1 1.29 christos /* $NetBSD: hash_page.c,v 1.29 2016/09/24 20:08:29 christos Exp $ */ 2 1.7 cgd 3 1.1 cgd /*- 4 1.6 cgd * Copyright (c) 1990, 1993, 1994 5 1.1 cgd * The Regents of the University of California. All rights reserved. 6 1.1 cgd * 7 1.1 cgd * This code is derived from software contributed to Berkeley by 8 1.1 cgd * Margo Seltzer. 9 1.1 cgd * 10 1.1 cgd * Redistribution and use in source and binary forms, with or without 11 1.1 cgd * modification, are permitted provided that the following conditions 12 1.1 cgd * are met: 13 1.1 cgd * 1. Redistributions of source code must retain the above copyright 14 1.1 cgd * notice, this list of conditions and the following disclaimer. 15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 cgd * notice, this list of conditions and the following disclaimer in the 17 1.1 cgd * documentation and/or other materials provided with the distribution. 18 1.16 agc * 3. Neither the name of the University nor the names of its contributors 19 1.1 cgd * may be used to endorse or promote products derived from this software 20 1.1 cgd * without specific prior written permission. 21 1.1 cgd * 22 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 1.1 cgd * SUCH DAMAGE. 33 1.1 cgd */ 34 1.1 cgd 35 1.23 joerg #if HAVE_NBTOOL_CONFIG_H 36 1.23 joerg #include "nbtool_config.h" 37 1.23 joerg #endif 38 1.23 joerg 39 1.9 christos #include <sys/cdefs.h> 40 1.29 christos __RCSID("$NetBSD: hash_page.c,v 1.29 2016/09/24 20:08:29 christos Exp $"); 41 1.1 cgd 42 1.1 cgd /* 43 1.1 cgd * PACKAGE: hashing 44 1.1 cgd * 45 1.1 cgd * DESCRIPTION: 46 1.1 cgd * Page manipulation for hashing package. 47 1.1 cgd * 48 1.1 cgd * ROUTINES: 49 1.1 cgd * 50 1.1 cgd * External 51 1.1 cgd * __get_page 52 1.1 cgd * __add_ovflpage 53 1.1 cgd * Internal 54 1.1 cgd * overflow_page 55 1.1 cgd */ 56 1.12 kleink 57 1.12 kleink #include "namespace.h" 58 1.1 cgd 59 1.1 cgd #include <sys/types.h> 60 1.1 cgd 61 1.1 cgd #include <errno.h> 62 1.1 cgd #include <fcntl.h> 63 1.1 cgd #include <signal.h> 64 1.1 cgd #include <stdio.h> 65 1.1 cgd #include <stdlib.h> 66 1.1 cgd #include <string.h> 67 1.1 cgd #include <unistd.h> 68 1.18 rtr #include <paths.h> 69 1.1 cgd #include <assert.h> 70 1.1 cgd 71 1.1 cgd #include <db.h> 72 1.1 cgd #include "hash.h" 73 1.1 cgd #include "page.h" 74 1.1 cgd #include "extern.h" 75 1.1 cgd 76 1.21 joerg static uint32_t *fetch_bitmap(HTAB *, int); 77 1.21 joerg static uint32_t first_free(uint32_t); 78 1.21 joerg static uint16_t overflow_page(HTAB *); 79 1.20 christos static void putpair(char *, const DBT *, const DBT *); 80 1.21 joerg static void squeeze_key(uint16_t *, const DBT *, const DBT *); 81 1.21 joerg static int ugly_split(HTAB *, uint32_t, BUFHEAD *, BUFHEAD *, int, int); 82 1.1 cgd 83 1.1 cgd #define PAGE_INIT(P) { \ 84 1.21 joerg ((uint16_t *)(void *)(P))[0] = 0; \ 85 1.21 joerg temp = 3 * sizeof(uint16_t); \ 86 1.28 christos _DIAGASSERT((size_t)HASH_BSIZE(hashp) >= temp); \ 87 1.28 christos ((uint16_t *)(void *)(P))[1] = (uint16_t)(HASH_BSIZE(hashp) - temp); \ 88 1.28 christos ((uint16_t *)(void *)(P))[2] = HASH_BSIZE(hashp); \ 89 1.1 cgd } 90 1.1 cgd 91 1.1 cgd /* 92 1.1 cgd * This is called AFTER we have verified that there is room on the page for 93 1.1 cgd * the pair (PAIRFITS has returned true) so we go right ahead and start moving 94 1.1 cgd * stuff on. 95 1.1 cgd */ 96 1.1 cgd static void 97 1.20 christos putpair(char *p, const DBT *key, const DBT *val) 98 1.1 cgd { 99 1.21 joerg uint16_t *bp, n, off; 100 1.20 christos size_t temp; 101 1.1 cgd 102 1.21 joerg bp = (uint16_t *)(void *)p; 103 1.1 cgd 104 1.1 cgd /* Enter the key first. */ 105 1.1 cgd n = bp[0]; 106 1.1 cgd 107 1.20 christos temp = OFFSET(bp); 108 1.20 christos _DIAGASSERT(temp >= key->size); 109 1.21 joerg off = (uint16_t)(temp - key->size); 110 1.1 cgd memmove(p + off, key->data, key->size); 111 1.1 cgd bp[++n] = off; 112 1.1 cgd 113 1.1 cgd /* Now the data. */ 114 1.20 christos _DIAGASSERT(off >= val->size); 115 1.21 joerg off -= (uint16_t)val->size; 116 1.1 cgd memmove(p + off, val->data, val->size); 117 1.1 cgd bp[++n] = off; 118 1.1 cgd 119 1.1 cgd /* Adjust page info. */ 120 1.1 cgd bp[0] = n; 121 