Home | History | Annotate | Line # | Download | only in hash
hash_page.c revision 1.1
      1  1.1  cgd /*-
      2  1.1  cgd  * Copyright (c) 1990, 1993
      3  1.1  cgd  *	The Regents of the University of California.  All rights reserved.
      4  1.1  cgd  *
      5  1.1  cgd  * This code is derived from software contributed to Berkeley by
      6  1.1  cgd  * Margo Seltzer.
      7  1.1  cgd  *
      8  1.1  cgd  * Redistribution and use in source and binary forms, with or without
      9  1.1  cgd  * modification, are permitted provided that the following conditions
     10  1.1  cgd  * are met:
     11  1.1  cgd  * 1. Redistributions of source code must retain the above copyright
     12  1.1  cgd  *    notice, this list of conditions and the following disclaimer.
     13  1.1  cgd  * 2. Redistributions in binary form must reproduce the above copyright
     14  1.1  cgd  *    notice, this list of conditions and the following disclaimer in the
     15  1.1  cgd  *    documentation and/or other materials provided with the distribution.
     16  1.1  cgd  * 3. All advertising materials mentioning features or use of this software
     17  1.1  cgd  *    must display the following acknowledgement:
     18  1.1  cgd  *	This product includes software developed by the University of
     19  1.1  cgd  *	California, Berkeley and its contributors.
     20  1.1  cgd  * 4. Neither the name of the University nor the names of its contributors
     21  1.1  cgd  *    may be used to endorse or promote products derived from this software
     22  1.1  cgd  *    without specific prior written permission.
     23  1.1  cgd  *
     24  1.1  cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  1.1  cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  1.1  cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  1.1  cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  1.1  cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  1.1  cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  1.1  cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  1.1  cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  1.1  cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  1.1  cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  1.1  cgd  * SUCH DAMAGE.
     35  1.1  cgd  */
     36  1.1  cgd 
     37  1.1  cgd #if defined(LIBC_SCCS) && !defined(lint)
     38  1.1  cgd static char sccsid[] = "@(#)hash_page.c	8.1 (Berkeley) 6/6/93";
     39  1.1  cgd #endif /* LIBC_SCCS and not lint */
     40  1.1  cgd 
     41  1.1  cgd /*
     42  1.1  cgd  * PACKAGE:  hashing
     43  1.1  cgd  *
     44  1.1  cgd  * DESCRIPTION:
     45  1.1  cgd  *	Page manipulation for hashing package.
     46  1.1  cgd  *
     47  1.1  cgd  * ROUTINES:
     48  1.1  cgd  *
     49  1.1  cgd  * External
     50  1.1  cgd  *	__get_page
     51  1.1  cgd  *	__add_ovflpage
     52  1.1  cgd  * Internal
     53  1.1  cgd  *	overflow_page
     54  1.1  cgd  *	open_temp
     55  1.1  cgd  */
     56  1.1  cgd 
     57  1.1  cgd #include <sys/types.h>
     58  1.1  cgd 
     59  1.1  cgd #include <errno.h>
     60  1.1  cgd #include <fcntl.h>
     61  1.1  cgd #include <signal.h>
     62  1.1  cgd #include <stdio.h>
     63  1.1  cgd #include <stdlib.h>
     64  1.1  cgd #include <string.h>
     65  1.1  cgd #include <unistd.h>
     66  1.1  cgd #ifdef DEBUG
     67  1.1  cgd #include <assert.h>
     68  1.1  cgd #endif
     69  1.1  cgd 
     70  1.1  cgd #include <db.h>
     71  1.1  cgd #include "hash.h"
     72  1.1  cgd #include "page.h"
     73  1.1  cgd #include "extern.h"
     74  1.1  cgd 
     75  1.1  cgd static u_long	*fetch_bitmap __P((HTAB *, int));
     76  1.1  cgd static u_long	 first_free __P((u_long));
     77  1.1  cgd static int	 open_temp __P((HTAB *));
     78  1.1  cgd static u_short	 overflow_page __P((HTAB *));
     79  1.1  cgd static void	 putpair __P((char *, const DBT *, const DBT *));
     80  1.1  cgd static void	 squeeze_key __P((u_short *, const DBT *, const DBT *));
     81  1.1  cgd static int	 ugly_split
     82  1.1  cgd 		    __P((HTAB *, u_int, BUFHEAD *, BUFHEAD *, int, int));
     83  1.1  cgd 
     84  1.1  cgd #define	PAGE_INIT(P) { \
     85  1.1  cgd 	((u_short *)(P))[0] = 0; \
     86  1.1  cgd 	((u_short *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_short); \
     87  1.1  cgd 	((u_short *)(P))[2] = hashp->BSIZE; \
     88  1.1  cgd }
     89  1.1  cgd 
     90  1.1  cgd /*
     91  1.1  cgd  * This is called AFTER we have verified that there is room on the page for
     92  1.1  cgd  * the pair (PAIRFITS has returned true) so we go right ahead and start moving
     93  1.1  cgd  * stuff on.
