno;			/* this page's page number */
     65 	pgno_t	prevpg;			/* left sibling */
     66 	pgno_t	nextpg;			/* right sibling */
     67 
     68 #define	P_BINTERNAL	0x01		/* btree internal page */
     69 #define	P_BLEAF		0x02		/* leaf page */
     70 #define	P_OVERFLOW	0x04		/* overflow page */
     71 #define	P_RINTERNAL	0x08		/* recno internal page */
     72 #define	P_RLEAF		0x10		/* leaf page */
     73 #define P_TYPE		0x1f		/* type mask */
     74 
     75 #define	P_PRESERVE	0x20		/* never delete this chain of pages */
     76 	u_long	flags;
     77 
     78 	indx_t	lower;			/* lower bound of free space on page */
     79 	indx_t	upper;			/* upper bound of free space on page */
     80 	indx_t	linp[1];		/* long-aligned VARIABLE LENGTH DATA */
     81 } PAGE;
     82 
     83 /* First and next index. */
     84 #define	BTDATAOFF	(sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) + \
     85 			    sizeof(u_long) + sizeof(indx_t) + sizeof(indx_t))
     86 #define	NEXTINDEX(p)	(((p)->lower - BTDATAOFF) / sizeof(indx_t))
     87 
     88 /*
     89  * For pages other than overflow pages, there is an array of offsets into the
     90  * rest of the page immediately following the page header.  Each offset is to
     91  * an item which is unique to the type of page.  The h_lower offset is just
     92  * past the last filled-in index.  The h_upper offset is the first item on the
     93  * page.  Offsets are from the beginning of the page.
     94  *
     95  * If an item is too big to store on a single page, a flag is set and the item
     96  * is a { page, size } pair such that the page is the first page of an overflow
     97  * chain with size bytes of item.  Overflow pages are simply bytes without any
     98  * external structure.
     99  *
    100  * The size and page number fields in the items are long aligned so they can be
    101  * manipulated without copying.
    102  */
    103 #define	LALIGN(n)	(((n) + sizeof(u_long) - 1) & ~(sizeof(u_long) - 1))
    104 #define	NOVFLSIZE	(sizeof(pgno_t) + sizeof(size_t))
    105 
    106 /*
    107  * For the btree internal pages, the item is a key.  BINTERNALs are {key, pgno}
    108  * pairs, such that the key compares less than or equal to all of the records
    109  * on that page.  For a tree without duplicate keys, an internal page with two
    110  * consecutive keys, a and b, will have all records greater than or equal to a
    111  * and less than b stored on the page associated with a.  Duplicate keys are
    112  * somewhat special and can cause duplicate internal and leaf page records and
    113  * some minor modifications of the above rule.
    114  */
    115 typedef struct _binternal {
    116 	size_t	ksize;			/* key size */
    117 	pgno_t	pgno;			/* page number stored on */
    118 #define	P_BIGDATA	0x01		/* overflow data */
    119 #define	P_BIGKEY	0x02		/* overflow key */
    120 	u_char	flags;
    121 	char	bytes[1];		/* data */
    122 } BINTERNAL;
    123 
    124 /* Get the page's BINTERNAL structure at index indx. */
    125 #define	GETBINTERNAL(pg, indx) \
    126 	((BINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
    127 
    128 /* Get the number of bytes in the entry. */
    129 #define NBINTERNAL(len) \
    130 	LALIGN(sizeof(size_t) + sizeof(pgno_t) + sizeof(u_char) + (len))
    131 
    132 /* Copy a BINTERNAL entry to the page. */
    133 #define	WR_BINTERNAL(p, size, pgno, flags) { \
    134 	*(size_t *)p = size; \
    135 	p += sizeof(size_t); \
    136 	*(pgno_t *)p = pgno; \
    137 	p += sizeof(pgno_t); \
    138 	*(u_char *)p = flags; \
    139 	p += sizeof(u_char); \
    140 }
    141 
    142 /*
    143  * For the recno internal pages, the item is a page number with the number of
    144  * keys found on that page and below.