1.21 joerg temp = (n + 3) * sizeof(uint16_t); 122 1.20 christos _DIAGASSERT(off >= temp); 123 1.21 joerg bp[n + 1] = (uint16_t)(off - temp); 124 1.1 cgd bp[n + 2] = off; 125 1.1 cgd } 126 1.1 cgd 127 1.1 cgd /* 128 1.1 cgd * Returns: 129 1.1 cgd * 0 OK 130 1.1 cgd * -1 error 131 1.1 cgd */ 132 1.20 christos int 133 1.20 christos __delpair(HTAB *hashp, BUFHEAD *bufp, int ndx) 134 1.1 cgd { 135 1.21 joerg uint16_t *bp, newoff; 136 1.20 christos int n; 137 1.21 joerg uint16_t pairlen; 138 1.20 christos size_t temp; 139 1.1 cgd 140 1.21 joerg bp = (uint16_t *)(void *)bufp->page; 141 1.1 cgd n = bp[0]; 142 1.1 cgd 143 1.1 cgd if (bp[ndx + 1] < REAL_KEY) 144 1.1 cgd return (__big_delete(hashp, bufp)); 145 1.1 cgd if (ndx != 1) 146 1.1 cgd newoff = bp[ndx - 1]; 147 1.1 cgd else 148 1.28 christos newoff = HASH_BSIZE(hashp); 149 1.1 cgd pairlen = newoff - bp[ndx + 1]; 150 1.1 cgd 151 1.1 cgd if (ndx != (n - 1)) { 152 1.1 cgd /* Hard Case -- need to shuffle keys */ 153 1.20 christos int i; 154 1.20 christos char *src = bufp->page + (int)OFFSET(bp); 155 1.20 christos char *dst = src + (int)pairlen; 156 1.13 christos memmove(dst, src, (size_t)(bp[ndx + 1] - OFFSET(bp))); 157 1.1 cgd 158 1.1 cgd /* Now adjust the pointers */ 159 1.1 cgd for (i = ndx + 2; i <= n; i += 2) { 160 1.1 cgd if (bp[i + 1] == OVFLPAGE) { 161 1.1 cgd bp[i - 2] = bp[i]; 162 1.1 cgd bp[i - 1] = bp[i + 1]; 163 1.1 cgd } else { 164 1.1 cgd bp[i - 2] = bp[i] + pairlen; 165 1.1 cgd bp[i - 1] = bp[i + 1] + pairlen; 166 1.1 cgd } 167 1.1 cgd } 168 1.1 cgd } 169 1.1 cgd /* Finally adjust the page data */ 170 1.1 cgd bp[n] = OFFSET(bp) + pairlen; 171 1.21 joerg temp = bp[n + 1] + pairlen + 2 * sizeof(uint16_t); 172 1.20 christos _DIAGASSERT(temp <= 0xffff); 173 1.21 joerg bp[n - 1] = (uint16_t)temp; 174 1.1 cgd bp[0] = n - 2; 175 1.1 cgd hashp->NKEYS--; 176 1.1 cgd 177 1.1 cgd bufp->flags |= BUF_MOD; 178 1.1 cgd return (0); 179 1.1 cgd } 180 1.1 cgd /* 181 1.1 cgd * Returns: 182 1.1 cgd * 0 ==> OK 183 1.1 cgd * -1 ==> Error 184 1.1 cgd */ 185 1.20 christos int 186 1.21 joerg __split_page(HTAB *hashp, uint32_t obucket, uint32_t nbucket) 187 1.20 christos { 188 1.20 christos BUFHEAD *new_bufp, *old_bufp; 189 1.21 joerg uint16_t *ino; 190 1.20 christos char *np; 191 1.1 cgd DBT key, val; 192 1.1 cgd int n, ndx, retval; 193 1.21 joerg uint16_t copyto, diff, off, moved; 194 1.1 cgd char *op; 195 1.20 christos size_t temp; 196 1.1 cgd 197 1.28 christos copyto = HASH_BSIZE(hashp); 198 1.28 christos off = HASH_BSIZE(hashp); 199 1.1 cgd old_bufp = __get_buf(hashp, obucket, NULL, 0); 200 1.1 cgd if (old_bufp == NULL) 201 1.1 cgd return (-1); 202 1.1 cgd new_bufp = __get_buf(hashp, nbucket, NULL, 0); 203 1.1 cgd if (new_bufp == NULL) 204 1.1 cgd return (-1); 205 1.1 cgd 206 1.1 cgd old_bufp->flags |= (BUF_MOD | BUF_PIN); 207 1.1 cgd new_bufp->flags |= (BUF_MOD | BUF_PIN); 208 1.1 cgd 209 1.21 joerg ino = (uint16_t *)(void *)(op = old_bufp->page); 210 1.1 cgd np = new_bufp->page; 211 1.1 cgd 212 1.1 cgd moved = 0; 213 1.1 cgd 214 1.1 cgd for (n = 1, ndx = 1; n < ino[0]; n += 2) { 215 1.1 cgd if (ino[n + 1] < REAL_KEY) { 216 1.1 cgd retval = ugly_split(hashp, obucket, old_bufp, new_bufp, 217 1.1 cgd (int)copyto, (int)moved); 218 1.1 cgd old_bufp->flags &= ~BUF_PIN; 219 1.1 cgd new_bufp->flags &= ~BUF_PIN; 220 1.1 cgd return (retval); 221 1.1 cgd 222 1.1 cgd } 223 1.21 joerg key.data = (uint8_t *)op + ino[n]; 224 1.1 cgd key.size = off - ino[n]; 225 1.1 cgd 226 1.13 christos if (__call_hash(hashp, key.data, (int)key.size) == obucket) { 227 1.1 cgd /* Don't switch page */ 228 1.1 cgd diff = copyto - off; 229 1.1 cgd if (diff) { 230 1.1 cgd copyto = ino[n + 1] + diff; 231 1.1 cgd memmove(op + copyto, op + ino[n + 1], 232 1.13 christos (size_t)(off - ino[n + 1])); 233 1.1 cgd ino[ndx] = copyto + ino[n] - ino[n + 1]; 234 1.1 cgd ino[ndx + 1] = copyto; 235 1.1 cgd } else 236 1.1 cgd copyto = ino[n + 1]; 237 1.1 cgd ndx += 2; 238 1.1 cgd } else { 239 1.1 cgd /* Switch page */ 240 1.21 joerg val.data = (uint8_t *)op + ino[n + 1]; 241 1.1 cgd val.size = ino[n] - ino[n + 1]; 242 1.1 cgd putpair(np, &key, &val); 243 1.1 cgd moved += 2; 244 1.1 cgd } 245 1.1 cgd 246 1.1 cgd off = ino[n + 1]; 247 1.1 cgd } 248 1.1 cgd 249 1.1 cgd /* Now clean up the page */ 250 1.1 cgd ino[0] -= moved; 251 1.21 joerg temp = sizeof(uint16_t) * (ino[0] + 3); 252 1.20 christos _DIAGASSERT(copyto >= temp); 253 1.21 joerg FREESPACE(ino) = (uint16_t)(copyto - temp); 254 1.1 cgd OFFSET(ino) = copyto; 255 1.1 cgd 256 1.1 cgd #ifdef DEBUG3 257 1.1 cgd (void)fprintf(stderr, "split %d/%d\n", 258 1.21 joerg ((uint16_t *)np)[0] / 2, 259 1.21 joerg ((uint16_t *)op)[0] / 2); 260 1.1 cgd #endif 261 1.1 cgd /* unpin both pages */ 262 1.1 cgd old_bufp->flags &= ~BUF_PIN; 263 1.1 cgd new_bufp->flags &= ~BUF_PIN; 264 1.1 cgd return (0); 265 1.1 cgd } 266 1.1 cgd 267 1.1 cgd /* 268 1.1 cgd * Called when we encounter an overflow or big key/data page during split 269 1.1 cgd * handling. This is special cased since we have to begin checking whether 270 1.1 cgd * the key/data pairs fit on their respective pages and because we may need 271 1.1 cgd * overflow pages for both the old and new pages. 272 1.1 cgd * 273 1.1 cgd * The first page might be a page with regular key/data pairs in which case 274 1.1 cgd * we have a regular overflow condition and just need to go on to the next 275 1.1 cgd * page or it might be a big key/data pair in which case we need to fix the 276 1.1 cgd * big key/data pair. 277 1.1 cgd * 278 1.1 cgd * Returns: 279 1.1 cgd * 0 ==> success 280 1.1 cgd * -1 ==> failure 281 1.1 cgd */ 282 1.1 cgd static int 283 1.20 christos ugly_split( 284 1.20 christos HTAB *hashp, 285 1.21 joerg uint32_t obucket, /* Same as __split_page. */ 286 1.20 christos BUFHEAD *old_bufp, 287 1.20 christos BUFHEAD *new_bufp, 288 1.20 christos int copyto, /* First byte on page which contains key/data values. */ 289 1.20 christos int moved /* Number of pairs moved to new page. */ 290 1.20 christos ) 291 1.20 christos { 292 1.20 christos BUFHEAD *bufp; /* Buffer header for ino */ 293 1.21 joerg uint16_t *ino; /* Page keys come off of */ 294 1.21 joerg uint16_t *np; /* New page */ 295 1.21 joerg uint16_t *op; /* Page keys go on to if they aren't moving */ 296 1.20 christos size_t temp; 297 1.1 cgd 298 1.1 cgd BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */ 299 1.1 cgd DBT key, val; 300 1.1 cgd SPLIT_RETURN ret; 301 1.21 joerg uint16_t n, off, ov_addr, scopyto; 302 1.1 cgd char *cino; /* Character value of ino */ 303 1.1 cgd 304 1.1 cgd bufp = old_bufp; 305 1.21 joerg ino = (uint16_t *)(void *)old_bufp->page; 306 1.21 joerg np = (uint16_t *)(void *)new_bufp->page; 307 1.21 joerg op = (uint16_t *)(void *)old_bufp->page; 308 1.1 cgd last_bfp = NULL; 309 1.21 joerg scopyto = (uint16_t)copyto; /* ANSI */ 310 1.1 cgd 311 1.1 cgd n = ino[0] - 1; 312 1.1 cgd while (n < ino[0]) { 313 1.1 cgd if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) { 314 1.1 cgd if (__big_split(hashp, old_bufp, 315 1.13 christos new_bufp, bufp, (int)bufp->addr, obucket, &ret)) 316 1.1 cgd return (-1); 317 1.1 cgd old_bufp = ret.oldp; 318 1.1 cgd if (!old_bufp) 319 1.1 cgd return (-1); 320 1.21 joerg op = (uint16_t *)(void *)old_bufp->page; 321 1.1 cgd new_bufp = ret.newp; 322 1.1 cgd if (!new_bufp) 323 1.1 cgd return (-1); 324 1.21 joerg np = (uint16_t *)(void *)new_bufp->page; 325 1.1 cgd bufp = ret.nextp; 326 1.1 cgd if (!bufp) 327 1.1 cgd return (0); 328 1.1 cgd cino = (char *)bufp->page; 329 1.21 joerg ino = (uint16_t *)(void *)cino; 330 1.1 cgd last_bfp = ret.nextp; 331 1.1 cgd } else if (ino[n + 1] == OVFLPAGE) { 332 1.1 cgd ov_addr = ino[n]; 333 1.1 cgd /* 334 1.1 cgd * Fix up the old page -- the extra 2 are the fields 335 1.1 cgd * which contained the overflow information. 