     94  1.1  cgd  */
     95  1.1  cgd static void
     96  1.1  cgd putpair(p, key, val)
     97  1.1  cgd 	char *p;
     98  1.1  cgd 	const DBT *key, *val;
     99  1.1  cgd {
    100  1.1  cgd 	register u_short *bp, n, off;
    101  1.1  cgd 
    102  1.1  cgd 	bp = (u_short *)p;
    103  1.1  cgd 
    104  1.1  cgd 	/* Enter the key first. */
    105  1.1  cgd 	n = bp[0];
    106  1.1  cgd 
    107  1.1  cgd 	off = OFFSET(bp) - key->size;
    108  1.1  cgd 	memmove(p + off, key->data, key->size);
    109  1.1  cgd 	bp[++n] = off;
    110  1.1  cgd 
    111  1.1  cgd 	/* Now the data. */
    112  1.1  cgd 	off -= val->size;
    113  1.1  cgd 	memmove(p + off, val->data, val->size);
    114  1.1  cgd 	bp[++n] = off;
    115  1.1  cgd 
    116  1.1  cgd 	/* Adjust page info. */
    117  1.1  cgd 	bp[0] = n;
    118  1.1  cgd 	bp[n + 1] = off - ((n + 3) * sizeof(u_short));
    119  1.1  cgd 	bp[n + 2] = off;
    120  1.1  cgd }
    121  1.1  cgd 
    122  1.1  cgd /*
    123  1.1  cgd  * Returns:
    124  1.1  cgd  *	 0 OK
    125  1.1  cgd  *	-1 error
    126  1.1  cgd  */
    127  1.1  cgd extern int
    128  1.1  cgd __delpair(hashp, bufp, ndx)
    129  1.1  cgd 	HTAB *hashp;
    130  1.1  cgd 	BUFHEAD *bufp;
    131  1.1  cgd 	register int ndx;
    132  1.1  cgd {
    133  1.1  cgd 	register u_short *bp, newoff;
    134  1.1  cgd 	register int n;
    135  1.1  cgd 	u_short pairlen;
    136  1.1  cgd 
    137  1.1  cgd 	bp = (u_short *)bufp->page;
    138  1.1  cgd 	n = bp[0];
    139  1.1  cgd 
    140  1.1  cgd 	if (bp[ndx + 1] < REAL_KEY)
    141  1.1  cgd 		return (__big_delete(hashp, bufp));
    142  1.1  cgd 	if (ndx != 1)
    143  1.1  cgd 		newoff = bp[ndx - 1];
    144  1.1  cgd 	else
    145  1.1  cgd 		newoff = hashp->BSIZE;
    146  1.1  cgd 	pairlen = newoff - bp[ndx + 1];
    147  1.1  cgd 
    148  1.1  cgd 	if (ndx != (n - 1)) {
    149  1.1  cgd 		/* Hard Case -- need to shuffle keys */
    150  1.1  cgd 		register int i;
    151  1.1  cgd 		register char *src = bufp->page + (int)OFFSET(bp);
    152  1.1  cgd 		register char *dst = src + (int)pairlen;
    153  1.1  cgd 		memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
    154  1.1  cgd 
    155  1.1  cgd 		/* Now adjust the pointers */
    156  1.1  cgd 		for (i = ndx + 2; i <= n; i += 2) {
    157  1.1  cgd 			if (bp[i + 1] == OVFLPAGE) {
    158  1.1  cgd 				bp[i - 2] = bp[i];
    159  1.1  cgd 				bp[i - 1] = bp[i + 1];
    160  1.1  cgd 			} else {
    161  1.1  cgd 				bp[i - 2] = bp[i] + pairlen;
    162  1.1  cgd 				bp[i - 1] = bp[i + 1] + pairlen;
    163  1.1  cgd 			}
    164  1.1  cgd 		}
    165  1.1  cgd 	}
    166  1.1  cgd 	/* Finally adjust the page data */
    167  1.1  cgd 	bp[n] = OFFSET(bp) + pairlen;
    168  1.1  cgd 	bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_short);
    169  1.1  cgd 	bp[0] = n - 2;
    170  1.1  cgd 	hashp->NKEYS--;
    171  1.1  cgd 
    172  1.1  cgd 	bufp->flags |= BUF_MOD;
    173  1.1  cgd 	return (0);
    174  1.1  cgd }
    175  1.1  cgd /*
    176  1.1  cgd  * Returns:
    177  1.1  cgd  *	 0 ==> OK
    178  1.1  cgd  *	-1 ==> Error
    179  1.1  cgd  */
    180  1.1  cgd extern int
    181  1.1  cgd __split_page(hashp, obucket, nbucket)
    182  1.1  cgd 	HTAB *hashp;
    183  1.1  cgd 	u_int obucket, nbucket;
    184  1.1  cgd {
    185  1.1  cgd 	register BUFHEAD *new_bufp, *old_bufp;
    186  1.1  cgd 	register u_short *ino;
    187  1.1  cgd 	register char *np;
    188  1.1  cgd 	DBT key, val;
    189  1.1  cgd 	int n, ndx, retval;
    190  1.1  cgd 	u_short copyto, diff, off, moved;
    191  1.1  cgd 	char *op;
    192  1.1  cgd 
    193  1.1  cgd 	copyto = (u_short)hashp->BSIZE;
    194  1.1  cgd 	off = (u_short)hashp->BSIZE;
    195  1.1  cgd 	old_bufp = __get_buf(hashp, obucket, NULL, 0);
    196  1.1  cgd 	if (old_bufp == NULL)
    197  1.1  cgd 		return (-1);
    198  1.1  cgd 	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
    199  1.1  cgd 	if (new_bufp == NULL)
    200  1.1  cgd 		return (-1);
    201  1.1  cgd 
    202  1.1  cgd 	old_bufp->flags |= (BUF_MOD | BUF_PIN);
    203  1.1  cgd 	new_bufp->flags |= (BUF_MOD | BUF_PIN);
    204  1.1  cgd 
    205  1.1  cgd 	ino = (u_short *)(op = old_bufp->page);
    206  1.1  cgd 	np = new_bufp->page;
    207  1.1  cgd 
    208  1.1  cgd 	moved = 0;
    209  1.1  cgd 
    210  1.1  cgd 	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
    211  1.1  cgd 		if (ino[n + 1] < REAL_KEY) {
    212  1.1  cgd 			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
    213  1.1  cgd 			    (int)copyto, (int)moved);
    214  1.1  cgd 			old_bufp->flags &= ~BUF_PIN;
    215  1.1  cgd 			new_bufp->flags &= ~BUF_PIN;
    216  1.1  cgd 			return (retval);
    217  1.1  cgd 
    218  1.1  cgd 		}
    219  1.1  cgd 		key.data = (u_char *)op + ino[n];
    220  1.1  cgd 		key.size = off - ino[n];
    221  1.1  cgd 
    222  1.1  cgd 		if (__call_hash(hashp, key.data, key.size) == obucket) {
    223  1.1  cgd 			/* Don't switch page */
    224  1.1  cgd 			diff = copyto - off;
    225  1.1  cgd 			if (diff) {
    226  1.1  cgd 				copyto = ino[n + 1] + diff;
    227  1.1  cgd 				memmove(op + copyto, op + ino[n + 1],
    228  1.1  cgd 				    off - ino[n + 1]);
    229  1.1  cgd 				ino[ndx] = copyto + ino[n] - ino[n + 1];
    230  1.1  cgd 				ino[ndx + 1] = copyto;
    231  1.1  cgd 			} else
    232  1.1  cgd 				copyto = ino[n + 1];
    233  1.1  cgd 			ndx += 2;
    234  1.1  cgd 		} else {
    235  1.1  cgd 			/* Switch page */
    236  1.1  cgd 			val.data = (u_char *)op + ino[n + 1];
    237  1.1  cgd 			val.size = ino[n] - ino[n + 1];
    238  1.1  cgd 			putpair(np, &key, &val);
    239  1.1  cgd 			moved += 2;
    240  1.1  cgd 		}
    241  1.1  cgd 
    242  1.1  cgd 		off = ino[n + 1];
    243  1.1  cgd 	}
    244  1.1  cgd 
    245  1.1  cgd 	/* Now clean up the page */
    246  1.1  cgd 	ino[0] -= moved;
    247  1.1  cgd 	FREESPACE(ino) = copyto - sizeof(u_short) * (ino[0] + 3);
    248  1.1  cgd 	OFFSET(ino) = copyto;
    249  1.1  cgd 
    250  1.1  cgd #ifdef DEBUG3
    251  1.1  cgd 	(void)fprintf(stderr, "split %d/%d\n",
    252  1.1  cgd 	    ((u_short *)np)[0] / 2,
    253  1.1  cgd 	    ((u_short *)op)[0] / 2);
    254  1.1  cgd #endif
    255  1.1  cgd 	/* unpin both pages */
    256  1.1  cgd 	old_bufp->flags &= ~BUF_PIN;
    257  1.1  cgd 	new_bufp->flags &= ~BUF_PIN;
    258  1.1  cgd 	return (0);
    259  1.1  cgd }
    260  1.1  cgd 
    261  1.1  cgd /*
    262  1.1  cgd  * Called when we encounter an overflow or big key/data page during split
    263  1.1  cgd  * handling.  This is special cased since we have to begin checking whether
    264  1.1  cgd  * the key/data pairs fit on their respective pages and because we may need
    265  1.1  cgd  * overflow pages for both the old and new pages.