    145  */
    146 typedef struct _rinternal {
    147 	recno_t	nrecs;			/* number of records */
    148 	pgno_t	pgno;			/* page number stored below */
    149 } RINTERNAL;
    150 
    151 /* Get the page's RINTERNAL structure at index indx. */
    152 #define	GETRINTERNAL(pg, indx) \
    153 	((RINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
    154 
    155 /* Get the number of bytes in the entry. */
    156 #define NRINTERNAL \
    157 	LALIGN(sizeof(recno_t) + sizeof(pgno_t))
    158 
    159 /* Copy a RINTERAL entry to the page. */
    160 #define	WR_RINTERNAL(p, nrecs, pgno) { \
    161 	*(recno_t *)p = nrecs; \
    162 	p += sizeof(recno_t); \
    163 	*(pgno_t *)p = pgno; \
    164 }
    165 
    166 /* For the btree leaf pages, the item is a key and data pair. */
    167 typedef struct _bleaf {
    168 	size_t	ksize;			/* size of key */
    169 	size_t	dsize;			/* size of data */
    170 	u_char	flags;			/* P_BIGDATA, P_BIGKEY */
    171 	char	bytes[1];		/* data */
    172 } BLEAF;
    173 
    174 /* Get the page's BLEAF structure at index indx. */
    175 #define	GETBLEAF(pg, indx) \
    176 	((BLEAF *)((char *)(pg) + (pg)->linp[indx]))
    177 
    178 /* Get the number of bytes in the entry. */
    179 #define NBLEAF(p)	NBLEAFDBT((p)->ksize, (p)->dsize)
    180 
    181 /* Get the number of bytes in the user's key/data pair. */
    182 #define NBLEAFDBT(ksize, dsize) \
    183 	LALIGN(sizeof(size_t) + sizeof(size_t) + sizeof(u_char) + \
    184 	    (ksize) + (dsize))
    185 
    186 /* Copy a BLEAF entry to the page. */
    187 #define	WR_BLEAF(p, key, data, flags) { \
    188 	*(size_t *)p = key->size; \
    189 	p += sizeof(size_t); \
    190 	*(size_t *)p = data->size; \
    191 	p += sizeof(size_t); \
    192 	*(u_char *)p = flags; \
    193 	p += sizeof(u_char); \
    194 	memmove(p, key->data, key->size); \
    195 	p += key->size; \
    196 	memmove(p, data->data, data->size); \
    197 }
    198 
    199 /* For the recno leaf pages, the item is a data entry. */
    200 typedef struct _rleaf {
    201 	size_t	dsize;			/* size of data */
    202 	u_char	flags;			/* P_BIGDATA */
    203 	char	bytes[1];
    204 } RLEAF;
    205 
    206 /* Get the page's RLEAF structure at index indx. */
    207 #define	GETRLEAF(pg, indx) \
    208 	((RLEAF *)((char *)(pg) + (pg)->linp[indx]))
    209 
    210 /* Get the number of bytes in the entry. */
    211 #define NRLEAF(p)	NRLEAFDBT((p)->dsize)
    212 
    213 /* Get the number of bytes from the user's data. */
    214 #define	NRLEAFDBT(dsize) \
    215 	LALIGN(sizeof(size_t) + sizeof(u_char) + (dsize))
    216 
    217 /* Copy a RLEAF entry to the page. */
    218 #define	WR_RLEAF(p, data, flags) { \
    219 	*(size_t *)p = data->size; \
    220 	p += sizeof(size_t); \
    221 	*(u_char *)p = flags; \
    222 	p += sizeof(u_char); \
    223 	memmove(p, data->data, data->size); \
    224 }
    225 
    226 /*
    227  * A record in the tree is either a pointer to a page and an index in the page
    228  * or a page number and an index.  These structures are used as a cursor, stack
    229  * entry and search returns as well as to pass records to other routines.
    230  *
    231  * One comment about searches.  Internal page searches must find the largest
    232  * record less than key in the tree so that descents work.  Leaf page searches
    233  * must find the smallest record greater than key so that the returned index
    234  * is the record's correct position for insertion.
    235  *
    236  * One comment about cursors.  The cursor key is never removed from the tree,
    237  * even if deleted.  This is because it is quite difficult to decide where the
    238  * cursor should be when other keys have been inserted/deleted in the tree;
    239  * duplicate keys make it impossible.  This scheme does require extra work
    240  * though, to make sure that we don't perform an operation on a deleted key.
    241  */
    242 typedef struct _epgno {
    243 	pgno_t	pgno;			/* the page number */
    244 	indx_t	index;			/* the index on the page */
    245 } EPGNO;
    246 
    247 typedef struct _epg {
    248 	PAGE	*page;			/* the (pinned) page */
    249 	indx_t	 index;			/* the index on the page */
    250 } EPG;
    251 
    252 /*
    253  * The metadata of the tree.  The m_nrecs field is used only by the RECNO code.
    254  * This is because the btree doesn't really need it and it requires that every
    255  * put or delete call modify the metadata.