336 1.1 cgd */ 337 1.1 cgd ino[0] -= (moved + 2); 338 1.21 joerg temp = sizeof(uint16_t) * (ino[0] + 3); 339 1.20 christos _DIAGASSERT(scopyto >= temp); 340 1.21 joerg FREESPACE(ino) = (uint16_t)(scopyto - temp); 341 1.1 cgd OFFSET(ino) = scopyto; 342 1.1 cgd 343 1.21 joerg bufp = __get_buf(hashp, (uint32_t)ov_addr, bufp, 0); 344 1.1 cgd if (!bufp) 345 1.1 cgd return (-1); 346 1.1 cgd 347 1.21 joerg ino = (uint16_t *)(void *)bufp->page; 348 1.1 cgd n = 1; 349 1.28 christos scopyto = HASH_BSIZE(hashp); 350 1.1 cgd moved = 0; 351 1.1 cgd 352 1.1 cgd if (last_bfp) 353 1.1 cgd __free_ovflpage(hashp, last_bfp); 354 1.1 cgd last_bfp = bufp; 355 1.1 cgd } 356 1.1 cgd /* Move regular sized pairs of there are any */ 357 1.28 christos off = HASH_BSIZE(hashp); 358 1.1 cgd for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) { 359 1.13 christos cino = (char *)(void *)ino; 360 1.21 joerg key.data = (uint8_t *)cino + ino[n]; 361 1.1 cgd key.size = off - ino[n]; 362 1.21 joerg val.data = (uint8_t *)cino + ino[n + 1]; 363 1.1 cgd val.size = ino[n] - ino[n + 1]; 364 1.1 cgd off = ino[n + 1]; 365 1.1 cgd 366 1.13 christos if (__call_hash(hashp, key.data, (int)key.size) == obucket) { 367 1.1 cgd /* Keep on old page */ 368 1.1 cgd if (PAIRFITS(op, (&key), (&val))) 369 1.13 christos putpair((char *)(void *)op, &key, &val); 370 1.1 cgd else { 371 1.1 cgd old_bufp = 372 1.1 cgd __add_ovflpage(hashp, old_bufp); 373 1.1 cgd if (!old_bufp) 374 1.1 cgd return (-1); 375 1.21 joerg op = (uint16_t *)(void *)old_bufp->page; 376 1.13 christos putpair((char *)(void *)op, &key, &val); 377 1.1 cgd } 378 1.1 cgd old_bufp->flags |= BUF_MOD; 379 1.1 cgd } else { 380 1.1 cgd /* Move to new page */ 381 1.1 cgd if (PAIRFITS(np, (&key), (&val))) 382 1.13 christos putpair((char *)(void *)np, &key, &val); 383 1.1 cgd else { 384 1.1 cgd new_bufp = 385 1.1 cgd __add_ovflpage(hashp, new_bufp); 386 1.1 cgd if (!new_bufp) 387 1.1 cgd return (-1); 388 1.21 joerg np = (uint16_t *)(void *)new_bufp->page; 389 1.13 christos putpair((char *)(void *)np, &key, &val); 390 1.1 cgd } 391 1.1 cgd new_bufp->flags |= BUF_MOD; 392 1.1 cgd } 393 1.1 cgd } 394 1.1 cgd } 395 1.1 cgd if (last_bfp) 396 1.1 cgd __free_ovflpage(hashp, last_bfp); 397 1.1 cgd return (0); 398 1.1 cgd } 399 1.1 cgd 400 1.1 cgd /* 401 1.1 cgd * Add the given pair to the page 402 1.1 cgd * 403 1.1 cgd * Returns: 404 1.1 cgd * 0 ==> OK 405 1.1 cgd * 1 ==> failure 406 1.1 cgd */ 407 1.20 christos int 408 1.20 christos __addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val) 409 1.1 cgd { 410 1.21 joerg uint16_t *bp, *sop; 411 1.1 cgd int do_expand; 412 1.1 cgd 413 1.21 joerg bp = (uint16_t *)(void *)bufp->page; 414 1.1 cgd do_expand = 0; 415 1.4 cgd while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY)) 416 1.1 cgd /* Exception case */ 417 1.4 cgd if (bp[2] == FULL_KEY_DATA && bp[0] == 2) 418 1.4 cgd /* This is the last page of a big key/data pair 419 1.4 cgd and we need to add another page */ 420 1.4 cgd break; 421 1.4 cgd else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) { 422 1.21 joerg bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 423 1.13 christos 0); 424 1.1 cgd if (!bufp) 425 1.1 cgd return (-1); 426 1.21 joerg bp = (uint16_t *)(void *)bufp->page; 427 1.15 mycroft } else if (bp[bp[0]] != OVFLPAGE) { 428 1.15 mycroft /* Short key/data pairs, no more pages */ 429 1.15 mycroft break; 430 1.15 mycroft } else { 431 1.1 cgd /* Try to squeeze key on this page */ 432 1.15 mycroft if (bp[2] >= REAL_KEY && 433 1.15 mycroft FREESPACE(bp) >= PAIRSIZE(key, val)) { 434 1.1 cgd squeeze_key(bp, key, val); 435 1.15 mycroft goto stats; 436 1.1 cgd } else { 437 1.13 christos bufp = __get_buf(hashp, 438 1.21 joerg (uint32_t)bp[bp[0] - 1], bufp, 0); 439 1.1 cgd if (!bufp) 440 1.1 cgd return (-1); 441 1.21 joerg bp = (uint16_t *)(void *)bufp->page; 442 1.1 cgd } 443 1.15 mycroft } 444 1.1 cgd 445 1.1 cgd if (PAIRFITS(bp, key, val)) 446 1.1 cgd putpair(bufp->page, key, val); 447 1.1 cgd else { 448 1.1 cgd do_expand = 1; 449 1.1 cgd bufp = __add_ovflpage(hashp, bufp); 450 1.1 cgd if (!bufp) 451 1.1 cgd return (-1); 452 1.21 joerg sop = (uint16_t *)(void *)bufp->page; 453 1.1 cgd 454 1.1 cgd if (PAIRFITS(sop, key, val)) 455 1.13 christos putpair((char *)(void *)sop, key, val); 456 1.1 cgd else 457 1.1 cgd if (__big_insert(hashp, bufp, key, val)) 458 1.1 cgd return (-1); 459 1.1 cgd } 460 1.15 mycroft stats: 461 1.1 cgd bufp->flags |= BUF_MOD; 462 1.1 cgd /* 463 1.1 cgd * If the average number of keys per bucket exceeds the fill factor, 464 1.1 cgd * expand the table. 