    266  1.1  cgd  *
    267  1.1  cgd  * The first page might be a page with regular key/data pairs in which case
    268  1.1  cgd  * we have a regular overflow condition and just need to go on to the next
    269  1.1  cgd  * page or it might be a big key/data pair in which case we need to fix the
    270  1.1  cgd  * big key/data pair.
    271  1.1  cgd  *
    272  1.1  cgd  * Returns:
    273  1.1  cgd  *	 0 ==> success
    274  1.1  cgd  *	-1 ==> failure
    275  1.1  cgd  */
    276  1.1  cgd static int
    277  1.1  cgd ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
    278  1.1  cgd 	HTAB *hashp;
    279  1.1  cgd 	u_int obucket;	/* Same as __split_page. */
    280  1.1  cgd 	BUFHEAD *old_bufp, *new_bufp;
    281  1.1  cgd 	int copyto;	/* First byte on page which contains key/data values. */
    282  1.1  cgd 	int moved;	/* Number of pairs moved to new page. */
    283  1.1  cgd {
    284  1.1  cgd 	register BUFHEAD *bufp;	/* Buffer header for ino */
    285  1.1  cgd 	register u_short *ino;	/* Page keys come off of */
    286  1.1  cgd 	register u_short *np;	/* New page */
    287  1.1  cgd 	register u_short *op;	/* Page keys go on to if they aren't moving */
    288  1.1  cgd 
    289  1.1  cgd 	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
    290  1.1  cgd 	DBT key, val;
    291  1.1  cgd 	SPLIT_RETURN ret;
    292  1.1  cgd 	u_short n, off, ov_addr, scopyto;
    293  1.1  cgd 	char *cino;		/* Character value of ino */
    294  1.1  cgd 
    295  1.1  cgd 	bufp = old_bufp;
    296  1.1  cgd 	ino = (u_short *)old_bufp->page;
    297  1.1  cgd 	np = (u_short *)new_bufp->page;
    298  1.1  cgd 	op = (u_short *)old_bufp->page;
    299  1.1  cgd 	last_bfp = NULL;
    300  1.1  cgd 	scopyto = (u_short)copyto;	/* ANSI */
    301  1.1  cgd 
    302  1.1  cgd 	n = ino[0] - 1;
    303  1.1  cgd 	while (n < ino[0]) {
    304  1.1  cgd 		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
    305  1.1  cgd 			/*
    306  1.1  cgd 			 * Ov_addr gets set before reaching this point; there's
    307  1.1  cgd 			 * always an overflow page before a big key/data page.
    308  1.1  cgd 			 */
    309  1.1  cgd 			if (__big_split(hashp, old_bufp,
    310  1.1  cgd 			    new_bufp, bufp, ov_addr, obucket, &ret))
    311  1.1  cgd 				return (-1);
    312  1.1  cgd 			old_bufp = ret.oldp;
    313  1.1  cgd 			if (!old_bufp)
    314  1.1  cgd 				return (-1);
    315  1.1  cgd 			op = (u_short *)old_bufp->page;
    316  1.1  cgd 			new_bufp = ret.newp;
    317  1.1  cgd 			if (!new_bufp)
    318  1.1  cgd 				return (-1);
    319  1.1  cgd 			np = (u_short *)new_bufp->page;
    320  1.1  cgd 			bufp = ret.nextp;
    321  1.1  cgd 			if (!bufp)
    322  1.1  cgd 				return (0);
    323  1.1  cgd 			cino = (char *)bufp->page;
    324  1.1  cgd 			ino = (u_short *)cino;
    325  1.1  cgd 			last_bfp = ret.nextp;
    326  1.1  cgd 		} else if (ino[n + 1] == OVFLPAGE) {
    327  1.1  cgd 			ov_addr = ino[n];
    328  1.1  cgd 			/*
    329  1.1  cgd 			 * Fix up the old page -- the extra 2 are the fields
    330  1.1  cgd 			 * which contained the overflow information.
