hash_page.c revision 1.13 1 1.13 christos /* $NetBSD: hash_page.c,v 1.13 1998/12/09 12:42:50 christos Exp $ */
2 1.7 cgd
3 1.1 cgd /*-
4 1.6 cgd * Copyright (c) 1990, 1993, 1994
5 1.1 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Margo Seltzer.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.1 cgd * 3. All advertising materials mentioning features or use of this software
19 1.1 cgd * must display the following acknowledgement:
20 1.1 cgd * This product includes software developed by the University of
21 1.1 cgd * California, Berkeley and its contributors.
22 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
23 1.1 cgd * may be used to endorse or promote products derived from this software
24 1.1 cgd * without specific prior written permission.
25 1.1 cgd *
26 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 1.1 cgd * SUCH DAMAGE.
37 1.1 cgd */
38 1.1 cgd
39 1.9 christos #include <sys/cdefs.h>
40 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
41 1.7 cgd #if 0
42 1.8 cgd static char sccsid[] = "@(#)hash_page.c 8.7 (Berkeley) 8/16/94";
43 1.7 cgd #else
44 1.13 christos __RCSID("$NetBSD: hash_page.c,v 1.13 1998/12/09 12:42:50 christos Exp $");
45 1.7 cgd #endif
46 1.1 cgd #endif /* LIBC_SCCS and not lint */
47 1.1 cgd
48 1.1 cgd /*
49 1.1 cgd * PACKAGE: hashing
50 1.1 cgd *
51 1.1 cgd * DESCRIPTION:
52 1.1 cgd * Page manipulation for hashing package.
53 1.1 cgd *
54 1.1 cgd * ROUTINES:
55 1.1 cgd *
56 1.1 cgd * External
57 1.1 cgd * __get_page
58 1.1 cgd * __add_ovflpage
59 1.1 cgd * Internal
60 1.1 cgd * overflow_page
61 1.1 cgd * open_temp
62 1.1 cgd */
63 1.12 kleink
64 1.12 kleink #include "namespace.h"
65 1.1 cgd
66 1.1 cgd #include <sys/types.h>
67 1.1 cgd
68 1.1 cgd #include <errno.h>
69 1.1 cgd #include <fcntl.h>
70 1.1 cgd #include <signal.h>
71 1.1 cgd #include <stdio.h>
72 1.1 cgd #include <stdlib.h>
73 1.1 cgd #include <string.h>
74 1.1 cgd #include <unistd.h>
75 1.1 cgd #ifdef DEBUG
76 1.1 cgd #include <assert.h>
77 1.1 cgd #endif
78 1.1 cgd
79 1.1 cgd #include <db.h>
80 1.1 cgd #include "hash.h"
81 1.1 cgd #include "page.h"
82 1.1 cgd #include "extern.h"
83 1.1 cgd
84 1.6 cgd static u_int32_t *fetch_bitmap __P((HTAB *, int));
85 1.6 cgd static u_int32_t first_free __P((u_int32_t));
86 1.1 cgd static int open_temp __P((HTAB *));
87 1.6 cgd static u_int16_t overflow_page __P((HTAB *));
88 1.1 cgd static void putpair __P((char *, const DBT *, const DBT *));
89 1.6 cgd static void squeeze_key __P((u_int16_t *, const DBT *, const DBT *));
90 1.1 cgd static int ugly_split
91 1.6 cgd __P((HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int));
92 1.1 cgd
93 1.1 cgd #define PAGE_INIT(P) { \
94 1.13 christos ((u_int16_t *)(void *)(P))[0] = 0; \
95 1.13 christos ((u_int16_t *)(void *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
96 1.13 christos ((u_int16_t *)(void *)(P))[2] = hashp->BSIZE; \
97 1.1 cgd }
98 1.1 cgd
99 1.1 cgd /*
100 1.1 cgd * This is called AFTER we have verified that there is room on the page for
101 1.1 cgd * the pair (PAIRFITS has returned true) so we go right ahead and start moving
102 1.1 cgd * stuff on.
103 1.1 cgd */
104 1.1 cgd static void
105 1.1 cgd putpair(p, key, val)
106 1.1 cgd char *p;
107 1.1 cgd const DBT *key, *val;
108 1.1 cgd {
109 1.6 cgd register u_int16_t *bp, n, off;
110 1.1 cgd
111 1.13 christos bp = (u_int16_t *)(void *)p;
112 1.1 cgd
113 1.1 cgd /* Enter the key first. */
114 1.1 cgd n = bp[0];
115 1.1 cgd
116 1.1 cgd off = OFFSET(bp) - key->size;
117 1.1 cgd memmove(p + off, key->data, key->size);
118 1.1 cgd bp[++n] = off;
119 1.1 cgd
120 1.1 cgd /* Now the data. */
121 1.1 cgd off -= val->size;
122 1.1 cgd memmove(p + off, val->data, val->size);
123 1.1 cgd bp[++n] = off;
124 1.1 cgd
125 1.1 cgd /* Adjust page info. */
126 1.1 cgd bp[0] = n;
127 1.6 cgd bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
128 1.1 cgd bp[n + 2] = off;
129 1.1 cgd }
130 1.1 cgd
131 1.1 cgd /*
132 1.1 cgd * Returns:
133 1.1 cgd * 0 OK
134 1.1 cgd * -1 error
135 1.1 cgd */
136 1.1 cgd extern int
137 1.1 cgd __delpair(hashp, bufp, ndx)
138 1.1 cgd HTAB *hashp;
139 1.1 cgd BUFHEAD *bufp;
140 1.1 cgd register int ndx;
141 1.1 cgd {
142 1.6 cgd register u_int16_t *bp, newoff;
143 1.1 cgd register int n;
144 1.6 cgd u_int16_t pairlen;
145 1.1 cgd
146 1.13 christos bp = (u_int16_t *)(void *)bufp->page;
147 1.1 cgd n = bp[0];
148 1.1 cgd