465 1.1 cgd */ 466 1.1 cgd hashp->NKEYS++; 467 1.1 cgd if (do_expand || 468 1.1 cgd (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR)) 469 1.1 cgd return (__expand_table(hashp)); 470 1.1 cgd return (0); 471 1.1 cgd } 472 1.1 cgd 473 1.1 cgd /* 474 1.1 cgd * 475 1.1 cgd * Returns: 476 1.1 cgd * pointer on success 477 1.1 cgd * NULL on error 478 1.1 cgd */ 479 1.20 christos BUFHEAD * 480 1.20 christos __add_ovflpage(HTAB *hashp, BUFHEAD *bufp) 481 1.1 cgd { 482 1.21 joerg uint16_t *sp; 483 1.21 joerg uint16_t ndx, ovfl_num; 484 1.20 christos size_t temp; 485 1.1 cgd #ifdef DEBUG1 486 1.1 cgd int tmp1, tmp2; 487 1.1 cgd #endif 488 1.21 joerg sp = (uint16_t *)(void *)bufp->page; 489 1.1 cgd 490 1.1 cgd /* Check if we are dynamically determining the fill factor */ 491 1.1 cgd if (hashp->FFACTOR == DEF_FFACTOR) { 492 1.21 joerg hashp->FFACTOR = (uint32_t)sp[0] >> 1; 493 1.1 cgd if (hashp->FFACTOR < MIN_FFACTOR) 494 1.1 cgd hashp->FFACTOR = MIN_FFACTOR; 495 1.1 cgd } 496 1.1 cgd bufp->flags |= BUF_MOD; 497 1.1 cgd ovfl_num = overflow_page(hashp); 498 1.1 cgd #ifdef DEBUG1 499 1.1 cgd tmp1 = bufp->addr; 500 1.1 cgd tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0; 501 1.1 cgd #endif 502 1.21 joerg if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, (uint32_t)ovfl_num, 503 1.13 christos bufp, 1))) 504 1.1 cgd return (NULL); 505 1.1 cgd bufp->ovfl->flags |= BUF_MOD; 506 1.1 cgd #ifdef DEBUG1 507 1.1 cgd (void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n", 508 1.1 cgd tmp1, tmp2, bufp->ovfl->addr); 509 1.1 cgd #endif 510 1.1 cgd ndx = sp[0]; 511 1.1 cgd /* 512 1.1 cgd * Since a pair is allocated on a page only if there's room to add 513 1.1 cgd * an overflow page, we know that the OVFL information will fit on 514 1.1 cgd * the page. 515 1.1 cgd */ 516 1.1 cgd sp[ndx + 4] = OFFSET(sp); 517 1.20 christos temp = FREESPACE(sp); 518 1.20 christos _DIAGASSERT(temp >= OVFLSIZE); 519 1.21 joerg sp[ndx + 3] = (uint16_t)(temp - OVFLSIZE); 520 1.1 cgd sp[ndx + 1] = ovfl_num; 521 1.1 cgd sp[ndx + 2] = OVFLPAGE; 522 1.1 cgd sp[0] = ndx + 2; 523 1.1 cgd #ifdef HASH_STATISTICS 524 1.1 cgd hash_overflows++; 525 1.1 cgd #endif 526 1.1 cgd return (bufp->ovfl); 527 1.1 cgd } 528 1.1 cgd 529 1.1 cgd /* 530 1.1 cgd * Returns: 531 1.1 cgd * 0 indicates SUCCESS 532 1.1 cgd * -1 indicates FAILURE 533 1.1 cgd */ 534 1.20 christos int 535 1.21 joerg __get_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_disk, 536 1.20 christos int is_bitmap) 537 1.1 cgd { 538 1.20 christos int fd, page, size; 539 1.20 christos ssize_t rsize; 540 1.21 joerg uint16_t *bp; 541 1.20 christos size_t temp; 542 1.1 cgd 543 1.1 cgd fd = hashp->fp; 544 1.28 christos size = HASH_BSIZE(hashp); 545 1.1 cgd 546 1.1 cgd if ((fd == -1) || !is_disk) { 547 1.1 cgd PAGE_INIT(p); 548 1.1 cgd return (0); 549 1.1 cgd } 550 1.1 cgd if (is_bucket) 551 1.1 cgd page = BUCKET_TO_PAGE(bucket); 552 1.1 cgd else 553 1.1 cgd page = OADDR_TO_PAGE(bucket); 554 1.13 christos if ((rsize = pread(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1) 555 1.1 cgd return (-1); 556 1.21 joerg bp = (uint16_t *)(void *)p; 557 1.1 cgd if (!rsize) 558 1.1 cgd bp[0] = 0; /* We hit the EOF, so initialize a new page */ 559 1.1 cgd else 560 1.1 cgd if (rsize != size) { 561 1.1 cgd errno = EFTYPE; 562 1.1 cgd return (-1); 563 1.1 cgd } 564 1.1 cgd if (!is_bitmap && !bp[0]) { 565 1.1 cgd PAGE_INIT(p); 566 1.1 cgd } else 567 1.1 cgd if (hashp->LORDER != BYTE_ORDER) { 568 1.20 christos int i, max; 569 1.1 cgd 570 1.1 cgd if (is_bitmap) { 571 1.21 joerg max = (uint32_t)hashp->BSIZE >> 2; /* divide by 4 */ 572 1.1 cgd for (i = 0; i < max; i++) 573 1.13 christos M_32_SWAP(((int *)(void *)p)[i]); 574 1.1 cgd } else { 575 1.6 cgd M_16_SWAP(bp[0]); 576 1.1 cgd max = bp[0] + 2; 577 1.1 cgd for (i = 1; i <= max; i++) 578 1.6 cgd M_16_SWAP(bp[i]); 579 1.1 cgd } 580 1.1 cgd } 581 1.1 cgd return (0); 582 1.1 cgd } 583 1.1 cgd 584 1.1 cgd /* 585 1.1 cgd * Write page p to disk 586 1.1 cgd * 587 1.1 cgd * Returns: 588 1.1 cgd * 0 ==> OK 589 1.1 cgd * -1 ==>failure 590 1.1 cgd */ 591 1.20 christos int 592 1.21 joerg __put_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_bitmap) 593 1.1 cgd { 594 1.20 christos int fd, page, size; 595 1.20 christos ssize_t wsize; 596 1.29 christos char pbuf[MAX_BSIZE]; 597 1.1 cgd 598 1.28 christos size = HASH_BSIZE(hashp); 599 