1 1.17 kamil /* $NetBSD: hash.h,v 1.17 2020/02/21 22:04:06 kamil Exp $ */ 2 1.5 cgd 3 1.1 cgd /*- 4 1.4 cgd * Copyright (c) 1990, 1993, 1994 5 1.2 cgd * The Regents of the University of California. All rights reserved. 6 1.1 cgd * 7 1.1 cgd * This code is derived from software contributed to Berkeley by 8 1.1 cgd * Margo Seltzer. 9 1.1 cgd * 10 1.1 cgd * Redistribution and use in source and binary forms, with or without 11 1.1 cgd * modification, are permitted provided that the following conditions 12 1.1 cgd * are met: 13 1.1 cgd * 1. Redistributions of source code must retain the above copyright 14 1.1 cgd * notice, this list of conditions and the following disclaimer. 15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 cgd * notice, this list of conditions and the following disclaimer in the 17 1.1 cgd * documentation and/or other materials provided with the distribution. 18 1.12 agc * 3. Neither the name of the University nor the names of its contributors 19 1.1 cgd * may be used to endorse or promote products derived from this software 20 1.1 cgd * without specific prior written permission. 21 1.1 cgd * 22 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 1.1 cgd * SUCH DAMAGE. 33 1.1 cgd * 34 1.4 cgd * @(#)hash.h 8.3 (Berkeley) 5/31/94 35 1.1 cgd */ 36 1.10 tv 37 1.13 lukem #if HAVE_NBTOOL_CONFIG_H 38 1.13 lukem #include "nbtool_config.h" 39 1.10 tv #endif 40 1.1 cgd 41 1.1 cgd /* Operations */ 42 1.2 cgd typedef enum { 43 1.2 cgd HASH_GET, HASH_PUT, HASH_PUTNEW, HASH_DELETE, HASH_FIRST, HASH_NEXT 44 1.2 cgd } ACTION; 45 1.1 cgd 46 1.1 cgd /* Buffer Management structures */ 47 1.1 cgd typedef struct _bufhead BUFHEAD; 48 1.1 cgd 49 1.1 cgd struct _bufhead { 50 1.4 cgd BUFHEAD *prev; /* LRU links */ 51 1.4 cgd BUFHEAD *next; /* LRU links */ 52 1.4 cgd BUFHEAD *ovfl; /* Overflow page buffer header */ 53 1.15 joerg uint32_t addr; /* Address of this page */ 54 1.4 cgd char *page; /* Actual page data */ 55 1.4 cgd char flags; 56 1.1 cgd #define BUF_MOD 0x0001 57 1.1 cgd #define BUF_DISK 0x0002 58 1.1 cgd #define BUF_BUCKET 0x0004 59 1.1 cgd #define BUF_PIN 0x0008 60 1.1 cgd }; 61 1.1 cgd 62 1.2 cgd #define IS_BUCKET(X) ((X) & BUF_BUCKET) 63 1.1 cgd 64 1.2 cgd typedef BUFHEAD **SEGMENT; 65 1.1 cgd 66 1.1 cgd /* Hash Table Information */ 67 1.4 cgd typedef struct hashhdr { /* Disk resident portion */ 68 1.11 itojun int32_t magic; /* Magic NO for hash tables */ 69 1.11 itojun int32_t version; /* Version ID */ 70 1.15 joerg uint32_t lorder; /* Byte Order */ 71 1.11 itojun int32_t bsize; /* Bucket/Page Size */ 72 1.11 itojun int32_t bshift; /* Bucket shift */ 73 1.11 itojun int32_t dsize; /* Directory Size */ 74 1.11 itojun int32_t ssize; /* Segment Size */ 75 1.11 itojun int32_t sshift; /* Segment shift */ 76 1.11 itojun int32_t ovfl_point; /* Where overflow pages are being 77 1.4 cgd * allocated */ 78 1.11 itojun int32_t last_freed; /* Last overflow page freed */ 79 1.11 itojun int32_t max_bucket; /* ID of Maximum bucket in use */ 80 1.11 itojun int32_t high_mask; /* Mask to modulo into entire table */ 81 1.11 itojun int32_t low_mask; /* Mask to modulo into lower half of 82 1.4 