Home | History | Annotate | Line # | Download | only in hash
hash_page.c revision 1.13
      1  1.13  christos /*	$NetBSD: hash_page.c,v 1.13 1998/12/09 12:42:50 christos Exp $	*/
      2   1.7       cgd 
      3   1.1       cgd /*-
      4   1.6       cgd  * Copyright (c) 1990, 1993, 1994
      5   1.1       cgd  *	The Regents of the University of California.  All rights reserved.
      6   1.1       cgd  *
      7   1.1       cgd  * This code is derived from software contributed to Berkeley by
      8   1.1       cgd  * Margo Seltzer.
      9   1.1       cgd  *
     10   1.1       cgd  * Redistribution and use in source and binary forms, with or without
     11   1.1       cgd  * modification, are permitted provided that the following conditions
     12   1.1       cgd  * are met:
     13   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     14   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     15   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     17   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     18   1.1       cgd  * 3. All advertising materials mentioning features or use of this software
     19   1.1       cgd  *    must display the following acknowledgement:
     20   1.1       cgd  *	This product includes software developed by the University of
     21   1.1       cgd  *	California, Berkeley and its contributors.
     22   1.1       cgd  * 4. Neither the name of the University nor the names of its contributors
     23   1.1       cgd  *    may be used to endorse or promote products derived from this software
     24   1.1       cgd  *    without specific prior written permission.
     25   1.1       cgd  *
     26   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36   1.1       cgd  * SUCH DAMAGE.
     37   1.1       cgd  */
     38   1.1       cgd 
     39   1.9  christos #include <sys/cdefs.h>
     40   1.1       cgd #if defined(LIBC_SCCS) && !defined(lint)
     41   1.7       cgd #if 0
     42   1.8       cgd static char sccsid[] = "@(#)hash_page.c	8.7 (Berkeley) 8/16/94";
     43   1.7       cgd #else
     44  1.13  christos __RCSID("$NetBSD: hash_page.c,v 1.13 1998/12/09 12:42:50 christos Exp $");
     45   1.7       cgd #endif
     46   1.1       cgd #endif /* LIBC_SCCS and not lint */
     47   1.1       cgd 
     48   1.1       cgd /*
     49   1.1       cgd  * PACKAGE:  hashing
     50   1.1       cgd  *
     51   1.1       cgd  * DESCRIPTION:
     52   1.1       cgd  *	Page manipulation for hashing package.
     53   1.1       cgd  *
     54   1.1       cgd  * ROUTINES:
     55   1.1       cgd  *
     56   1.1       cgd  * External
     57   1.1       cgd  *	__get_page
     58   1.1       cgd  *	__add_ovflpage
     59   1.1       cgd  * Internal
     60   1.1       cgd  *	overflow_page
     61   1.1       cgd  *	open_temp
     62   1.1       cgd  */
     63  1.12    kleink 
     64  1.12    kleink #include "namespace.h"
     65   1.1       cgd 
     66   1.1       cgd #include <sys/types.h>
     67   1.1       cgd 
     68   1.1       cgd #include <errno.h>
     69   1.1       cgd #include <fcntl.h>
     70   1.1       cgd #include <signal.h>
     71   1.1       cgd #include <stdio.h>
     72   1.1       cgd #include <stdlib.h>
     73   1.1       cgd #include <string.h>
     74   1.1       cgd #include <unistd.h>
     75   1.1       cgd #ifdef DEBUG
     76   1.1       cgd #include <assert.h>
     77   1.1       cgd #endif
     78   1.1       cgd 
     79   1.1       cgd #include <db.h>
     80   1.1       cgd #include "hash.h"
     81   1.1       cgd #include "page.h"
     82   1.1       cgd #include "extern.h"
     83   1.1       cgd 
     84   1.6       cgd static u_int32_t	*fetch_bitmap __P((HTAB *, int));
     85   1.6       cgd static u_int32_t	 first_free __P((u_int32_t));
     86   1.1       cgd static int	 open_temp __P((HTAB *));
     87   1.6       cgd static u_int16_t	 overflow_page __P((HTAB *));
     88   1.1       cgd static void	 putpair __P((char *, const DBT *, const DBT *));
     89   1.6       cgd static void	 squeeze_key __P((u_int16_t *, const DBT *, const DBT *));
     90   1.1       cgd static int	 ugly_split
     91   1.6       cgd 		    __P((HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int));
     92   1.1       cgd 
     93   1.1       cgd #define	PAGE_INIT(P) { \
     94  1.13  christos 	((u_int16_t *)(void *)(P))[0] = 0; \
     95  1.13  christos 	((u_int16_t *)(void *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
     96  1.13  christos 	((u_int16_t *)(void *)(P))[2] = hashp->BSIZE; \
     97   1.1       cgd }
     98   1.1       cgd 
     99   1.1       cgd /*
    100   1.1       cgd  * This is called AFTER we have verified that there is room on the page for
    101   1.1       cgd  * the pair (PAIRFITS has returned true) so we go right ahead and start moving
    102   1.1       cgd  * stuff on.