149 1.1 cgd if (bp[ndx + 1] < REAL_KEY)
150 1.1 cgd return (__big_delete(hashp, bufp));
151 1.1 cgd if (ndx != 1)
152 1.1 cgd newoff = bp[ndx - 1];
153 1.1 cgd else
154 1.1 cgd newoff = hashp->BSIZE;
155 1.1 cgd pairlen = newoff - bp[ndx + 1];
156 1.1 cgd
157 1.1 cgd if (ndx != (n - 1)) {
158 1.1 cgd /* Hard Case -- need to shuffle keys */
159 1.1 cgd register int i;
160 1.1 cgd register char *src = bufp->page + (int)OFFSET(bp);
161 1.1 cgd register char *dst = src + (int)pairlen;
162 1.13 christos memmove(dst, src, (size_t)(bp[ndx + 1] - OFFSET(bp)));
163 1.1 cgd
164 1.1 cgd /* Now adjust the pointers */
165 1.1 cgd for (i = ndx + 2; i <= n; i += 2) {
166 1.1 cgd if (bp[i + 1] == OVFLPAGE) {
167 1.1 cgd bp[i - 2] = bp[i];
168 1.1 cgd bp[i - 1] = bp[i + 1];
169 1.1 cgd } else {
170 1.1 cgd bp[i - 2] = bp[i] + pairlen;
171 1.1 cgd bp[i - 1] = bp[i + 1] + pairlen;
172 1.1 cgd }
173 1.1 cgd }
174 1.1 cgd }
175 1.1 cgd /* Finally adjust the page data */
176 1.1 cgd bp[n] = OFFSET(bp) + pairlen;
177 1.6 cgd bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
178 1.1 cgd bp[0] = n - 2;
179 1.1 cgd hashp->NKEYS--;
180 1.1 cgd
181 1.1 cgd bufp->flags |= BUF_MOD;
182 1.1 cgd return (0);
183 1.1 cgd }
184 1.1 cgd /*
185 1.1 cgd * Returns:
186 1.1 cgd * 0 ==> OK
187 1.1 cgd * -1 ==> Error
188 1.1 cgd */
189 1.1 cgd extern int
190 1.1 cgd __split_page(hashp, obucket, nbucket)
191 1.1 cgd HTAB *hashp;
192 1.6 cgd u_int32_t obucket, nbucket;
193 1.1 cgd {
194 1.1 cgd register BUFHEAD *new_bufp, *old_bufp;
195 1.6 cgd register u_int16_t *ino;
196 1.1 cgd register char *np;
197 1.1 cgd DBT key, val;
198 1.1 cgd int n, ndx, retval;
199 1.6 cgd u_int16_t copyto, diff, off, moved;
200 1.1 cgd char *op;
201 1.1 cgd
202 1.6 cgd copyto = (u_int16_t)hashp->BSIZE;
203 1.6 cgd off = (u_int16_t)hashp->BSIZE;
204 1.1 cgd old_bufp = __get_buf(hashp, obucket, NULL, 0);
205 1.1 cgd if (old_bufp == NULL)
206 1.1 cgd return (-1);
207 1.1 cgd new_bufp = __get_buf(hashp, nbucket, NULL, 0);
208 1.1 cgd if (new_bufp == NULL)
209 1.1 cgd return (-1);
210 1.1 cgd
211 1.1 cgd old_bufp->flags |= (BUF_MOD | BUF_PIN);
212 1.1 cgd new_bufp->flags |= (BUF_MOD | BUF_PIN);
213 1.1 cgd
214 1.13 christos ino = (u_int16_t *)(void *)(op = old_bufp->page);
215 1.1 cgd np = new_bufp->page;
216 1.1 cgd
217 1.1 cgd moved = 0;
218 1.1 cgd
219 1.1 cgd for (n = 1, ndx = 1; n < ino[0]; n += 2) {
220 1.1 cgd if (ino[n + 1] < REAL_KEY) {
221 1.1 cgd retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
222 1.1 cgd (int)copyto, (int)moved);
223 1.1 cgd old_bufp->flags &= ~BUF_PIN;
224 1.1 cgd new_bufp->flags &= ~BUF_PIN;
225 1.1 cgd return (retval);
226 1.1 cgd
227 1.1 cgd }
228 1.1 cgd key.data = (u_char *)op + ino[n];
229 1.1 cgd key.size = off - ino[n];
230 1.1 cgd
231 1.13 christos if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
232 1.1 cgd /* Don't switch page */
233 1.1 cgd diff = copyto - off;
234 1.1 cgd if (diff) {
235 1.1 cgd copyto = ino[n + 1] + diff;
236 1.1 cgd memmove(op + copyto, op + ino[n + 1],
237 1.13 christos (size_t)(off - ino[n + 1]));
238 1.1 cgd ino[ndx] = copyto + ino[n] - ino[n + 1];
239 1.1 cgd ino[ndx + 1] = copyto;
240 1.1 cgd } else
241 1.1 cgd copyto = ino[n + 1];
242 1.1 cgd ndx += 2;
243 1.1 cgd } else {
244 1.1 cgd /* Switch page */
245 1.1 cgd val.data = (u_char *)op + ino[n + 1];
246 1.1 cgd val.size = ino[n] - ino[n + 1];
247 1.1 cgd putpair(np, &key, &val);
248 1.1 cgd moved += 2;
249 1.1 cgd }
250 1.1 cgd
251 1.1 cgd off = ino[n + 1];
252 1.1 cgd }
253 1.1 cgd
254 1.1 cgd /* Now clean up the page */
255 1.1 cgd ino[0] -= moved;
256 1.6 cgd FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
257 1.1 cgd OFFSET(ino) = copyto;
258 1.1 cgd
259 1.1 cgd #ifdef DEBUG3
260 1.1 cgd (void)fprintf(stderr, "split %d/%d\n",
261 1.6 cgd ((u_int16_t *)np)[0] / 2,
262 1.6 cgd ((u_int16_t *)op)[0] / 2);
263 1.1 cgd #endif
264 1.1 cgd /* unpin both pages */
265 1.1 cgd old_bufp->flags &= ~BUF_PIN;
266 1.1 cgd new_bufp->flags &= ~BUF_PIN;
267 1.1 cgd return (0);
268 1.1 cgd }
269 1.1 cgd
270 1.1 cgd /*
271 1.1 cgd * Called when we encounter an overflow or big key/data page during split
272 1.1 cgd * handling. This is special cased since we have to begin checking whether
273 1.1 cgd * the key/data pairs fit on their respective pages and because we may need
274 1.1 cgd * overflow pages for both the old and new pages.