cgd * table */ 83 1.11 itojun int32_t ffactor; /* Fill factor */ 84 1.11 itojun int32_t nkeys; /* Number of keys in hash table */ 85 1.11 itojun int32_t hdrpages; /* Size of table header */ 86 1.11 itojun int32_t h_charkey; /* value of hash(CHARKEY) */ 87 1.4 cgd #define NCACHED 32 /* number of bit maps and spare 88 1.4 cgd * points */ 89 1.11 itojun int32_t spares[NCACHED];/* spare pages for overflow */ 90 1.15 joerg uint16_t bitmaps[NCACHED]; /* address of overflow page 91 1.4 cgd * bitmaps */ 92 1.1 cgd } HASHHDR; 93 1.1 cgd 94 1.4 cgd typedef struct htab { /* Memory resident data structure */ 95 1.4 cgd HASHHDR hdr; /* Header */ 96 1.4 cgd int nsegs; /* Number of allocated segments */ 97 1.4 cgd int exsegs; /* Number of extra allocated 98 1.4 cgd * segments */ 99 1.15 joerg uint32_t (*hash)(const void *, size_t); /* Hash function */ 100 1.4 cgd int flags; /* Flag values */ 101 1.4 cgd int fp; /* File pointer */ 102 1.4 cgd char *tmp_buf; /* Temporary Buffer for BIG data */ 103 1.4 cgd char *tmp_key; /* Temporary Buffer for BIG keys */ 104 1.4 cgd BUFHEAD *cpage; /* Current page */ 105 1.4 cgd int cbucket; /* Current bucket */ 106 1.4 cgd int cndx; /* Index of next item on cpage */ 107 1.7 jtc int err; /* Error Number -- for DBM 108 1.9 wiz * compatibility */ 109 1.4 cgd int new_file; /* Indicates if fd is backing store 110 1.4 cgd * or no */ 111 1.4 cgd int save_file; /* Indicates whether we need to flush 112 1.4 cgd * file at 113 1.4 cgd * exit */ 114 1.15 joerg uint32_t *mapp[NCACHED]; /* Pointers to page maps */ 115 1.4 cgd int nmaps; /* Initial number of bitmaps */ 116 1.4 cgd int nbufs; /* Number of buffers left to 117 1.4 cgd * allocate */ 118 1.4 cgd BUFHEAD bufhead; /* Header of buffer lru list */ 119 1.4 cgd SEGMENT *dir; /* Hash Bucket directory */ 120 1.1 cgd } HTAB; 121 1.1 cgd 122 1.1 cgd /* 123 1.1 cgd * Constants 124 1.1 cgd */ 125 1.2 cgd #define MAX_BSIZE 65536 /* 2^16 */ 126 1.16 christos /* 127 1.16 christos * Make it fit in uint16_t; a better way would be to store size - 1, but 128 1.16 christos * then we'd need to bump the version. 129 1.16 christos */ 130 1.16 christos #define HASH_BSIZE(hp) ((hp)->BSIZE == MAX_BSIZE ? MAX_BSIZE - 1 : (hp)->BSIZE) 131 1.1 cgd #define MIN_BUFFERS 6 132 1.1 cgd #define MINHDRSIZE 512 133 1.2 cgd #define DEF_BUFSIZE 65536 /* 64 K */ 134 1.2 cgd #define DEF_BUCKET_SIZE 4096 135 1.2 cgd #define DEF_BUCKET_SHIFT 12 /* log2(BUCKET) */ 136 1.1 cgd #define DEF_SEGSIZE 256 137 1.2 cgd #define DEF_SEGSIZE_SHIFT 8 /* log2(SEGSIZE) */ 138 1.1 cgd #define DEF_DIRSIZE 256 139 1.2 cgd #define DEF_FFACTOR 65536 140 1.2 cgd #define MIN_FFACTOR 4 141 1.2 cgd #define SPLTMAX 8 142 1.2 cgd #define CHARKEY "%$sniglet^&" 143 1.1 cgd #define NUMKEY 1038583 144 1.1 cgd #define BYTE_SHIFT 3 145 1.1 cgd #define INT_TO_BYTE 2 146 1.1 cgd #define INT_BYTE_SHIFT 5 147 1.15 joerg #define ALL_SET ((uint32_t)0xFFFFFFFF) 148 1.1 cgd #define ALL_CLEAR 0 149 1.1 cgd 150 1.8 christos #define PTROF(X) ((BUFHEAD *)(void *)((u_long)(X)&~0x3)) 151 1.15 joerg #define ISMOD(X) ((uint32_t)(u_long)(X)&0x1) 152 1.8 christos #define DOMOD(X) ((X) = (char *)(void *)((u_long)(X)|0x1)) 153 1.15 joerg #define ISDISK(X) ((uint32_t)(u_long)(X)&0x2) 154 1.8 christos #define DODISK(X) ((X) = (char *)(void *)((u_long)(X)|0x2)) 155 1.1 cgd 156 1.2 cgd #define BITS_PER_MAP 32 157 1.1 cgd 158 1.1 cgd /* Given the address of the beginning of a big map, clear/set the nth bit */ 159 1.17 kamil #define CLRBIT(A, N) ((A)[(N)/BITS_PER_MAP] &= ~(1U<<((N)%BITS_PER_MAP))) 160 1.17 kamil #define SETBIT(A, N) ((A)[(N)/BITS_PER_MAP] |= (1U<<((N)%BITS_PER_MAP))) 161 1.17 kamil #define ISSET(A, N) ((A)[(N)/BITS_PER_MAP] & (1U<<((N)%BITS_PER_MAP))) 162 1.1 cgd 163 1.1 cgd /* Overflow management */ 164 1.1 cgd /* 165 1.2 cgd * Overflow page numbers are allocated per split point. At each doubling of 166 1.2 cgd * the table, we can allocate extra pages. So, an overflow page number has 167 1.2 cgd * the top 5 bits indicate which split point and the lower 11 bits indicate 168 1.2 cgd * which page at that split point is indicated (pages within split points are 169 1.2 cgd * numberered starting with 1). 170 1.2 cgd */ 171 1.1 cgd 172 1.1 cgd #define SPLITSHIFT 11 173 1.1 cgd #define SPLITMASK 0x7FF 174 1.15 joerg #define SPLITNUM(N) (((uint32_t)(N)) >> SPLITSHIFT) 175 1.2 cgd #define OPAGENUM(N) ((N) & SPLITMASK) 176 1.15 joerg #define OADDR_OF(S,O) ((uint32_t)((uint32_t)(S) << SPLITSHIFT) + (O)) 177 1.1 cgd 178 1.1 cgd #define BUCKET_TO_PAGE(B) \ 179 1.8 christos (B) + hashp->HDRPAGES + \ 180 1.15 joerg ((B) ? hashp->SPARES[__log2((uint32_t)((B)+1))-1] : 0) 181 1.1 cgd #define OADDR_TO_PAGE(B) \ 182 1.2 cgd BUCKET_TO_PAGE ( (1 << SPLITNUM((B))) -1 ) + OPAGENUM((B)); 183 1.1 cgd 184 1.1 cgd /* 185 1.2 cgd * page.h contains a detailed description of the page format. 186 1.2 cgd * 187 1.2 cgd * Normally, keys and data are accessed from offset tables in the top of 188 1.2 cgd * each page which point to the beginning of the key and data. There are 189 1.2 cgd * four flag values which may be stored in these offset tables which indicate 190 1.2 cgd * the following: 191 1.2 cgd * 192 1.2 cgd * 193 1.2 cgd * OVFLPAGE Rather than a key data pair, this pair contains 194 1.2 cgd * the address of an overflow page. The format of 195 1.2 cgd * the pair is: 196 1.2 cgd * OVERFLOW_PAGE_NUMBER OVFLPAGE 197 1.2 cgd * 198 1.2 cgd * PARTIAL_KEY This must be the first key/data pair on a page 199 1.2 cgd * and implies that page contains only a partial key. 200 1.2 cgd * That is, the key is too big to fit on a single page 201 1.2 cgd * so it starts on this page and continues on the next. 202 1.2 cgd * The format of the page is: 203 1.2 cgd * KEY_OFF PARTIAL_KEY OVFL_PAGENO OVFLPAGE 204 1.2 cgd * 205 1.2 cgd * KEY_OFF -- offset of the beginning of the key 206 1.2 cgd * PARTIAL_KEY -- 1 207 1.2 cgd * OVFL_PAGENO - page number of the next overflow page 208 1.2 cgd * OVFLPAGE -- 0 209 1.2 cgd * 210 1.2 cgd * FULL_KEY This must be the first key/data pair on the page. It 211 1.2 cgd * is used in two cases. 