hash.h revision 1.1 1 /*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Margo Seltzer.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)hash.h 5.4 (Berkeley) 3/12/91
37 */
38
39 /* Operations */
40 typedef enum { HASH_GET, HASH_PUT, HASH_PUTNEW, HASH_DELETE,
41 HASH_FIRST, HASH_NEXT } ACTION;
42
43 /* Buffer Management structures */
44 typedef struct _bufhead BUFHEAD;
45
46 struct _bufhead {
47 BUFHEAD *prev; /* LRU links */
48 BUFHEAD *next; /* LRU links */
49 BUFHEAD *ovfl; /* Overflow page buffer header */
50 u_int addr; /* Address of this page */
51 char *page; /* Actual page data */
52 char flags;
53 #define BUF_MOD 0x0001
54 #define BUF_DISK 0x0002
55 #define BUF_BUCKET 0x0004
56 #define BUF_PIN 0x0008
57 };
58
59
60 #define IS_BUCKET(X) (X & BUF_BUCKET)
61
62 typedef BUFHEAD **SEGMENT;
63
64 /* Hash Table Information */
65 typedef struct hashhdr { /* Disk resident portion */
66 int magic; /* Magic NO for hash tables */
67 int version; /* Version ID */
68 long lorder; /* Byte Order */
69 int bsize; /* Bucket/Page Size */
70 int bshift; /* Bucket shift */
71 int dsize; /* Directory Size */
72 int ssize; /* Segment Size */
73 int sshift; /* Segment shift */
74 int max_bucket; /* ID of Maximum bucket in use */
75 int high_mask; /* Mask to modulo into entire table */
76 int low_mask; /* Mask to modulo into lower half of table */
77 int ffactor; /* Fill factor */
78 int nkeys; /* Number of keys in hash table */
79 int hdrpages; /* Size of table header */
80 int h_charkey; /* value of hash(CHARKEY) */
81 # define NCACHED 32 /* number of bit maps and spare points*/
82 int spares[NCACHED]; /* spare pages for overflow */
83 u_short bitmaps[NCACHED]; /* address of overflow page bitmaps */
84 } HASHHDR;
85
86 typedef struct htab { /* Memory resident data structure */
87 HASHHDR hdr; /* Header */
88 int nsegs; /* Number of allocated segments */
89 int exsegs; /* Number of extra allocated segments */
90 int (*hash)(); /* Hash Function */
91 int flags; /* Flag values */
92 int fp; /* File pointer */
93 char *tmp_buf; /* Temporary Buffer for BIG data */
94 char *tmp_key; /* Temporary Buffer for BIG keys */
95 BUFHEAD *cpage; /* Current page */
96 int cbucket; /* Current bucket */
97 int cndx; /* Index of next item on cpage */
98 int errno; /* Error Number -- for DBM compatability */
99 int new_file; /* Indicates whether fd is backing store or no */
100 int save_file; /* Indicates whether we need to flush file at exit */
101 u_long *mapp[NCACHED]; /* Pointers to page maps */
102 int nmaps; /* Initial number of bitmaps */
103 int nbufs; /* Number of buffers left to allocate */
104 BUFHEAD bufhead; /* Header of buffer lru list */
105 SEGMENT *dir; /* Hash Bucket directory */
106 } HTAB;
107
108
109 /*
110 * Constants
111 */
112 #define MAX_BSIZE 65536 /* 2^16 */
113 #define MIN_BUFFERS 6
114 #define MINHDRSIZE 512
115 #define DEF_BUFSIZE 65536 /* 64 K */
116 #define DEF_BUCKET_SIZE 256
117 #define DEF_BUCKET_SHIFT 8 /* log2(BUCKET) */
118 #define DEF_SEGSIZE 256
119 #define DEF_SEGSIZE_SHIFT 8 /* log2(SEGSIZE) */
120 #define DEF_DIRSIZE 256
121 #define DEF_FFACTOR 5
122 #define SPLTMAX 8
123 #define CHARKEY "%$sniglet^&"
124 #define NUMKEY 1038583
125 #define VERSION_NO 3
126 #define BYTE_SHIFT 3
127 #define INT_TO_BYTE 2
128 #define INT_BYTE_SHIFT 5
129 #define ALL_SET ((unsigned)0xFFFFFFFF)
130 #define ALL_CLEAR 0
131
132
133 #define PTROF(X) ((BUFHEAD *)((unsigned)(X)&~0x3))
134 #define ISMOD(X) ((unsigned)(X)&0x1)
135 #define DOMOD(X) (X = (char *)( (unsigned)X | 0x1))
136 #define ISDISK(X) ((unsigned)(X)&0x2)
137 #define DODISK(X) (X = (char *)( (unsigned)X | 0x2))
138
139 #define BITS_PER_MAP 32
140
141 /* Given the address of the beginning of a big map, clear/set the nth bit */
142
143 #define CLRBIT(A,N) ((A)[N/BITS_PER_MAP] &= ~(1<<(N%BITS_PER_MAP)))
144 #define SETBIT(A,N) ((A)[N/BITS_PER_MAP] |= (1<<(N%BITS_PER_MAP)))
145 #define ISSET(A,N) ((A)[N/BITS_PER_MAP] & (1<<(N%BITS_PER_MAP)))
146
147 /* Overflow management */
148 /*
149 Overflow page numbers are allocated per split point.
150 At each doubling of the table, we can allocate extra
151 pages. So, an overflow page number has the top 5 bits
152 indicate which split point and the lower 11 bits indicate
153 which page at that split point is indicated (pages within
154 split points are numberered starting with 1).