275 1.1 cgd *
276 1.1 cgd * The first page might be a page with regular key/data pairs in which case
277 1.1 cgd * we have a regular overflow condition and just need to go on to the next
278 1.1 cgd * page or it might be a big key/data pair in which case we need to fix the
279 1.1 cgd * big key/data pair.
280 1.1 cgd *
281 1.1 cgd * Returns:
282 1.1 cgd * 0 ==> success
283 1.1 cgd * -1 ==> failure
284 1.1 cgd */
285 1.1 cgd static int
286 1.1 cgd ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
287 1.1 cgd HTAB *hashp;
288 1.6 cgd u_int32_t obucket; /* Same as __split_page. */
289 1.1 cgd BUFHEAD *old_bufp, *new_bufp;
290 1.1 cgd int copyto; /* First byte on page which contains key/data values. */
291 1.1 cgd int moved; /* Number of pairs moved to new page. */
292 1.1 cgd {
293 1.1 cgd register BUFHEAD *bufp; /* Buffer header for ino */
294 1.6 cgd register u_int16_t *ino; /* Page keys come off of */
295 1.6 cgd register u_int16_t *np; /* New page */
296 1.6 cgd register u_int16_t *op; /* Page keys go on to if they aren't moving */
297 1.1 cgd
298 1.1 cgd BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */
299 1.1 cgd DBT key, val;
300 1.1 cgd SPLIT_RETURN ret;
301 1.6 cgd u_int16_t n, off, ov_addr, scopyto;
302 1.1 cgd char *cino; /* Character value of ino */
303 1.1 cgd
304 1.1 cgd bufp = old_bufp;
305 1.13 christos ino = (u_int16_t *)(void *)old_bufp->page;
306 1.13 christos np = (u_int16_t *)(void *)new_bufp->page;
307 1.13 christos op = (u_int16_t *)(void *)old_bufp->page;
308 1.1 cgd last_bfp = NULL;
309 1.6 cgd scopyto = (u_int16_t)copyto; /* ANSI */
310 1.1 cgd
311 1.1 cgd n = ino[0] - 1;
312 1.1 cgd while (n < ino[0]) {
313 1.1 cgd if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
314 1.1 cgd if (__big_split(hashp, old_bufp,
315 1.13 christos new_bufp, bufp, (int)bufp->addr, obucket, &ret))
316 1.1 cgd return (-1);
317 1.1 cgd old_bufp = ret.oldp;
318 1.1 cgd if (!old_bufp)
319 1.1 cgd return (-1);
320 1.13 christos op = (u_int16_t *)(void *)old_bufp->page;
321 1.1 cgd new_bufp = ret.newp;
322 1.1 cgd if (!new_bufp)
323 1.1 cgd return (-1);
324 1.13 christos np = (u_int16_t *)(void *)new_bufp->page;
325 1.1 cgd bufp = ret.nextp;
326 1.1 cgd if (!bufp)
327 1.1 cgd return (0);
328 1.1 cgd cino = (char *)bufp->page;
329 1.13 christos ino = (u_int16_t *)(void *)cino;
330 1.1 cgd last_bfp = ret.nextp;
331 1.1 cgd } else if (ino[n + 1] == OVFLPAGE) {
332 1.1 cgd ov_addr = ino[n];
333 1.1 cgd /*
334 1.1 cgd * Fix up the old page -- the extra 2 are the fields
335 1.1 cgd * which contained the overflow information.