1.26 christos if ((hashp->fp == -1) && (hashp->fp = __dbtemp("_hash", NULL)) == -1) 600 1.1 cgd return (-1); 601 1.1 cgd fd = hashp->fp; 602 1.1 cgd 603 1.1 cgd if (hashp->LORDER != BYTE_ORDER) { 604 1.20 christos int i; 605 1.20 christos int max; 606 1.1 cgd 607 1.29 christos memcpy(pbuf, p, size); 608 1.1 cgd if (is_bitmap) { 609 1.21 joerg max = (uint32_t)hashp->BSIZE >> 2; /* divide by 4 */ 610 1.1 cgd for (i = 0; i < max; i++) 611 1.29 christos M_32_SWAP(((int *)(void *)pbuf)[i]); 612 1.1 cgd } else { 613 1.29 christos uint16_t *bp = (uint16_t *)(void *)pbuf; 614 1.29 christos max = bp[0] + 2; 615 1.1 cgd for (i = 0; i <= max; i++) 616 1.29 christos M_16_SWAP(bp[i]); 617 1.1 cgd } 618 1.29 christos p = pbuf; 619 1.1 cgd } 620 1.1 cgd if (is_bucket) 621 1.1 cgd page = BUCKET_TO_PAGE(bucket); 622 1.1 cgd else 623 1.1 cgd page = OADDR_TO_PAGE(bucket); 624 1.13 christos if ((wsize = pwrite(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1) 625 1.1 cgd /* Errno is set */ 626 1.1 cgd return (-1); 627 1.1 cgd if (wsize != size) { 628 1.1 cgd errno = EFTYPE; 629 1.1 cgd return (-1); 630 1.1 cgd } 631 1.1 cgd return (0); 632 1.1 cgd } 633 1.1 cgd 634 1.1 cgd #define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1) 635 1.1 cgd /* 636 1.1 cgd * Initialize a new bitmap page. Bitmap pages are left in memory 637 1.1 cgd * once they are read in. 638 1.1 cgd */ 639 1.20 christos int 640 1.20 christos __ibitmap(HTAB *hashp, int pnum, int nbits, int ndx) 641 1.1 cgd { 642 1.21 joerg uint32_t *ip; 643 1.1 cgd int clearbytes, clearints; 644 1.1 cgd 645 1.20 christos if ((ip = malloc((size_t)hashp->BSIZE)) == NULL) 646 1.1 cgd return (1); 647 1.1 cgd hashp->nmaps++; 648 1.21 joerg clearints = ((uint32_t)(nbits - 1) >> INT_BYTE_SHIFT) + 1; 649 1.1 cgd clearbytes = clearints << INT_TO_BYTE; 650 1.13 christos (void)memset(ip, 0, (size_t)clearbytes); 651 1.13 christos (void)memset(((char *)(void *)ip) + clearbytes, 0xFF, 652 1.13 christos (size_t)(hashp->BSIZE - clearbytes)); 653 1.1 cgd ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK); 654 1.1 cgd SETBIT(ip, 0); 655 1.21 joerg hashp->BITMAPS[ndx] = (uint16_t)pnum; 656 1.1 cgd hashp->mapp[ndx] = ip; 657 1.1 cgd return (0); 658 1.1 cgd } 659 1.1 cgd 660 1.21 joerg static uint32_t 661 1.21 joerg first_free(uint32_t map) 662 1.1 cgd { 663 1.21 joerg uint32_t i, mask; 664 1.1 cgd 665 1.1 cgd mask = 0x1; 666 1.1 cgd for (i = 0; i < BITS_PER_MAP; i++) { 667 1.1 cgd if (!(mask & map)) 668 1.1 cgd return (i); 669 1.1 cgd mask = mask << 1; 670 1.1 cgd } 671 1.1 cgd return (i); 672 1.1 cgd } 673 1.1 cgd 674 1.21 joerg static uint16_t 675 1.20 christos overflow_page(HTAB *hashp) 676 1.1 cgd { 677 1.21 joerg uint32_t *freep = NULL; 678 1.20 christos int max_free, offset, splitnum; 679 1.21 joerg uint16_t addr; 680 1.1 cgd int bit, first_page, free_bit, free_page, i, in_use_bits, j; 681 1.1 cgd #ifdef DEBUG2 682 1.1 cgd int tmp1, tmp2; 683 1.1 cgd #endif 684 1.1 cgd splitnum = hashp->OVFL_POINT; 685 1.1 cgd max_free = hashp->SPARES[splitnum]; 686 1.1 cgd 687 1.21 joerg free_page = (uint32_t)(max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT); 688 1.1 cgd free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1); 689 1.1 cgd 690 1.1 cgd /* Look through all the free maps to find the first free block */ 691 1.21 joerg first_page = (uint32_t)hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT); 692 1.1 cgd for ( i = first_page; i <= free_page; i++ ) { 693 1.21 joerg if (!(freep = (uint32_t *)hashp->mapp[i]) && 694 1.1 cgd !(freep = fetch_bitmap(hashp, i))) 695 1.8 cgd return (0); 696 1.1 cgd if (i == free_page) 697 1.1 cgd in_use_bits = free_bit; 698 1.1 cgd else 699 1.1 cgd in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1; 700 1.1 cgd 701 1.1 cgd if (i == first_page) { 702 1.1 cgd bit = hashp->LAST_FREED & 703 1.1 cgd ((hashp->BSIZE << BYTE_SHIFT) - 1); 704 1.1 cgd j = bit / BITS_PER_MAP; 705 1.1 cgd bit = bit & ~(BITS_PER_MAP - 1); 706 1.1 cgd } else { 707 1.1 cgd bit = 0; 708 1.1 cgd j = 0; 709 1.1 cgd } 710 1.1 cgd for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP) 711 1.1 cgd if (freep[j] != ALL_SET) 712 1.1 cgd goto found; 713 1.1 cgd } 