155
156
157 */
158
159 #define SPLITSHIFT 11
160 #define SPLITMASK 0x7FF
161 #define SPLITNUM(N) (((unsigned)N) >> SPLITSHIFT)
162 #define OPAGENUM(N) (N & SPLITMASK)
163 #define OADDR_OF(S,O) ((unsigned)((unsigned)S << SPLITSHIFT) + O)
164
165 #define BUCKET_TO_PAGE(B) \
166 B + hashp->HDRPAGES + (B ? hashp->SPARES[__log2(B+1)-1] : 0)
167 #define OADDR_TO_PAGE(B) \
168 BUCKET_TO_PAGE ( (1 << SPLITNUM(B)) -1 ) + OPAGENUM(B);
169
170 /*
171 page.h contains a detailed description of the page format.
172
173 Normally, keys and data are accessed from offset tables in the
174 top of each page which point to the beginning of the key and
175 data. There are four flag values which may be stored in these
176 offset tables which indicate the following:
177
178 OVFLPAGE Rather than a key data pair, this pair contains
179 the address of an overflow page. The format of
180 the pair is:
181 OVERFLOW_PAGE_NUMBER OVFLPAGE
182
183 PARTIAL_KEY This must be the first key/data pair on a page
184 and implies that page contains only a partial key.
185 That is, the key is too big to fit on a single page
186 so it starts on this page and continues on the next.
187 The format of the page is:
188 KEY_OFF PARTIAL_KEY OVFL_PAGENO OVFLPAGE
189
190 KEY_OFF -- offset of the beginning of the key
191 PARTIAL_KEY -- 1
192 OVFL_PAGENO - page number of the next overflow page
193 OVFLPAGE -- 0
194 FULL_KEY This must be the first key/data pair on the page. It
195 is used in two cases.
196
197 Case 1:
198 There is a complete key on the page but no data
199 (because it wouldn't fit). The next page contains
200 the data.
201
202 Page format it:
203 KEY_OFF FULL_KEY OVFL_PAGENO OVFL_PAGE
204
205 KEY_OFF -- offset of the beginning of the key
206 FULL_KEY -- 2
207 OVFL_PAGENO - page number of the next overflow page
208 OVFLPAGE -- 0
209
210 Case 2:
211 This page contains no key, but part of a large
212 data field, which is continued on the next page.
213
214 Page format it:
215 DATA_OFF FULL_KEY OVFL_PAGENO OVFL_PAGE
216
217 KEY_OFF -- offset of the beginning of the data on
218 this page
219 FULL_KEY -- 2
220 OVFL_PAGENO - page number of the next overflow page
221 OVFLPAGE -- 0
222
223 FULL_KEY_DATA This must be the first key/data pair on the page.
224 There are two cases:
225
226 Case 1:
227 This page contains a key and the beginning of the
228 data field, but the data field is continued on the
229 next page.
230
231 Page format is:
232 KEY_OFF FULL_KEY_DATA OVFL_PAGENO DATA_OFF
233
234 KEY_OFF -- offset of the beginning of the key
235 FULL_KEY_DATA -- 3
236 OVFL_PAGENO - page number of the next overflow page
237 DATA_OFF -- offset of the beginning of the data
238
239 Case 2:
240 This page contains the last page of a big data pair.
241 There is no key, only the tail end of the data
242 on this page.
243
244 Page format is:
245 DATA_OFF FULL_KEY_DATA <OVFL_PAGENO> <OVFLPAGE>
246
247 DATA_OFF -- offset of the beginning of the data on
248 this page
249 FULL_KEY_DATA -- 3
250 OVFL_PAGENO - page number of the next overflow page
251 OVFLPAGE -- 0
252
253 OVFL_PAGENO and OVFLPAGE are optional (they are
254 not present if there is no next page).
255 */
256
257 #define OVFLPAGE 0
258 #define PARTIAL_KEY 1
259 #define FULL_KEY 2
260 #define FULL_KEY_DATA 3
261 #define REAL_KEY 4
262 /* Short hands for accessing structure */
263 #define BSIZE hdr.bsize
264 #define BSHIFT hdr.bshift
265 #define DSIZE hdr.dsize
266 #define SGSIZE hdr.ssize
267 #define SSHIFT hdr.sshift
268 #define LORDER hdr.lorder
269 #define MAX_BUCKET hdr.max_bucket
270 #define FFACTOR hdr.ffactor
271 #define HIGH_MASK hdr.high_mask
272 #define LOW_MASK hdr.low_mask
273 #define NKEYS hdr.nkeys
274 #define HDRPAGES hdr.hdrpages
275 #define SPARES hdr.spares
276 #define BITMAPS hdr.bitmaps
277 #define VERSION hdr.version
278 #define MAGIC hdr.magic
279 #define NEXT_FREE hdr.next_free
280 #define H_CHARKEY hdr.h_charkey
281