336 1.1 cgd */
337 1.1 cgd ino[0] -= (moved + 2);
338 1.1 cgd FREESPACE(ino) =
339 1.6 cgd scopyto - sizeof(u_int16_t) * (ino[0] + 3);
340 1.1 cgd OFFSET(ino) = scopyto;
341 1.1 cgd
342 1.13 christos bufp = __get_buf(hashp, (u_int32_t)ov_addr, bufp, 0);
343 1.1 cgd if (!bufp)
344 1.1 cgd return (-1);
345 1.1 cgd
346 1.13 christos ino = (u_int16_t *)(void *)bufp->page;
347 1.1 cgd n = 1;
348 1.1 cgd scopyto = hashp->BSIZE;
349 1.1 cgd moved = 0;
350 1.1 cgd
351 1.1 cgd if (last_bfp)
352 1.1 cgd __free_ovflpage(hashp, last_bfp);
353 1.1 cgd last_bfp = bufp;
354 1.1 cgd }
355 1.1 cgd /* Move regular sized pairs of there are any */
356 1.1 cgd off = hashp->BSIZE;
357 1.1 cgd for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
358 1.13 christos cino = (char *)(void *)ino;
359 1.1 cgd key.data = (u_char *)cino + ino[n];
360 1.1 cgd key.size = off - ino[n];
361 1.1 cgd val.data = (u_char *)cino + ino[n + 1];
362 1.1 cgd val.size = ino[n] - ino[n + 1];
363 1.1 cgd off = ino[n + 1];
364 1.1 cgd
365 1.13 christos if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
366 1.1 cgd /* Keep on old page */
367 1.1 cgd if (PAIRFITS(op, (&key), (&val)))
368 1.13 christos putpair((char *)(void *)op, &key, &val);
369 1.1 cgd else {
370 1.1 cgd old_bufp =
371 1.1 cgd __add_ovflpage(hashp, old_bufp);
372 1.1 cgd if (!old_bufp)
373 1.1 cgd return (-1);
374 1.13 christos op = (u_int16_t *)(void *)old_bufp->page;
375 1.13 christos putpair((char *)(void *)op, &key, &val);
376 1.1 cgd }
377 1.1 cgd old_bufp->flags |= BUF_MOD;
378 1.1 cgd } else {
379 1.1 cgd /* Move to new page */
380 1.1 cgd if (PAIRFITS(np, (&key), (&val)))
381 1.13 christos putpair((char *)(void *)np, &key, &val);
382 1.1 cgd else {
383 1.1 cgd new_bufp =
384 1.1 cgd __add_ovflpage(hashp, new_bufp);
385 1.1 cgd if (!new_bufp)
386 1.1 cgd return (-1);
387 1.13 christos np = (u_int16_t *)(void *)new_bufp->page;
388 1.13 christos putpair((char *)(void *)np, &key, &val);
389 1.1 cgd }
390 1.1 cgd new_bufp->flags |= BUF_MOD;
391 1.1 cgd }
392 1.1 cgd }
393 1.1 cgd }
394 1.1 cgd if (last_bfp)
395 1.1 cgd __free_ovflpage(hashp, last_bfp);
396 1.1 cgd return (0);
397 1.1 cgd }
398 1.1 cgd
399 1.1 cgd /*
400 1.1 cgd * Add the given pair to the page
401 1.1 cgd *
402 1.1 cgd * Returns:
403 1.1 cgd * 0 ==> OK
404 1.1 cgd * 1 ==> failure
405 1.1 cgd */
406 1.1 cgd extern int
407 1.1 cgd __addel(hashp, bufp, key, val)
408 1.1 cgd HTAB *hashp;
409 1.1 cgd BUFHEAD *bufp;
410 1.1 cgd const DBT *key, *val;
411 1.1 cgd {
412 1.6 cgd register u_int16_t *bp, *sop;
413 1.1 cgd int do_expand;
414 1.1 cgd
415 1.13 christos bp = (u_int16_t *)(void *)bufp->page;
416 1.1 cgd do_expand = 0;
417 1.4 cgd while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
418 1.1 cgd /* Exception case */
419 1.4 cgd if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
420 1.4 cgd /* This is the last page of a big key/data pair
421 1.4 cgd and we need to add another page */
422 1.4 cgd break;
423 1.4 cgd else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
424 1.13 christos bufp = __get_buf(hashp, (u_int32_t)bp[bp[0] - 1], bufp,
425 1.13 christos 0);
426 1.1 cgd if (!bufp)
427 1.1 cgd return (-1);
428 1.13 christos bp = (u_int16_t *)(void *)bufp->page;
429 1.1 cgd } else
430 1.1 cgd /* Try to squeeze key on this page */
431 1.1 cgd if (FREESPACE(bp) > PAIRSIZE(key, val)) {
432 1.1 cgd squeeze_key(bp, key, val);
433 1.1 cgd return (0);
434 1.1 cgd } else {
435 1.13 christos bufp = __get_buf(hashp,
436 1.13 christos (u_int32_t)bp[bp[0] - 1], bufp, 0);
437 1.1 cgd if (!bufp)
438 1.1 cgd return (-1);
439 1.13 christos bp = (u_int16_t *)(void *)bufp->page;
440 1.1 cgd }
441 1.1 cgd
442 1.1 cgd if (PAIRFITS(bp, key, val))
443 1.1 cgd putpair(bufp->page, key, val);
444 1.1 cgd else {
445 1.1 cgd do_expand = 1;
446 1.1 cgd bufp = __add_ovflpage(hashp, bufp);
447 1.1 cgd if (!bufp)
448 1.1 cgd return (-1);
449 1.13 christos sop = (u_int16_t *)(void *)bufp->page;
450 1.1 cgd
451 1.1 cgd if (PAIRFITS(sop, key, val))
452 1.13 christos putpair((char *)(void *)sop, key, val);
453 1.1 cgd else
454 1.1 cgd if (__big_insert(hashp, bufp, key, val))
455 1.1 cgd return (-1);
456 1.1 cgd }
457 1.1 cgd bufp->flags |= BUF_MOD;
458 1.1 cgd /*
459 1.1 cgd * If the average number of keys per bucket exceeds the fill factor,
460 1.1 cgd * expand the table.