    331  1.1  cgd 			 */
    332  1.1  cgd 			ino[0] -= (moved + 2);
    333  1.1  cgd 			FREESPACE(ino) =
    334  1.1  cgd 			    scopyto - sizeof(u_short) * (ino[0] + 3);
    335  1.1  cgd 			OFFSET(ino) = scopyto;
    336  1.1  cgd 
    337  1.1  cgd 			bufp = __get_buf(hashp, ov_addr, bufp, 0);
    338  1.1  cgd 			if (!bufp)
    339  1.1  cgd 				return (-1);
    340  1.1  cgd 
    341  1.1  cgd 			ino = (u_short *)bufp->page;
    342  1.1  cgd 			n = 1;
    343  1.1  cgd 			scopyto = hashp->BSIZE;
    344  1.1  cgd 			moved = 0;
    345  1.1  cgd 
    346  1.1  cgd 			if (last_bfp)
    347  1.1  cgd 				__free_ovflpage(hashp, last_bfp);
    348  1.1  cgd 			last_bfp = bufp;
    349  1.1  cgd 		}
    350  1.1  cgd 		/* Move regular sized pairs of there are any */
    351  1.1  cgd 		off = hashp->BSIZE;
    352  1.1  cgd 		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
    353  1.1  cgd 			cino = (char *)ino;
    354  1.1  cgd 			key.data = (u_char *)cino + ino[n];
    355  1.1  cgd 			key.size = off - ino[n];
    356  1.1  cgd 			val.data = (u_char *)cino + ino[n + 1];
    357  1.1  cgd 			val.size = ino[n] - ino[n + 1];
    358  1.1  cgd 			off = ino[n + 1];
    359  1.1  cgd 
    360  1.1  cgd 			if (__call_hash(hashp, key.data, key.size) == obucket) {
    361  1.1  cgd 				/* Keep on old page */
    362  1.1  cgd 				if (PAIRFITS(op, (&key), (&val)))
    363  1.1  cgd 					putpair((char *)op, &key, &val);
    364  1.1  cgd 				else {
    365  1.1  cgd 					old_bufp =
    366  1.1  cgd 					    __add_ovflpage(hashp, old_bufp);
    367  1.1  cgd 					if (!old_bufp)
    368  1.1  cgd 						return (-1);
    369  1.1  cgd 					op = (u_short *)old_bufp->page;
    370  1.1  cgd 					putpair((char *)op, &key, &val);
    371  1.1  cgd 				}
    372  1.1  cgd 				old_bufp->flags |= BUF_MOD;
    373  1.1  cgd 			} else {
    374  1.1  cgd 				/* Move to new page */
    375  1.1  cgd 				if (PAIRFITS(np, (&key), (&val)))
    376  1.1  cgd 					putpair((char *)np, &key, &val);
    377  1.1  cgd 				else {
    378  1.1  cgd 					new_bufp =
    379  1.1  cgd 					    __add_ovflpage(hashp, new_bufp);
    380  1.1  cgd 					if (!new_bufp)
    381  1.1  cgd 						return (-1);
    382  1.1  cgd 					np = (u_short *)new_bufp->page;
    383  1.1  cgd 					putpair((char *)np, &key, &val);
    384  1.1  cgd 				}
    385  1.1  cgd 				new_bufp->flags |= BUF_MOD;
    386  1.1  cgd 			}
    387  1.1  cgd 		}
    388  1.1  cgd 	}
    389  1.1  cgd 	if (last_bfp)
    390  1.1  cgd 		__free_ovflpage(hashp, last_bfp);
    391  1.1  cgd 	return (0);
    392  1.1  cgd }
    393  1.1  cgd 
    394  1.1  cgd /*
    395  1.1  cgd  * Add the given pair to the page
    396  1.1  cgd  *
    397  1.1  cgd  * Returns:
    398  1.1  cgd  *	0 ==> OK
    399  1.1  cgd  *	1 ==> failure
    400  1.1  cgd  */
    401  1.1  cgd extern int
    402  1.1  cgd __addel(hashp, bufp, key, val)
    403  1.1  cgd 	HTAB *hashp;
    404  1.1  cgd 	BUFHEAD *bufp;
    405  1.1  cgd 	const DBT *key, *val;
    406  1.1  cgd {
    407  1.1  cgd 	register u_short *bp, *sop;
    408  1.1  cgd 	int do_expand;
    409  1.1  cgd 
    410  1.1  cgd 	bp = (u_short *)bufp->page;
    411  1.1  cgd 	do_expand = 0;
    412  1.1  cgd 	while (bp[0] && (bp[bp[0]] < REAL_KEY))
    413  1.1  cgd 		/* Exception case */
    414  1.1  cgd 		if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
    415  1.1  cgd 			/* This is a big-keydata pair */
    416  1.1  cgd 			bufp = __add_ovflpage(hashp, bufp);
    417  1.1  cgd 			if (!bufp)
    418  1.1  cgd 				return (-1);
    419  1.1  cgd 			bp = (u_short *)bufp->page;
    420  1.1  cgd 		} else
    421  1.1  cgd 			/* Try to squeeze key on this page */
    422  1.1  cgd 			if (FREESPACE(bp) > PAIRSIZE(key, val)) {
    423  1.1  cgd 				squeeze_key(bp, key, val);
    424  1.1  cgd 				return (0);
    425  1.1  cgd 			} else {
    426  1.1  cgd 				bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
    427  1.1  cgd 				if (!bufp)
    428  1.1  cgd 					return (-1);
    429  1.1  cgd 				bp = (u_short *)bufp->page;
    430  1.1  cgd 			}
    431  1.1  cgd 
    432  1.1  cgd 	if (PAIRFITS(bp, key, val))
    433  1.1  cgd 		putpair(bufp->page, key, val);
    434  1.1  cgd 	else {
    435  1.1  cgd 		do_expand = 1;
    436  1.1  cgd 		bufp = __add_ovflpage(hashp, bufp);
    437  1.1  cgd 		if (!bufp)
    438  1.1  cgd 			return (-1);
    439  1.1  cgd 		sop = (u_short *)bufp->page;
    440  1.1  cgd 
    441  1.1  cgd 		if (PAIRFITS(sop, key, val))
    442  1.1  cgd 			putpair((char *)sop, key, val);
    443  1.1  cgd 		else
    444  1.1  cgd 			if (__big_insert(hashp, bufp, key, val))
    445  1.1  cgd 				return (-1);
    446  1.1  cgd 	}
    447  1.1  cgd 	bufp->flags |= BUF_MOD;
    448  1.1  cgd 	/*
    449  1.1  cgd 	 * If the average number of keys per bucket exceeds the fill factor,
    450  1.1  cgd 	 * expand the table.