212 1.2 cgd * 213 1.2 cgd * Case 1: 214 1.2 cgd * There is a complete key on the page but no data 215 1.2 cgd * (because it wouldn't fit). The next page contains 216 1.2 cgd * the data. 217 1.2 cgd * 218 1.2 cgd * Page format it: 219 1.2 cgd * KEY_OFF FULL_KEY OVFL_PAGENO OVFL_PAGE 220 1.2 cgd * 221 1.2 cgd * KEY_OFF -- offset of the beginning of the key 222 1.2 cgd * FULL_KEY -- 2 223 1.2 cgd * OVFL_PAGENO - page number of the next overflow page 224 1.2 cgd * OVFLPAGE -- 0 225 1.2 cgd * 226 1.2 cgd * Case 2: 227 1.2 cgd * This page contains no key, but part of a large 228 1.2 cgd * data field, which is continued on the next page. 229 1.2 cgd * 230 1.2 cgd * Page format it: 231 1.2 cgd * DATA_OFF FULL_KEY OVFL_PAGENO OVFL_PAGE 232 1.2 cgd * 233 1.2 cgd * KEY_OFF -- offset of the beginning of the data on 234 1.2 cgd * this page 235 1.2 cgd * FULL_KEY -- 2 236 1.2 cgd * OVFL_PAGENO - page number of the next overflow page 237 1.2 cgd * OVFLPAGE -- 0 238 1.2 cgd * 239 1.2 cgd * FULL_KEY_DATA 240 1.2 cgd * This must be the first key/data pair on the page. 241 1.2 cgd * There are two cases: 242 1.2 cgd * 243 1.2 cgd * Case 1: 244 1.2 cgd * This page contains a key and the beginning of the 245 1.2 cgd * data field, but the data field is continued on the 246 1.2 cgd * next page. 247 1.2 cgd * 248 1.2 cgd * Page format is: 249 1.2 cgd * KEY_OFF FULL_KEY_DATA OVFL_PAGENO DATA_OFF 250 1.2 cgd * 251 1.2 cgd * KEY_OFF -- offset of the beginning of the key 252 1.2 cgd * FULL_KEY_DATA -- 3 253 1.2 cgd * OVFL_PAGENO - page number of the next overflow page 254 1.2 cgd * DATA_OFF -- offset of the beginning of the data 255 1.2 cgd * 256 1.2 cgd * Case 2: 257 1.2 cgd * This page contains the last page of a big data pair. 258 1.2 cgd * There is no key, only the tail end of the data 259 1.2 cgd * on this page. 260 1.2 cgd * 261 1.2 cgd * Page format is: 262 1.2 cgd * DATA_OFF FULL_KEY_DATA <OVFL_PAGENO> <OVFLPAGE> 263 1.2 cgd * 264 1.2 cgd * DATA_OFF -- offset of the beginning of the data on 265 1.2 cgd * this page 266 1.2 cgd * FULL_KEY_DATA -- 3 267 1.2 cgd * OVFL_PAGENO - page number of the next overflow page 268 1.2 cgd * OVFLPAGE -- 0 269 1.2 cgd * 270 1.2 cgd * OVFL_PAGENO and OVFLPAGE are optional (they are 271 1.2 cgd * not present if there is no next page). 272 1.2 cgd */ 273 1.1 cgd 274 1.1 cgd #define OVFLPAGE 0 275 1.1 cgd #define PARTIAL_KEY 1 276 1.1 cgd #define FULL_KEY 2 277 1.1 cgd #define FULL_KEY_DATA 3 278 1.1 cgd #define REAL_KEY 4 279 1.2 cgd 280 1.1 cgd /* Short hands for accessing structure */ 281 1.2 cgd #define BSIZE hdr.bsize 282 1.2 cgd #define BSHIFT hdr.bshift 283 1.2 cgd #define DSIZE hdr.dsize 284 1.2 cgd #define SGSIZE hdr.ssize 285 1.2 cgd #define SSHIFT hdr.sshift 286 1.2 cgd #define LORDER hdr.lorder 287 1.2 cgd #define OVFL_POINT hdr.ovfl_point 288 1.2 cgd #define LAST_FREED hdr.last_freed 289 1.1 cgd #define MAX_BUCKET hdr.max_bucket 290 1.1 cgd #define FFACTOR hdr.ffactor 291 1.1 cgd #define HIGH_MASK hdr.high_mask 292 1.1 cgd #define LOW_MASK hdr.low_mask 293 1.1 cgd #define NKEYS hdr.nkeys 294 1.1 cgd #define HDRPAGES hdr.hdrpages 295 1.1 cgd #define SPARES hdr.spares 296 1.1 cgd #define BITMAPS hdr.bitmaps 297 1.1 cgd #define VERSION hdr.version 298 1.1 cgd #define MAGIC hdr.magic 299 1.1 cgd #define NEXT_FREE hdr.next_free 300 1.1 cgd #define H_CHARKEY hdr.h_charkey 301