461 1.1 cgd */
462 1.1 cgd hashp->NKEYS++;
463 1.1 cgd if (do_expand ||
464 1.1 cgd (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
465 1.1 cgd return (__expand_table(hashp));
466 1.1 cgd return (0);
467 1.1 cgd }
468 1.1 cgd
469 1.1 cgd /*
470 1.1 cgd *
471 1.1 cgd * Returns:
472 1.1 cgd * pointer on success
473 1.1 cgd * NULL on error
474 1.1 cgd */
475 1.1 cgd extern BUFHEAD *
476 1.1 cgd __add_ovflpage(hashp, bufp)
477 1.1 cgd HTAB *hashp;
478 1.1 cgd BUFHEAD *bufp;
479 1.1 cgd {
480 1.6 cgd register u_int16_t *sp;
481 1.6 cgd u_int16_t ndx, ovfl_num;
482 1.1 cgd #ifdef DEBUG1
483 1.1 cgd int tmp1, tmp2;
484 1.1 cgd #endif
485 1.13 christos sp = (u_int16_t *)(void *)bufp->page;
486 1.1 cgd
487 1.1 cgd /* Check if we are dynamically determining the fill factor */
488 1.1 cgd if (hashp->FFACTOR == DEF_FFACTOR) {
489 1.13 christos hashp->FFACTOR = (u_int32_t)sp[0] >> 1;
490 1.1 cgd if (hashp->FFACTOR < MIN_FFACTOR)
491 1.1 cgd hashp->FFACTOR = MIN_FFACTOR;
492 1.1 cgd }
493 1.1 cgd bufp->flags |= BUF_MOD;
494 1.1 cgd ovfl_num = overflow_page(hashp);
495 1.1 cgd #ifdef DEBUG1
496 1.1 cgd tmp1 = bufp->addr;
497 1.1 cgd tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
498 1.1 cgd #endif
499 1.13 christos if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, (u_int32_t)ovfl_num,
500 1.13 christos bufp, 1)))
501 1.1 cgd return (NULL);
502 1.1 cgd bufp->ovfl->flags |= BUF_MOD;
503 1.1 cgd #ifdef DEBUG1
504 1.1 cgd (void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
505 1.1 cgd tmp1, tmp2, bufp->ovfl->addr);
506 1.1 cgd #endif
507 1.1 cgd ndx = sp[0];
508 1.1 cgd /*
509 1.1 cgd * Since a pair is allocated on a page only if there's room to add
510 1.1 cgd * an overflow page, we know that the OVFL information will fit on
511 1.1 cgd * the page.
512 1.1 cgd */
513 1.1 cgd sp[ndx + 4] = OFFSET(sp);
514 1.1 cgd sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
515 1.1 cgd sp[ndx + 1] = ovfl_num;
516 1.1 cgd sp[ndx + 2] = OVFLPAGE;
517 1.1 cgd sp[0] = ndx + 2;
518 1.1 cgd #ifdef HASH_STATISTICS
519 1.1 cgd hash_overflows++;
520 1.1 cgd #endif
521 1.1 cgd return (bufp->ovfl);
522 1.1 cgd }
523 1.1 cgd
524 1.1 cgd /*
525 1.1 cgd * Returns:
526 1.1 cgd * 0 indicates SUCCESS
527 1.1 cgd * -1 indicates FAILURE
528 1.1 cgd */
529 1.1 cgd extern int
530 1.1 cgd __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
531 1.1 cgd HTAB *hashp;
532 1.1 cgd char *p;
533 1.6 cgd u_int32_t bucket;
534 1.1 cgd int is_bucket, is_disk, is_bitmap;
535 1.1 cgd {
536 1.1 cgd register int fd, page, size;
537 1.1 cgd int rsize;
538 1.6 cgd u_int16_t *bp;
539 1.1 cgd
540 1.1 cgd fd = hashp->fp;
541 1.1 cgd size = hashp->BSIZE;
542 1.1 cgd
543 1.1 cgd if ((fd == -1) || !is_disk) {
544 1.1 cgd PAGE_INIT(p);
545 1.1 cgd return (0);
546 1.1 cgd }
547 1.1 cgd if (is_bucket)
548 1.1 cgd page = BUCKET_TO_PAGE(bucket);
549 1.1 cgd else
550 1.1 cgd page = OADDR_TO_PAGE(bucket);
551 1.13 christos if ((rsize = pread(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
552 1.1 cgd return (-1);
553 1.13 christos bp = (u_int16_t *)(void *)p;
554 1.1 cgd if (!rsize)
555 1.1 cgd bp[0] = 0; /* We hit the EOF, so initialize a new page */
556 1.1 cgd else
557 1.1 cgd if (rsize != size) {
558 1.1 cgd errno = EFTYPE;
559 1.1 cgd return (-1);
560 1.1 cgd }
561 1.1 cgd if (!is_bitmap && !bp[0]) {
562 1.1 cgd PAGE_INIT(p);
563 1.1 cgd } else
564 1.1 cgd if (hashp->LORDER != BYTE_ORDER) {
565 1.1 cgd register int i, max;
566 1.1 cgd
567 1.1 cgd if (is_bitmap) {
568 1.13 christos max = (u_int32_t)hashp->BSIZE >> 2; /* divide by 4 */
569 1.1 cgd for (i = 0; i < max; i++)
570 1.13 christos M_32_SWAP(((int *)(void *)p)[i]);
571 1.1 cgd } else {
572 1.6 cgd M_16_SWAP(bp[0]);
573 1.1 cgd max = bp[0] + 2;
574 1.1 cgd for (i = 1; i <= max; i++)
575 1.6 cgd M_16_SWAP(bp[i]);
576 1.1 cgd }
577 1.1 cgd }
578 1.1 cgd return (0);
579 1.1 cgd }
580 1.1 cgd
581 1.1 cgd /*
582 1.1 cgd * Write page p to disk
583 1.1 cgd *
584 1.1 cgd * Returns:
585 1.1 cgd * 0 ==> OK
586 1.1 cgd * -1 ==>failure
587 1.1 cgd */
588 1.1 cgd extern int
589 1.1 cgd __put_page(hashp, p, bucket, is_bucket, is_bitmap)
590 1.1 cgd HTAB *hashp;
591 1.1 cgd char *p;
592 1.6 cgd u_int32_t bucket;
593 1.1 cgd int is_bucket, is_bitmap;
594 1.1 cgd {
595 1.1 cgd register int fd, page, size;
596 1.1 cgd int wsize;
597 1.1 cgd
598 1.1 cgd size = hashp->BSIZE;
599 1.1 cgd if ((hashp->fp == -1) && open_temp(hashp))
600 1.1 cgd return (-1);
601 1.1 cgd fd = hashp->fp;
602 1.1 cgd
603 1.1 cgd if (hashp->LORDER != BYTE_ORDER) {
604 1.1 cgd register int i;
605 1.1 cgd register int max;
606 1.1 cgd
607 1.1 cgd if (is_bitmap) {
608 1.13 christos max = (u_int32_t)hashp->BSIZE >> 2; /* divide by 4 */
609 1.1 cgd for (i = 0; i < max; i++)
610 1.13 christos M_32_SWAP(((int *)(void *)p)[i]);
611 1.1 cgd } else {
612 1.13 christos max = ((u_int16_t *)(void *)p)[0] + 2;
613 1.1 cgd for (i = 0; i <= max; i++)
614 1.13 christos M_16_SWAP(((u_int16_t *)(void *)p)[i]);
615 1.1 cgd }
616 1.1 cgd }
617 1.1 cgd if (is_bucket)
618 1.1 cgd page = BUCKET_TO_PAGE(bucket);
619 1.1 cgd else
620 1.1 cgd page = OADDR_TO_PAGE(bucket);
621 1.13 christos if ((wsize = pwrite(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
622 1.1 cgd /* Errno is set */
623 1.1 cgd return (-1);
624 1.1 cgd if (wsize != size) {
625 1.1 cgd errno = EFTYPE;
626 1.1 cgd return (-1);
627 1.1 cgd }
628 1.1 cgd return (0);
629 1.1 cgd }
630 1.1 cgd
631 1.1 cgd #define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1)
632 1.1 cgd /*
633 1.1 cgd * Initialize a new bitmap page. Bitmap pages are left in memory
634 1.1 cgd * once they are read in.