    451  1.1  cgd 	 */
    452  1.1  cgd 	hashp->NKEYS++;
    453  1.1  cgd 	if (do_expand ||
    454  1.1  cgd 	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
    455  1.1  cgd 		return (__expand_table(hashp));
    456  1.1  cgd 	return (0);
    457  1.1  cgd }
    458  1.1  cgd 
    459  1.1  cgd /*
    460  1.1  cgd  *
    461  1.1  cgd  * Returns:
    462  1.1  cgd  *	pointer on success
    463  1.1  cgd  *	NULL on error
    464  1.1  cgd  */
    465  1.1  cgd extern BUFHEAD *
    466  1.1  cgd __add_ovflpage(hashp, bufp)
    467  1.1  cgd 	HTAB *hashp;
    468  1.1  cgd 	BUFHEAD *bufp;
    469  1.1  cgd {
    470  1.1  cgd 	register u_short *sp;
    471  1.1  cgd 	u_short ndx, ovfl_num;
    472  1.1  cgd #ifdef DEBUG1
    473  1.1  cgd 	int tmp1, tmp2;
    474  1.1  cgd #endif
    475  1.1  cgd 	sp = (u_short *)bufp->page;
    476  1.1  cgd 
    477  1.1  cgd 	/* Check if we are dynamically determining the fill factor */
    478  1.1  cgd 	if (hashp->FFACTOR == DEF_FFACTOR) {
    479  1.1  cgd 		hashp->FFACTOR = sp[0] >> 1;
    480  1.1  cgd 		if (hashp->FFACTOR < MIN_FFACTOR)
    481  1.1  cgd 			hashp->FFACTOR = MIN_FFACTOR;
    482  1.1  cgd 	}
    483  1.1  cgd 	bufp->flags |= BUF_MOD;
    484  1.1  cgd 	ovfl_num = overflow_page(hashp);
    485  1.1  cgd #ifdef DEBUG1
    486  1.1  cgd 	tmp1 = bufp->addr;
    487  1.1  cgd 	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
    488  1.1  cgd #endif
    489  1.1  cgd 	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
    490  1.1  cgd 		return (NULL);
    491  1.1  cgd 	bufp->ovfl->flags |= BUF_MOD;
    492  1.1  cgd #ifdef DEBUG1
    493  1.1  cgd 	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
    494  1.1  cgd 	    tmp1, tmp2, bufp->ovfl->addr);
    495  1.1  cgd #endif
    496  1.1  cgd 	ndx = sp[0];
    497  1.1  cgd 	/*
    498  1.1  cgd 	 * Since a pair is allocated on a page only if there's room to add
    499  1.1  cgd 	 * an overflow page, we know that the OVFL information will fit on
    500  1.1  cgd 	 * the page.
    501  1.1  cgd 	 */
    502  1.1  cgd 	sp[ndx + 4] = OFFSET(sp);
    503  1.1  cgd 	sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
    504  1.1  cgd 	sp[ndx + 1] = ovfl_num;
    505  1.1  cgd 	sp[ndx + 2] = OVFLPAGE;
    506  1.1  cgd 	sp[0] = ndx + 2;
    507  1.1  cgd #ifdef HASH_STATISTICS
    508  1.1  cgd 	hash_overflows++;
    509  1.1  cgd #endif
    510  1.1  cgd 	return (bufp->ovfl);
    511  1.1  cgd }
    512  1.1  cgd 
    513  1.1  cgd /*
    514  1.1  cgd  * Returns:
    515  1.1  cgd  *	 0 indicates SUCCESS
    516  1.1  cgd  *	-1 indicates FAILURE
    517  1.1  cgd  */
    518  1.1  cgd extern int
    519  1.1  cgd __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
    520  1.1  cgd 	HTAB *hashp;
    521  1.1  cgd 	char *p;
    522  1.1  cgd 	u_int bucket;
    523  1.1  cgd 	int is_bucket, is_disk, is_bitmap;
    524  1.1  cgd {
    525  1.1  cgd 	register int fd, page, size;
    526  1.1  cgd 	int rsize;
    527  1.1  cgd 	u_short *bp;
    528  1.1  cgd 
    529  1.1  cgd 	fd = hashp->fp;
    530  1.1  cgd 	size = hashp->BSIZE;
    531  1.1  cgd 
    532  1.1  cgd 	if ((fd == -1) || !is_disk) {
    533  1.1  cgd 		PAGE_INIT(p);
    534  1.1  cgd 		return (0);
    535  1.1  cgd 	}
    536  1.1  cgd 	if (is_bucket)
    537  1.1  cgd 		page = BUCKET_TO_PAGE(bucket);
    538  1.1  cgd 	else
    539  1.1  cgd 		page = OADDR_TO_PAGE(bucket);
    540  1.1  cgd 	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
    541  1.1  cgd 	    ((rsize = read(fd, p, size)) == -1))
    542  1.1  cgd 		return (-1);
    543  1.1  cgd 	bp = (u_short *)p;
    544  1.1  cgd 	if (!rsize)
    545  1.1  cgd 		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
    546  1.1  cgd 	else
    547  1.1  cgd 		if (rsize != size) {
    548  1.1  cgd 			errno = EFTYPE;
    549  1.1  cgd 			return (-1);
    550  1.1  cgd 		}
    551  1.1  cgd 	if (!is_bitmap && !bp[0]) {
    552  1.1  cgd 		PAGE_INIT(p);
    553  1.1  cgd 	} else
    554  1.1  cgd 		if (hashp->LORDER != BYTE_ORDER) {
    555  1.1  cgd 			register int i, max;
    556  1.1  cgd 
    557  1.1  cgd 			if (is_bitmap) {
    558  1.1  cgd 				max = hashp->BSIZE >> 2; /* divide by 4 */
    559  1.1  cgd 				for (i = 0; i < max; i++)
    560  1.1  cgd 					BLSWAP(((long *)p)[i]);
    561  1.1  cgd 			} else {
    562  1.1  cgd 				BSSWAP(bp[0]);
    563  1.1  cgd 				max = bp[0] + 2;
    564  1.1  cgd 				for (i = 1; i <= max; i++)
    565  1.1  cgd 					BSSWAP(bp[i]);
    566  1.1  cgd 			}
    567  1.1  cgd 		}
    568  1.1  cgd 	return (0);
    569  1.1  cgd }
    570  1.1  cgd 
    571  1.1  cgd /*
    572  1.1  cgd  * Write page p to disk
    573  1.1  cgd  *
    574  1.1  cgd  * Returns:
    575  1.1  cgd  *	 0 ==> OK
    576  1.1  cgd  *	-1 ==>failure
    577  1.1  cgd  */
    578  1.1  cgd extern int
    579  1.1  cgd __put_page(hashp, p, bucket, is_bucket, is_bitmap)
    580  1.1  cgd 	HTAB *hashp;
    581  1.1  cgd 	char *p;