714 1.1 cgd 715 1.1 cgd /* No Free Page Found */ 716 1.1 cgd hashp->LAST_FREED = hashp->SPARES[splitnum]; 717 1.1 cgd hashp->SPARES[splitnum]++; 718 1.1 cgd offset = hashp->SPARES[splitnum] - 719 1.1 cgd (splitnum ? hashp->SPARES[splitnum - 1] : 0); 720 1.1 cgd 721 1.1 cgd #define OVMSG "HASH: Out of overflow pages. Increase page size\n" 722 1.1 cgd if (offset > SPLITMASK) { 723 1.1 cgd if (++splitnum >= NCACHED) { 724 1.1 cgd (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1); 725 1.14 mycroft errno = EFBIG; 726 1.8 cgd return (0); 727 1.1 cgd } 728 1.1 cgd hashp->OVFL_POINT = splitnum; 729 1.1 cgd hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1]; 730 1.1 cgd hashp->SPARES[splitnum-1]--; 731 1.1 cgd offset = 1; 732 1.1 cgd } 733 1.1 cgd 734 1.1 cgd /* Check if we need to allocate a new bitmap page */ 735 1.1 cgd if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) { 736 1.1 cgd free_page++; 737 1.1 cgd if (free_page >= NCACHED) { 738 1.1 cgd (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1); 739 1.14 mycroft errno = EFBIG; 740 1.8 cgd return (0); 741 1.1 cgd } 742 1.1 cgd /* 743 1.1 cgd * This is tricky. The 1 indicates that you want the new page 744 1.1 cgd * allocated with 1 clear bit. Actually, you are going to 745 1.1 cgd * allocate 2 pages from this map. The first is going to be 746 1.1 cgd * the map page, the second is the overflow page we were 747 1.1 cgd * looking for. The init_bitmap routine automatically, sets 748 1.1 cgd * the first bit of itself to indicate that the bitmap itself 749 1.1 cgd * is in use. We would explicitly set the second bit, but 750 1.1 cgd * don't have to if we tell init_bitmap not to leave it clear 751 1.1 cgd * in the first place. 752 1.1 cgd */ 753 1.8 cgd if (__ibitmap(hashp, 754 1.8 cgd (int)OADDR_OF(splitnum, offset), 1, free_page)) 755 1.8 cgd return (0); 756 1.1 cgd hashp->SPARES[splitnum]++; 757 1.1 cgd #ifdef DEBUG2 758 1.1 cgd free_bit = 2; 759 1.1 cgd #endif 760 1.1 cgd offset++; 761 1.1 cgd if (offset > SPLITMASK) { 762 1.1 cgd if (++splitnum >= NCACHED) { 763 1.1 cgd (void)write(STDERR_FILENO, OVMSG, 764 1.1 cgd sizeof(OVMSG) - 1); 765 1.14 mycroft errno = EFBIG; 766 1.8 cgd return (0); 767 1.1 cgd } 768 1.1 cgd hashp->OVFL_POINT = splitnum; 769 1.1 cgd hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1]; 770 1.1 cgd hashp->SPARES[splitnum-1]--; 771 1.1 cgd offset = 0; 772 1.1 cgd } 773 1.1 cgd } else { 774 1.1 cgd /* 775 1.1 cgd * Free_bit addresses the last used bit. Bump it to address 776 1.1 cgd * the first available bit. 777 1.1 cgd */ 778 1.1 cgd free_bit++; 779 1.1 cgd SETBIT(freep, free_bit); 780 1.1 cgd } 781 1.1 cgd 782 1.1 cgd /* Calculate address of the new overflow page */ 783 1.1 cgd addr = OADDR_OF(splitnum, offset); 784 1.1 cgd #ifdef DEBUG2 785 1.1 cgd (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n", 786 1.1 cgd addr, free_bit, free_page); 787 1.1 cgd #endif 788 1.1 cgd return (addr); 789 1.1 cgd 790 1.1 cgd found: 791 1.1 cgd bit = bit + first_free(freep[j]); 792 1.1 cgd SETBIT(freep, bit); 793 1.1 cgd #ifdef DEBUG2 794 1.1 cgd tmp1 = bit; 795 1.1 cgd tmp2 = i; 796 1.1 cgd #endif 797 1.1 cgd /* 798 1.1 cgd * Bits are addressed starting with 0, but overflow pages are addressed 799 1.1 cgd * beginning at 1. Bit is a bit addressnumber, so we need to increment 800 1.1 cgd * it to convert it to a page number. 801 1.1 cgd */ 802 1.1 cgd bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT)); 803 1.1 cgd if (bit >= hashp->LAST_FREED) 804 1.1 cgd hashp->LAST_FREED = bit - 1; 805 1.1 cgd 806 1.1 cgd /* Calculate the split number for this page */ 807 1.1 cgd for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++); 808 1.1 cgd offset = (i ? bit - hashp->SPARES[i - 1] : bit); 809 1.14 mycroft if (offset >= SPLITMASK) { 810 1.14 mycroft (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1); 811 1.14 mycroft errno = EFBIG; 812 1.8 cgd return (0); /* Out of overflow pages */ 813 1.14 mycroft } 814 1.1 cgd addr = OADDR_OF(i, offset); 815 1.1 cgd #ifdef DEBUG2 816 1.1 cgd (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n", 817 1.1 cgd addr, tmp1, tmp2); 818 1.1 cgd #endif 819 1.1 cgd 820 1.1 cgd /* Allocate and return the overflow page */ 821 1.1 cgd return (addr); 822 1.1 cgd } 823 1.1 cgd 824 1.1 cgd /* 825 1.1 cgd * Mark this overflow page as free. 826 1.1 cgd */ 827 1.20 christos void 828 1.20 christos __free_ovflpage(HTAB *hashp, BUFHEAD *obufp) 829 1.1 cgd { 830 1.21 joerg uint16_t addr; 831 1.21 joerg uint32_t *freep; 832 1.1 cgd int bit_address, free_page, free_bit; 833 1.21 joerg uint16_t ndx; 834 1.1 cgd 835 1.1 cgd addr = obufp->addr; 836 1.1 cgd #ifdef DEBUG1 837 1.1 cgd (void)fprintf(stderr, "Freeing %d\n", addr); 838 1.1 cgd #endif 839 1.21 joerg ndx = (((uint32_t)addr) >> SPLITSHIFT); 840 1.1 cgd bit_address = 841 1.1 cgd (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1; 842 1.1 cgd if (bit_address < hashp->LAST_FREED) 843 1.1 cgd hashp->LAST_FREED = bit_address; 844 1.21 joerg free_page = ((uint32_t)bit_address >> (hashp->BSHIFT + BYTE_SHIFT)); 845 1.1 cgd free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1); 846 1.1 cgd 847 1.1 cgd if (!(freep = hashp->mapp[free_page])) 848 1.1 cgd freep = fetch_bitmap(hashp, free_page); 849 1.1 cgd /* 850 1.1 cgd * This had better never happen. It means we tried to read a bitmap 851 1.1 cgd * that has already had overflow pages allocated off it, and we 852 1.1 cgd * failed to read it from the file. 853 1.1 cgd */ 854 1.20 christos _DIAGASSERT(freep != NULL); 855 1.1 cgd CLRBIT(freep, free_bit); 856 1.1 cgd #ifdef DEBUG2 857 1.1 cgd (void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n", 858 1.1 cgd obufp->addr, free_bit, free_page); 859 1.1 cgd #endif 860 1.1 cgd __reclaim_buf(hashp, obufp); 861 1.1 cgd } 862 1.1 cgd 863 1.1 cgd /* 864 1.1 cgd * We have to know that the key will fit, but the last entry on the page is 865 1.1 cgd * an overflow pair, so we need to shift things. 866 1.1 cgd */ 867 1.1 cgd static void 868 1.21 joerg squeeze_key(uint16_t *sp, const DBT *key, const DBT *val) 869 1.1 cgd { 870 1.20 christos char *p; 871 1.21 joerg uint16_t free_space, n, off, pageno; 872 1.20 christos size_t temp; 873 1.1 cgd 874 1.13 christos p = (char *)(void *)sp; 875 1.1 cgd n = sp[0]; 876 1.1 cgd free_space = FREESPACE(sp); 877 1.1 cgd off = OFFSET(sp); 878 1.1 cgd 879 1.1 cgd pageno = sp[n - 1]; 880 1.20 christos _DIAGASSERT(off >= key->size); 881 1.21 joerg off -= (uint16_t)key->size; 882 1.1 cgd sp[n - 1] = off; 883 1.1 cgd memmove(p + off, key->data, key->size); 884 1.20 christos _DIAGASSERT(off >= val->size); 885 1.21 joerg off -= (uint16_t)val->size; 886 1.1 cgd sp[n] = off; 887 1.1 cgd memmove(p + off, val->data, val->size); 888 1.1 cgd sp[0] = n + 2; 889 1.1 cgd sp[n + 1] = pageno; 890 1.1 cgd sp[n + 2] = OVFLPAGE; 891 1.20 christos temp = PAIRSIZE(key, val); 892 1.20 christos _DIAGASSERT(free_space >= temp); 893 1.21 joerg FREESPACE(sp) = (uint16_t)(free_space - temp); 894 1.1 cgd OFFSET(sp) = off; 895 1.1 cgd } 896 1.1 cgd 897 1.21 joerg static uint32_t * 898 1.20 christos fetch_bitmap(HTAB *hashp, int ndx) 899 1.1 cgd { 900 1.6 cgd if (ndx >= hashp->nmaps) 901 1.1 cgd return (NULL); 902 1.20 christos if ((hashp->mapp[ndx] = malloc((size_t)hashp->BSIZE)) == NULL) 903 1.6 cgd return (NULL); 904 1.6 cgd if (__get_page(hashp, 905 1.21 joerg (char *)(void *)hashp->mapp[ndx], (uint32_t)hashp->BITMAPS[ndx], 0, 1, 1)) { 906 1.6 cgd free(hashp->mapp[ndx]); 907 1.6 cgd return (NULL); 908 1.6 cgd } 909 1.1 cgd return (hashp->mapp[ndx]); 910 1.1 cgd } 911 1.1 cgd 912 1.1 cgd #ifdef DEBUG4 913 1.21 joerg void print_chain(HTAB *, uint32_t); 914 1.20 christos void 915 1.21 joerg print_chain(HTAB *hashp, uint32_t addr) 916 1.1 cgd { 917 1.1 cgd BUFHEAD *bufp; 918 1.21 joerg uint16_t *bp, oaddr; 919 1.1 cgd 920 1.1 cgd (void)fprintf(stderr, "%d ", addr); 921 1.1 cgd bufp = __get_buf(hashp, addr, NULL, 0); 922 1.21 joerg bp = (uint16_t *)bufp->page; 923 1.1 cgd while (bp[0] && ((bp[bp[0]] == OVFLPAGE) || 924 1.1 cgd ((bp[0] > 2) && bp[2] < REAL_KEY))) { 925 1.1 cgd oaddr = bp[bp[0] - 1]; 926 1.1 cgd (void)fprintf(stderr, "%d ", (int)oaddr); 927 1.21 joerg bufp = __get_buf(hashp, (uint32_t)oaddr, bufp, 0); 928 1.21 joerg bp = (uint16_t *)bufp->page; 929 1.1 cgd } 930 1.1 cgd (void)fprintf(stderr, "\n"); 931 1.1 cgd } 932 1.1 cgd #endif 933