635 1.1 cgd */
636 1.1 cgd extern int
637 1.6 cgd __ibitmap(hashp, pnum, nbits, ndx)
638 1.1 cgd HTAB *hashp;
639 1.1 cgd int pnum, nbits, ndx;
640 1.1 cgd {
641 1.6 cgd u_int32_t *ip;
642 1.1 cgd int clearbytes, clearints;
643 1.1 cgd
644 1.13 christos if ((ip = (u_int32_t *)malloc((size_t)hashp->BSIZE)) == NULL)
645 1.1 cgd return (1);
646 1.1 cgd hashp->nmaps++;
647 1.13 christos clearints = ((u_int32_t)(nbits - 1) >> INT_BYTE_SHIFT) + 1;
648 1.1 cgd clearbytes = clearints << INT_TO_BYTE;
649 1.13 christos (void)memset(ip, 0, (size_t)clearbytes);
650 1.13 christos (void)memset(((char *)(void *)ip) + clearbytes, 0xFF,
651 1.13 christos (size_t)(hashp->BSIZE - clearbytes));
652 1.1 cgd ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
653 1.1 cgd SETBIT(ip, 0);
654 1.6 cgd hashp->BITMAPS[ndx] = (u_int16_t)pnum;
655 1.1 cgd hashp->mapp[ndx] = ip;
656 1.1 cgd return (0);
657 1.1 cgd }
658 1.1 cgd
659 1.6 cgd static u_int32_t
660 1.1 cgd first_free(map)
661 1.6 cgd u_int32_t map;
662 1.1 cgd {
663 1.6 cgd register u_int32_t i, mask;
664 1.1 cgd
665 1.1 cgd mask = 0x1;
666 1.1 cgd for (i = 0; i < BITS_PER_MAP; i++) {
667 1.1 cgd if (!(mask & map))
668 1.1 cgd return (i);
669 1.1 cgd mask = mask << 1;
670 1.1 cgd }
671 1.1 cgd return (i);
672 1.1 cgd }
673 1.1 cgd
674 1.6 cgd static u_int16_t
675 1.1 cgd overflow_page(hashp)
676 1.1 cgd HTAB *hashp;
677 1.1 cgd {
678 1.9 christos register u_int32_t *freep = NULL;
679 1.1 cgd register int max_free, offset, splitnum;
680 1.6 cgd u_int16_t addr;
681 1.1 cgd int bit, first_page, free_bit, free_page, i, in_use_bits, j;
682 1.1 cgd #ifdef DEBUG2
683 1.1 cgd int tmp1, tmp2;
684 1.1 cgd #endif
685 1.1 cgd splitnum = hashp->OVFL_POINT;
686 1.1 cgd max_free = hashp->SPARES[splitnum];
687 1.1 cgd
688 1.13 christos free_page = (u_int32_t)(max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
689 1.1 cgd free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
690 1.1 cgd
691 1.1 cgd /* Look through all the free maps to find the first free block */
692 1.13 christos first_page = (u_int32_t)hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
693 1.1 cgd for ( i = first_page; i <= free_page; i++ ) {
694 1.6 cgd if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
695 1.1 cgd !(freep = fetch_bitmap(hashp, i)))
696 1.8 cgd return (0);
697 1.1 cgd if (i == free_page)
698 1.1 cgd in_use_bits = free_bit;
699 1.1 cgd else
700 1.1 cgd in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
701 1.1 cgd
702 1.1 cgd if (i == first_page) {
703 1.1 cgd bit = hashp->LAST_FREED &
704 1.1 cgd ((hashp->BSIZE << BYTE_SHIFT) - 1);
705 1.1 cgd j = bit / BITS_PER_MAP;
706 1.1 cgd bit = bit & ~(BITS_PER_MAP - 1);
707 1.1 cgd } else {
708 1.1 cgd bit = 0;
709 1.1 cgd j = 0;
710 1.1 cgd }
711 1.1 cgd for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
712 1.1 cgd if (freep[j] != ALL_SET)
713 1.1 cgd goto found;
714 1.1 cgd }
715 1.1 cgd
716 1.1 cgd /* No Free Page Found */
717 1.1 cgd hashp->LAST_FREED = hashp->SPARES[splitnum];
718 1.1 cgd hashp->SPARES[splitnum]++;
719 1.1 cgd offset = hashp->SPARES[splitnum] -
720 1.1 cgd (splitnum ? hashp->SPARES[splitnum - 1] : 0);
721 1.1 cgd
722 1.1 cgd #define OVMSG "HASH: Out of overflow pages. Increase page size\n"
723 1.1 cgd if (offset > SPLITMASK) {
724 1.1 cgd if (++splitnum >= NCACHED) {
725 1.1 cgd (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
726 1.8 cgd return (0);
727 1.1 cgd }
728 1.1 cgd hashp->OVFL_POINT = splitnum;
729 1.1 cgd hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
730 1.1 cgd hashp->SPARES[splitnum-1]--;
731 1.1 cgd offset = 1;
732 1.1 cgd }
733 1.1 cgd
734 1.1 cgd /* Check if we need to allocate a new bitmap page */
735 1.1 cgd if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
736 1.1 cgd free_page++;
737 1.1 cgd if (free_page >= NCACHED) {
738 1.1 cgd (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
739 1.8 cgd return (0);
740 1.1 cgd }
741 1.1 cgd /*
742 1.1 cgd * This is tricky. The 1 indicates that you want the new page
743 1.1 cgd * allocated with 1 clear bit. Actually, you are going to
744 1.1 cgd * allocate 2 pages from this map. The first is going to be
745 1.1 cgd * the map page, the second is the overflow page we were
746 1.1 cgd * looking for. The init_bitmap routine automatically, sets
747 1.1 cgd * the first bit of itself to indicate that the bitmap itself
748 1.1 cgd * is in use. We would explicitly set the second bit, but
749 1.1 cgd * don't have to if we tell init_bitmap not to leave it clear
750 1.1 cgd * in the first place.