    582  1.1  cgd 	u_int bucket;
    583  1.1  cgd 	int is_bucket, is_bitmap;
    584  1.1  cgd {
    585  1.1  cgd 	register int fd, page, size;
    586  1.1  cgd 	int wsize;
    587  1.1  cgd 
    588  1.1  cgd 	size = hashp->BSIZE;
    589  1.1  cgd 	if ((hashp->fp == -1) && open_temp(hashp))
    590  1.1  cgd 		return (-1);
    591  1.1  cgd 	fd = hashp->fp;
    592  1.1  cgd 
    593  1.1  cgd 	if (hashp->LORDER != BYTE_ORDER) {
    594  1.1  cgd 		register int i;
    595  1.1  cgd 		register int max;
    596  1.1  cgd 
    597  1.1  cgd 		if (is_bitmap) {
    598  1.1  cgd 			max = hashp->BSIZE >> 2;	/* divide by 4 */
    599  1.1  cgd 			for (i = 0; i < max; i++)
    600  1.1  cgd 				BLSWAP(((long *)p)[i]);
    601  1.1  cgd 		} else {
    602  1.1  cgd 			max = ((u_short *)p)[0] + 2;
    603  1.1  cgd 			for (i = 0; i <= max; i++)
    604  1.1  cgd 				BSSWAP(((u_short *)p)[i]);
    605  1.1  cgd 		}
    606  1.1  cgd 	}
    607  1.1  cgd 	if (is_bucket)
    608  1.1  cgd 		page = BUCKET_TO_PAGE(bucket);
    609  1.1  cgd 	else
    610  1.1  cgd 		page = OADDR_TO_PAGE(bucket);
    611  1.1  cgd 	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
    612  1.1  cgd 	    ((wsize = write(fd, p, size)) == -1))
    613  1.1  cgd 		/* Errno is set */
    614  1.1  cgd 		return (-1);
    615  1.1  cgd 	if (wsize != size) {
    616  1.1  cgd 		errno = EFTYPE;
    617  1.1  cgd 		return (-1);
    618  1.1  cgd 	}
    619  1.1  cgd 	return (0);
    620  1.1  cgd }
    621  1.1  cgd 
    622  1.1  cgd #define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
    623  1.1  cgd /*
    624  1.1  cgd  * Initialize a new bitmap page.  Bitmap pages are left in memory
    625  1.1  cgd  * once they are read in.
    626  1.1  cgd  */
    627  1.1  cgd extern int
    628  1.1  cgd __init_bitmap(hashp, pnum, nbits, ndx)
    629  1.1  cgd 	HTAB *hashp;
    630  1.1  cgd 	int pnum, nbits, ndx;
    631  1.1  cgd {
    632  1.1  cgd 	u_long *ip;
    633  1.1  cgd 	int clearbytes, clearints;
    634  1.1  cgd 
    635  1.1  cgd 	if (!(ip = malloc(hashp->BSIZE)))
    636  1.1  cgd 		return (1);
    637  1.1  cgd 	hashp->nmaps++;
    638  1.1  cgd 	clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
    639  1.1  cgd 	clearbytes = clearints << INT_TO_BYTE;
    640  1.1  cgd 	(void)memset((char *)ip, 0, clearbytes);
    641  1.1  cgd 	(void)memset(((char *)ip) + clearbytes, 0xFF,
    642  1.1  cgd 	    hashp->BSIZE - clearbytes);
    643  1.1  cgd 	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
    644  1.1  cgd 	SETBIT(ip, 0);
    645  1.1  cgd 	hashp->BITMAPS[ndx] = (u_short)pnum;
    646  1.1  cgd 	hashp->mapp[ndx] = ip;
    647  1.1  cgd 	return (0);
    648  1.1  cgd }
    649  1.1  cgd 
    650  1.1  cgd static u_long
    651  1.1  cgd first_free(map)
    652  1.1  cgd 	u_long map;
    653  1.1  cgd {
    654  1.1  cgd 	register u_long i, mask;
    655  1.1  cgd 
    656  1.1  cgd 	mask = 0x1;
    657  1.1  cgd 	for (i = 0; i < BITS_PER_MAP; i++) {
    658  1.1  cgd 		if (!(mask & map))
    659  1.1  cgd 			return (i);
    660  1.1  cgd 		mask = mask << 1;
    661  1.1  cgd 	}
    662  1.1  cgd 	return (i);
    663  1.1  cgd }
    664  1.1  cgd 
    665  1.1  cgd static u_short
    666  1.1  cgd overflow_page(hashp)
    667  1.1  cgd 	HTAB *hashp;
    668  1.1  cgd {
    669  1.1  cgd 	register u_long *freep;
    670  1.1  cgd 	register int max_free, offset, splitnum;
    671  1.1  cgd 	u_short addr;
    672  1.1  cgd 	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
    673  1.1  cgd #ifdef DEBUG2
    674  1.1  cgd 	int tmp1, tmp2;
    675  1.1  cgd #endif
    676  1.1  cgd 	splitnum = hashp->OVFL_POINT;
    677  1.1  cgd 	max_free = hashp->SPARES[splitnum];
    678  1.1  cgd 
    679  1.1  cgd 	free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
    680  1.1  cgd 	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
    681  1.1  cgd 
    682  1.1  cgd 	/* Look through all the free maps to find the first free block */
    683  1.1  cgd 	first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
    684  1.1  cgd 	for ( i = first_page; i <= free_page; i++ ) {
    685  1.1  cgd 		if (!(freep = (u_long *)hashp->mapp[i]) &&
    686  1.1  cgd 		    !(freep = fetch_bitmap(hashp, i)))
    687  1.1  cgd 			return (NULL);
    688  1.1  cgd 		if (i == free_page)
    689  1.1  cgd 			in_use_bits = free_bit;
    690  1.1  cgd 		else
    691  1.1  cgd 			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
    692  1.1  cgd 
    693  1.1  cgd 		if (i == first_page) {
    694  1.1  cgd 			bit = hashp->LAST_FREED &
    695  1.1  cgd 			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
    696  1.1  cgd 			j = bit / BITS_PER_MAP;
    697  1.1  cgd 			bit = bit & ~(BITS_PER_MAP - 1);
    698  1.1  cgd 		} else {
    699  1.1  cgd 			bit = 0;
    700  1.1  cgd 			j = 0;
    701  1.1  cgd 		}
    702  1.1  cgd 		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