    256  */
    257 typedef struct _btmeta {
    258 	u_long	m_magic;		/* magic number */
    259 	u_long	m_version;		/* version */
    260 	u_long	m_psize;		/* page size */
    261 	u_long	m_free;			/* page number of first free page */
    262 	u_long	m_nrecs;		/* R: number of records */
    263 #define	SAVEMETA	(B_NODUPS | R_RECNO)
    264 	u_long	m_flags;		/* bt_flags & SAVEMETA */
    265 	u_long	m_unused;		/* unused */
    266 } BTMETA;
    267 
    268 /* The in-memory btree/recno data structure. */
    269 typedef struct _btree {
    270 	MPOOL	*bt_mp;			/* memory pool cookie */
    271 
    272 	DB	*bt_dbp;		/* pointer to enclosing DB */
    273 
    274 	EPG	bt_cur;			/* current (pinned) page */
    275 	PAGE	*bt_pinned;		/* page pinned across calls */
    276 
    277 	EPGNO	bt_bcursor;		/* B: btree cursor */
    278 	recno_t	bt_rcursor;		/* R: recno cursor (1-based) */
    279 
    280 #define	BT_POP(t)	(t->bt_sp ? t->bt_stack + --t->bt_sp : NULL)
    281 #define	BT_CLR(t)	(t->bt_sp = 0)
    282 	EPGNO	*bt_stack;		/* stack of parent pages */
    283 	u_int	bt_sp;			/* current stack pointer */
    284 	u_int	bt_maxstack;		/* largest stack */
    285 
    286 	char	*bt_kbuf;		/* key buffer */
    287 	size_t	bt_kbufsz;		/* key buffer size */
    288 	char	*bt_dbuf;		/* data buffer */
    289 	size_t	bt_dbufsz;		/* data buffer size */
    290 
    291 	int	bt_fd;			/* tree file descriptor */
    292 
    293 	pgno_t	bt_free;		/* next free page */
    294 	u_long	bt_psize;		/* page size */
    295 	indx_t	bt_ovflsize;		/* cut-off for key/data overflow */
    296 	int	bt_lorder;		/* byte order */
    297 					/* sorted order */
    298 	enum { NOT, BACK, FORWARD } bt_order;
    299 	EPGNO	bt_last;		/* last insert */
    300 
    301 					/* B: key comparison function */
    302 	int	(*bt_cmp) __P((const DBT *, const DBT *));
    303 					/* B: prefix comparison function */
    304 	int	(*bt_pfx) __P((const DBT *, const DBT *));
    305 					/* R: recno input function */
    306 	int	(*bt_irec) __P((struct _btree *, recno_t));
    307 
    308 	FILE	*bt_rfp;		/* R: record FILE pointer */
    309 	int	bt_rfd;			/* R: record file descriptor */
    310 
    311 	caddr_t	bt_cmap;		/* R: current point in mapped space */
    312 	caddr_t	bt_smap;		/* R: start of mapped space */
    313 	caddr_t bt_emap;		/* R: end of mapped space */
    314 	size_t	bt_msize;		/* R: size of mapped region. */
    315 
    316 	recno_t	bt_nrecs;		/* R: number of records */
    317 	size_t	bt_reclen;		/* R: fixed record length */
    318 	u_char	bt_bval;		/* R: delimiting byte/pad character */
    319 
    320 /*
    321  * NB:
    322  * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
    323  */
    324 #define	B_DELCRSR	0x00001		/* cursor has been deleted */
    325 #define	B_INMEM		0x00002		/* in-memory tree */
    326 #define	B_METADIRTY	0x00004		/* need to write metadata */
    327 #define	B_MODIFIED	0x00008		/* tree modified */
    328 #define	B_NEEDSWAP	0x00010		/* if byte order requires swapping */
    329 #define	B_NODUPS	0x00020		/* no duplicate keys permitted */
    330 #define	B_RDONLY	0x00040		/* read-only tree */
    331 #define	R_RECNO		0x00080		/* record oriented tree */
    332 #define	B_SEQINIT	0x00100		/* sequential scan initialized */
    333 
    334 #define	R_CLOSEFP	0x00200		/* opened a file pointer */
    335 #define	R_EOF		0x00400		/* end of input file reached. */
    336 #define	R_FIXLEN	0x00800		/* fixed length records */
    337 #define	R_MEMMAPPED	0x01000		/* memory mapped file. */
    338 #define	R_INMEM		0x02000		/* in-memory file */
    339 #define	R_MODIFIED	0x04000		/* modified file */
    340 #define	R_RDONLY	0x08000		/* read-only file */
    341 
    342 #define	B_DB_LOCK	0x10000		/* DB_LOCK specified. */
    343 #define	B_DB_SHMEM	0x20000		/* DB_SHMEM specified. */
    344 #define	B_DB_TXN	0x40000		/* DB_TXN specified. */
    345 
    346 	u_long		bt_flags;	/* btree state */
    347 } BTREE;
    348 
    349 #define	SET(t, f)	((t)->bt_flags |= (f))
    350 #define	CLR(t, f)	((t)->bt_flags &= ~(f))
    351 #define	ISSET(t, f)	((t)->bt_flags & (f))
    352 
    353 #include "extern.h"
    354