751 1.1 cgd */
752 1.8 cgd if (__ibitmap(hashp,
753 1.8 cgd (int)OADDR_OF(splitnum, offset), 1, free_page))
754 1.8 cgd return (0);
755 1.1 cgd hashp->SPARES[splitnum]++;
756 1.1 cgd #ifdef DEBUG2
757 1.1 cgd free_bit = 2;
758 1.1 cgd #endif
759 1.1 cgd offset++;
760 1.1 cgd if (offset > SPLITMASK) {
761 1.1 cgd if (++splitnum >= NCACHED) {
762 1.1 cgd (void)write(STDERR_FILENO, OVMSG,
763 1.1 cgd sizeof(OVMSG) - 1);
764 1.8 cgd return (0);
765 1.1 cgd }
766 1.1 cgd hashp->OVFL_POINT = splitnum;
767 1.1 cgd hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
768 1.1 cgd hashp->SPARES[splitnum-1]--;
769 1.1 cgd offset = 0;
770 1.1 cgd }
771 1.1 cgd } else {
772 1.1 cgd /*
773 1.1 cgd * Free_bit addresses the last used bit. Bump it to address
774 1.1 cgd * the first available bit.
775 1.1 cgd */
776 1.1 cgd free_bit++;
777 1.1 cgd SETBIT(freep, free_bit);
778 1.1 cgd }
779 1.1 cgd
780 1.1 cgd /* Calculate address of the new overflow page */
781 1.1 cgd addr = OADDR_OF(splitnum, offset);
782 1.1 cgd #ifdef DEBUG2
783 1.1 cgd (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
784 1.1 cgd addr, free_bit, free_page);
785 1.1 cgd #endif
786 1.1 cgd return (addr);
787 1.1 cgd
788 1.1 cgd found:
789 1.1 cgd bit = bit + first_free(freep[j]);
790 1.1 cgd SETBIT(freep, bit);
791 1.1 cgd #ifdef DEBUG2
792 1.1 cgd tmp1 = bit;
793 1.1 cgd tmp2 = i;
794 1.1 cgd #endif
795 1.1 cgd /*
796 1.1 cgd * Bits are addressed starting with 0, but overflow pages are addressed
797 1.1 cgd * beginning at 1. Bit is a bit addressnumber, so we need to increment
798 1.1 cgd * it to convert it to a page number.
799 1.1 cgd */
800 1.1 cgd bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
801 1.1 cgd if (bit >= hashp->LAST_FREED)
802 1.1 cgd hashp->LAST_FREED = bit - 1;
803 1.1 cgd
804 1.1 cgd /* Calculate the split number for this page */
805 1.1 cgd for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
806 1.1 cgd offset = (i ? bit - hashp->SPARES[i - 1] : bit);
807 1.1 cgd if (offset >= SPLITMASK)
808 1.8 cgd return (0); /* Out of overflow pages */
809 1.1 cgd addr = OADDR_OF(i, offset);
810 1.1 cgd #ifdef DEBUG2
811 1.1 cgd (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
812 1.1 cgd addr, tmp1, tmp2);
813 1.1 cgd #endif
814 1.1 cgd
815 1.1 cgd /* Allocate and return the overflow page */
816 1.1 cgd return (addr);
817 1.1 cgd }
818 1.1 cgd
819 1.1 cgd /*
820 1.1 cgd * Mark this overflow page as free.
821 1.1 cgd */
822 1.1 cgd extern void
823 1.1 cgd __free_ovflpage(hashp, obufp)
824 1.1 cgd HTAB *hashp;
825 1.1 cgd BUFHEAD *obufp;
826 1.1 cgd {
827 1.6 cgd register u_int16_t addr;
828 1.6 cgd u_int32_t *freep;
829 1.1 cgd int bit_address, free_page, free_bit;
830 1.6 cgd u_int16_t ndx;
831 1.1 cgd
832 1.1 cgd addr = obufp->addr;
833 1.1 cgd #ifdef DEBUG1
834 1.1 cgd (void)fprintf(stderr, "Freeing %d\n", addr);
835 1.1 cgd #endif
836 1.13 christos ndx = (((u_int32_t)addr) >> SPLITSHIFT);
837 1.1 cgd bit_address =
838 1.1 cgd (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
839 1.1 cgd if (bit_address < hashp->LAST_FREED)
840 1.1 cgd hashp->LAST_FREED = bit_address;
841 1.13 christos free_page = ((u_int32_t)bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
842 1.1 cgd free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
843 1.1 cgd
844 1.1 cgd if (!(freep = hashp->mapp[free_page]))
845 1.1 cgd freep = fetch_bitmap(hashp, free_page);
846 1.1 cgd #ifdef DEBUG
847 1.1 cgd /*
848 1.1 cgd * This had better never happen. It means we tried to read a bitmap
849 1.1 cgd * that has already had overflow pages allocated off it, and we
850 1.1 cgd * failed to read it from the file.