    703  1.1  cgd 			if (freep[j] != ALL_SET)
    704  1.1  cgd 				goto found;
    705  1.1  cgd 	}
    706  1.1  cgd 
    707  1.1  cgd 	/* No Free Page Found */
    708  1.1  cgd 	hashp->LAST_FREED = hashp->SPARES[splitnum];
    709  1.1  cgd 	hashp->SPARES[splitnum]++;
    710  1.1  cgd 	offset = hashp->SPARES[splitnum] -
    711  1.1  cgd 	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
    712  1.1  cgd 
    713  1.1  cgd #define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
    714  1.1  cgd 	if (offset > SPLITMASK) {
    715  1.1  cgd 		if (++splitnum >= NCACHED) {
    716  1.1  cgd 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
    717  1.1  cgd 			return (NULL);
    718  1.1  cgd 		}
    719  1.1  cgd 		hashp->OVFL_POINT = splitnum;
    720  1.1  cgd 		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
    721  1.1  cgd 		hashp->SPARES[splitnum-1]--;
    722  1.1  cgd 		offset = 1;
    723  1.1  cgd 	}
    724  1.1  cgd 
    725  1.1  cgd 	/* Check if we need to allocate a new bitmap page */
    726  1.1  cgd 	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
    727  1.1  cgd 		free_page++;
    728  1.1  cgd 		if (free_page >= NCACHED) {
    729  1.1  cgd 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
    730  1.1  cgd 			return (NULL);
    731  1.1  cgd 		}
    732  1.1  cgd 		/*
    733  1.1  cgd 		 * This is tricky.  The 1 indicates that you want the new page
    734  1.1  cgd 		 * allocated with 1 clear bit.  Actually, you are going to
    735  1.1  cgd 		 * allocate 2 pages from this map.  The first is going to be
    736  1.1  cgd 		 * the map page, the second is the overflow page we were
    737  1.1  cgd 		 * looking for.  The init_bitmap routine automatically, sets
    738  1.1  cgd 		 * the first bit of itself to indicate that the bitmap itself
    739  1.1  cgd 		 * is in use.  We would explicitly set the second bit, but
    740  1.1  cgd 		 * don't have to if we tell init_bitmap not to leave it clear
    741  1.1  cgd 		 * in the first place.
    742  1.1  cgd 		 */
    743  1.1  cgd 		if (__init_bitmap(hashp, (int)OADDR_OF(splitnum, offset),
    744  1.1  cgd 		    1, free_page))
    745  1.1  cgd 			return (NULL);
    746  1.1  cgd 		hashp->SPARES[splitnum]++;
    747  1.1  cgd #ifdef DEBUG2
    748  1.1  cgd 		free_bit = 2;
    749  1.1  cgd #endif
    750  1.1  cgd 		offset++;
    751  1.1  cgd 		if (offset > SPLITMASK) {
    752  1.1  cgd 			if (++splitnum >= NCACHED) {
    753  1.1  cgd 				(void)write(STDERR_FILENO, OVMSG,
    754  1.1  cgd 				    sizeof(OVMSG) - 1);
    755  1.1  cgd 				return (NULL);
    756  1.1  cgd 			}
    757  1.1  cgd 			hashp->OVFL_POINT = splitnum;
    758  1.1  cgd 			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
    759  1.1  cgd 			hashp->SPARES[splitnum-1]--;
    760  1.1  cgd 			offset = 0;
    761  1.1  cgd 		}
    762  1.1  cgd 	} else {
    763  1.1  cgd 		/*
    764  1.1  cgd 		 * Free_bit addresses the last used bit.  Bump it to address
    765  1.1  cgd 		 * the first available bit.
    766  1.1  cgd 		 */
    767  1.1  cgd 		free_bit++;
    768  1.1  cgd 		SETBIT(freep, free_bit);
    769  1.1  cgd 	}
    770  1.1  cgd 
    771  1.1  cgd 	/* Calculate address of the new overflow page */
    772  1.1  cgd 	addr = OADDR_OF(splitnum, offset);
    773  1.1  cgd #ifdef DEBUG2
    774  1.1  cgd 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
    775  1.1  cgd 	    addr, free_bit, free_page);
    776  1.1  cgd #endif
    777  1.1  cgd 	return (addr);
    778  1.1  cgd 
    779  1.1  cgd found:
    780  1.1  cgd 	bit = bit + first_free(freep[j]);
    781  1.1  cgd 	SETBIT(freep, bit);
    782  1.1  cgd #ifdef DEBUG2
    783  1.1  cgd 	tmp1 = bit;
    784  1.1  cgd 	tmp2 = i;
    785  1.1  cgd #endif
    786  1.1  cgd 	/*
    787  1.1  cgd 	 * Bits are addressed starting with 0, but overflow pages are addressed
    788  1.1  cgd 	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
    789  1.1  cgd 	 * it to convert it to a page number.
    790  1.1  cgd 	 */
    791  1.1  cgd 	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
    792  1.1  cgd 	if (bit >= hashp->LAST_FREED)
    793  1.1  cgd 		hashp->LAST_FREED = bit - 1;
    794  1.1  cgd 
    795  1.1  cgd 	/* Calculate the split number for this page */
    796  1.1  cgd 	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
    797  1.1  cgd 	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
    798  1.1  cgd 	if (offset >= SPLITMASK)
    799  1.1  cgd 		return (NULL);	/* Out of overflow pages */
    800  1.1  cgd 	addr = OADDR_OF(i, offset);
    801  1.1  cgd #ifdef DEBUG2
    802  1.1  cgd 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
    803  1.1  cgd 	    addr, tmp1, tmp2);
    804  1.1  cgd #endif
    805  1.1  cgd 
    806  1.1  cgd 	/* Allocate and return the overflow page */
    807  1.1  cgd 	return (addr);
    808  1.1  cgd }
    809  1.1  cgd 
    810  1.1  cgd /*
    811  1.1  cgd  * Mark this overflow page as free.