851 1.1 cgd */
852 1.1 cgd if (!freep)
853 1.1 cgd assert(0);
854 1.1 cgd #endif
855 1.1 cgd CLRBIT(freep, free_bit);
856 1.1 cgd #ifdef DEBUG2
857 1.1 cgd (void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
858 1.1 cgd obufp->addr, free_bit, free_page);
859 1.1 cgd #endif
860 1.1 cgd __reclaim_buf(hashp, obufp);
861 1.1 cgd }
862 1.1 cgd
863 1.1 cgd /*
864 1.1 cgd * Returns:
865 1.1 cgd * 0 success
866 1.1 cgd * -1 failure
867 1.1 cgd */
868 1.1 cgd static int
869 1.1 cgd open_temp(hashp)
870 1.1 cgd HTAB *hashp;
871 1.1 cgd {
872 1.1 cgd sigset_t set, oset;
873 1.11 mycroft char namestr[] = "_hashXXXXXX";
874 1.1 cgd
875 1.1 cgd /* Block signals; make sure file goes away at process exit. */
876 1.1 cgd (void)sigfillset(&set);
877 1.1 cgd (void)sigprocmask(SIG_BLOCK, &set, &oset);
878 1.1 cgd if ((hashp->fp = mkstemp(namestr)) != -1) {
879 1.1 cgd (void)unlink(namestr);
880 1.1 cgd (void)fcntl(hashp->fp, F_SETFD, 1);
881 1.1 cgd }
882 1.1 cgd (void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
883 1.1 cgd return (hashp->fp != -1 ? 0 : -1);
884 1.1 cgd }
885 1.1 cgd
886 1.1 cgd /*
887 1.1 cgd * We have to know that the key will fit, but the last entry on the page is
888 1.1 cgd * an overflow pair, so we need to shift things.
889 1.1 cgd */
890 1.1 cgd static void
891 1.1 cgd squeeze_key(sp, key, val)
892 1.6 cgd u_int16_t *sp;
893 1.1 cgd const DBT *key, *val;
894 1.1 cgd {
895 1.1 cgd register char *p;
896 1.6 cgd u_int16_t free_space, n, off, pageno;
897 1.1 cgd
898 1.13 christos p = (char *)(void *)sp;
899 1.1 cgd n = sp[0];
900 1.1 cgd free_space = FREESPACE(sp);
901 1.1 cgd off = OFFSET(sp);
902 1.1 cgd
903 1.1 cgd pageno = sp[n - 1];
904 1.1 cgd off -= key->size;
905 1.1 cgd sp[n - 1] = off;
906 1.1 cgd memmove(p + off, key->data, key->size);
907 1.1 cgd off -= val->size;
908 1.1 cgd sp[n] = off;
909 1.1 cgd memmove(p + off, val->data, val->size);
910 1.1 cgd sp[0] = n + 2;
911 1.1 cgd sp[n + 1] = pageno;
912 1.1 cgd sp[n + 2] = OVFLPAGE;
913 1.1 cgd FREESPACE(sp) = free_space - PAIRSIZE(key, val);
914 1.1 cgd OFFSET(sp) = off;
915 1.1 cgd }
916 1.1 cgd
917 1.6 cgd static u_int32_t *
918 1.1 cgd fetch_bitmap(hashp, ndx)
919 1.1 cgd HTAB *hashp;
920 1.1 cgd int ndx;
921 1.1 cgd {
922 1.6 cgd if (ndx >= hashp->nmaps)
923 1.1 cgd return (NULL);
924 1.13 christos if ((hashp->mapp[ndx] = (u_int32_t *)malloc((size_t)hashp->BSIZE)) == NULL)
925 1.6 cgd return (NULL);
926 1.6 cgd if (__get_page(hashp,
927 1.13 christos (char *)(void *)hashp->mapp[ndx], (u_int32_t)hashp->BITMAPS[ndx], 0, 1, 1)) {
928 1.6 cgd free(hashp->mapp[ndx]);
929 1.6 cgd return (NULL);
930 1.6 cgd }
931 1.1 cgd return (hashp->mapp[ndx]);
932 1.1 cgd }
933 1.1 cgd
934 1.1 cgd #ifdef DEBUG4
935 1.1 cgd int
936 1.1 cgd print_chain(addr)
937 1.1 cgd int addr;
938 1.1 cgd {
939 1.1 cgd BUFHEAD *bufp;
940 1.1 cgd short *bp, oaddr;
941 1.1 cgd
942 1.1 cgd (void)fprintf(stderr, "%d ", addr);
943 1.1 cgd bufp = __get_buf(hashp, addr, NULL, 0);
944 1.1 cgd bp = (short *)bufp->page;
945 1.1 cgd while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
946 1.1 cgd ((bp[0] > 2) && bp[2] < REAL_KEY))) {
947 1.1 cgd oaddr = bp[bp[0] - 1];
948 1.1 cgd (void)fprintf(stderr, "%d ", (int)oaddr);
949 1.1 cgd bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
950 1.1 cgd bp = (short *)bufp->page;
951 1.1 cgd }
952 1.1 cgd (void)fprintf(stderr, "\n");
953 1.1 cgd }
954 1.1 cgd #endif
955