    812  1.1  cgd  */
    813  1.1  cgd extern void
    814  1.1  cgd __free_ovflpage(hashp, obufp)
    815  1.1  cgd 	HTAB *hashp;
    816  1.1  cgd 	BUFHEAD *obufp;
    817  1.1  cgd {
    818  1.1  cgd 	register u_short addr;
    819  1.1  cgd 	u_long *freep;
    820  1.1  cgd 	int bit_address, free_page, free_bit;
    821  1.1  cgd 	u_short ndx;
    822  1.1  cgd 
    823  1.1  cgd 	addr = obufp->addr;
    824  1.1  cgd #ifdef DEBUG1
    825  1.1  cgd 	(void)fprintf(stderr, "Freeing %d\n", addr);
    826  1.1  cgd #endif
    827  1.1  cgd 	ndx = (((u_short)addr) >> SPLITSHIFT);
    828  1.1  cgd 	bit_address =
    829  1.1  cgd 	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
    830  1.1  cgd 	 if (bit_address < hashp->LAST_FREED)
    831  1.1  cgd 		hashp->LAST_FREED = bit_address;
    832  1.1  cgd 	free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
    833  1.1  cgd 	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
    834  1.1  cgd 
    835  1.1  cgd 	if (!(freep = hashp->mapp[free_page]))
    836  1.1  cgd 		freep = fetch_bitmap(hashp, free_page);
    837  1.1  cgd #ifdef DEBUG
    838  1.1  cgd 	/*
    839  1.1  cgd 	 * This had better never happen.  It means we tried to read a bitmap
    840  1.1  cgd 	 * that has already had overflow pages allocated off it, and we
    841  1.1  cgd 	 * failed to read it from the file.
    842  1.1  cgd 	 */
    843  1.1  cgd 	if (!freep)
    844  1.1  cgd 		assert(0);
    845  1.1  cgd #endif
    846  1.1  cgd 	CLRBIT(freep, free_bit);
    847  1.1  cgd #ifdef DEBUG2
    848  1.1  cgd 	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
    849  1.1  cgd 	    obufp->addr, free_bit, free_page);
    850  1.1  cgd #endif
    851  1.1  cgd 	__reclaim_buf(hashp, obufp);
    852  1.1  cgd }
    853  1.1  cgd 
    854  1.1  cgd /*
    855  1.1  cgd  * Returns:
    856  1.1  cgd  *	 0 success
    857  1.1  cgd  *	-1 failure
    858  1.1  cgd  */
    859  1.1  cgd static int
    860  1.1  cgd open_temp(hashp)
    861  1.1  cgd 	HTAB *hashp;
    862  1.1  cgd {
    863  1.1  cgd 	sigset_t set, oset;
    864  1.1  cgd 	static char namestr[] = "_hashXXXXXX";
    865  1.1  cgd 
    866  1.1  cgd 	/* Block signals; make sure file goes away at process exit. */
    867  1.1  cgd 	(void)sigfillset(&set);
    868  1.1  cgd 	(void)sigprocmask(SIG_BLOCK, &set, &oset);
    869  1.1  cgd 	if ((hashp->fp = mkstemp(namestr)) != -1) {
    870  1.1  cgd 		(void)unlink(namestr);
    871  1.1  cgd 		(void)fcntl(hashp->fp, F_SETFD, 1);
    872  1.1  cgd 	}
    873  1.1  cgd 	(void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
    874  1.1  cgd 	return (hashp->fp != -1 ? 0 : -1);
    875  1.1  cgd }
    876  1.1  cgd 
    877  1.1  cgd /*
    878  1.1  cgd  * We have to know that the key will fit, but the last entry on the page is
    879  1.1  cgd  * an overflow pair, so we need to shift things.
    880  1.1  cgd  */
    881  1.1  cgd static void
    882  1.1  cgd squeeze_key(sp, key, val)
    883  1.1  cgd 	u_short *sp;
    884  1.1  cgd 	const DBT *key, *val;
    885  1.1  cgd {
    886  1.1  cgd 	register char *p;
    887  1.1  cgd 	u_short free_space, n, off, pageno;
    888  1.1  cgd 
    889  1.1  cgd 	p = (char *)sp;
    890  1.1  cgd 	n = sp[0];
    891  1.1  cgd 	free_space = FREESPACE(sp);
    892  1.1  cgd 	off = OFFSET(sp);
    893  1.1  cgd 
    894  1.1  cgd 	pageno = sp[n - 1];
    895  1.1  cgd 	off -= key->size;
    896  1.1  cgd 	sp[n - 1] = off;
    897  1.1  cgd 	memmove(p + off, key->data, key->size);
    898  1.1  cgd 	off -= val->size;
    899  1.1  cgd 	sp[n] = off;
    900  1.1  cgd 	memmove(p + off, val->data, val->size);
    901  1.1  cgd 	sp[0] = n + 2;
    902  1.1  cgd 	sp[n + 1] = pageno;
    903  1.1  cgd 	sp[n + 2] = OVFLPAGE;
    904  1.1  cgd 	FREESPACE(sp) = free_space - PAIRSIZE(key, val);
    905  1.1  cgd 	OFFSET(sp) = off;
    906  1.1  cgd }
    907  1.1  cgd 
    908  1.1  cgd static u_long *
    909  1.1  cgd fetch_bitmap(hashp, ndx)
    910  1.1  cgd 	HTAB *hashp;
    911  1.1  cgd 	int ndx;
    912  1.1  cgd {
    913  1.1  cgd 	if (ndx >= hashp->nmaps ||
    914  1.1  cgd 	    !(hashp->mapp[ndx] = malloc(hashp->BSIZE)) ||
    915  1.1  cgd 	    __get_page(hashp, (char *)hashp->mapp[ndx],
    916  1.1  cgd 	    hashp->BITMAPS[ndx], 0, 1, 1))
    917  1.1  cgd 		return (NULL);
    918  1.1  cgd 	return (hashp->mapp[ndx]);
    919  1.1  cgd }
    920  1.1  cgd 
    921  1.1  cgd #ifdef DEBUG4
    922  1.1  cgd int
    923  1.1  cgd print_chain(addr)
    924  1.1  cgd 	int addr;
    925  1.1  cgd {
    926  1.1  cgd 	BUFHEAD *bufp;
    927  1.1  cgd 	short *bp, oaddr;
    928  1.1  cgd 
    929  1.1  cgd 	(void)fprintf(stderr, "%d ", addr);
    930  1.1  cgd 	bufp = __get_buf(hashp, addr, NULL, 0);
    931  1.1  cgd 	bp = (short *)bufp->page;
    932  1.1  cgd 	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
    933  1.1  cgd 		((bp[0] > 2) && bp[2] < REAL_KEY))) {
    934  1.1  cgd 		oaddr = bp[bp[0] - 1];
    935  1.1  cgd 		(void)fprintf(stderr, "%d ", (int)oaddr);
    936  1.1  cgd 		bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
    937  1.1  cgd 		bp = (short *)bufp->page;
    938  1.1  cgd 	}
    939  1.1  cgd 	(void)fprintf(stderr, "\n");
    940  1.1  cgd }
    941  1.1  cgd #endif
    942