    103   1.1       cgd  */
    104   1.1       cgd static void
    105   1.1       cgd putpair(p, key, val)
    106   1.1       cgd 	char *p;
    107   1.1       cgd 	const DBT *key, *val;
    108   1.1       cgd {
    109   1.6       cgd 	register u_int16_t *bp, n, off;
    110   1.1       cgd 
    111  1.13  christos 	bp = (u_int16_t *)(void *)p;
    112   1.1       cgd 
    113   1.1       cgd 	/* Enter the key first. */
    114   1.1       cgd 	n = bp[0];
    115   1.1       cgd 
    116   1.1       cgd 	off = OFFSET(bp) - key->size;
    117   1.1       cgd 	memmove(p + off, key->data, key->size);
    118   1.1       cgd 	bp[++n] = off;
    119   1.1       cgd 
    120   1.1       cgd 	/* Now the data. */
    121   1.1       cgd 	off -= val->size;
    122   1.1       cgd 	memmove(p + off, val->data, val->size);
    123   1.1       cgd 	bp[++n] = off;
    124   1.1       cgd 
    125   1.1       cgd 	/* Adjust page info. */
    126   1.1       cgd 	bp[0] = n;
    127   1.6       cgd 	bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
    128   1.1       cgd 	bp[n + 2] = off;
    129   1.1       cgd }
    130   1.1       cgd 
    131   1.1       cgd /*
    132   1.1       cgd  * Returns:
    133   1.1       cgd  *	 0 OK
    134   1.1       cgd  *	-1 error
    135   1.1       cgd  */
    136   1.1       cgd extern int
    137   1.1       cgd __delpair(hashp, bufp, ndx)
    138   1.1       cgd 	HTAB *hashp;
    139   1.1       cgd 	BUFHEAD *bufp;
    140   1.1       cgd 	register int ndx;
    141   1.1       cgd {
    142   1.6       cgd 	register u_int16_t *bp, newoff;
    143   1.1       cgd 	register int n;
    144   1.6       cgd 	u_int16_t pairlen;
    145   1.1       cgd 
    146  1.13  christos 	bp = (u_int16_t *)(void *)bufp->page;
    147   1.1       cgd 	n = bp[0];
    148   1.1       cgd 
    149   1.1       cgd 	if (bp[ndx + 1] < REAL_KEY)
    150   1.1       cgd 		return (__big_delete(hashp, bufp));
    151   1.1       cgd 	if (ndx != 1)
    152   1.1       cgd 		newoff = bp[ndx - 1];
    153   1.1       cgd 	else
    154   1.1       cgd 		newoff = hashp->BSIZE;
    155   1.1       cgd 	pairlen = newoff - bp[ndx + 1];
    156   1.1       cgd 
    157   1.1       cgd 	if (ndx != (n - 1)) {
    158   1.1       cgd 		/* Hard Case -- need to shuffle keys */
    159   1.1       cgd 		register int i;
    160   1.1       cgd 		register char *src = bufp->page + (int)OFFSET(bp);
    161   1.1       cgd 		register char *dst = src + (int)pairlen;
    162  1.13  christos 		memmove(dst, src, (size_t)(bp[ndx + 1] - OFFSET(bp)));
    163   1.1       cgd 
    164   1.1       cgd 		/* Now adjust the pointers */
    165   1.1       cgd 		for (i = ndx + 2; i <= n; i += 2) {
    166   1.1       cgd 			if (bp[i + 1] == OVFLPAGE) {
    167   1.1       cgd 				bp[i - 2] = bp[i];
    168   1.1       cgd 				bp[i - 1] = bp[i + 1];
    169   1.1       cgd 			} else {
    170   1.1       cgd 				bp[i - 2] = bp[i] + pairlen;
    171   1.1       cgd 				bp[i - 1] = bp[i + 1] + pairlen;
    172   1.1       cgd 			}
    173   1.1       cgd 		}
    174   1.1       cgd 	}
    175   1.1       cgd 	/* Finally adjust the page data */
    176   1.1       cgd 	bp[n] = OFFSET(bp) + pairlen;
    177   1.6       cgd 	bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
    178   1.1       cgd 	bp[0] = n - 2;
    179   1.1       cgd 	hashp->NKEYS--;
    180   1.1       cgd 
    181   1.1       cgd 	bufp->flags |= BUF_MOD;
    182   1.1       cgd 	return (0);
    183   1.1       cgd }
    184   1.1       cgd /*
    185   1.1       cgd  * Returns:
    186   1.1       cgd  *	 0 ==> OK
    187   1.1       cgd  *	-1 ==> Error
    188   1.1       cgd  */
    189   1.1       cgd extern int
    190   1.1       cgd __split_page(hashp, obucket, nbucket)
    191   1.1       cgd 	HTAB *hashp;
    192   1.6       cgd 	u_int32_t obucket, nbucket;
    193   1.1       cgd {
    194   1.1       cgd 	register BUFHEAD *new_bufp, *old_bufp;
    195   1.6       cgd 	register u_int16_t *ino;
    196   1.1       cgd 	register char *np;
    197   1.1       cgd 	DBT key, val;
    198   1.1       cgd 	int n, ndx, retval;
    199   1.6       cgd 	u_int16_t copyto, diff, off, moved;
    200   1.1       cgd 	char *op;
    201   1.1       cgd 
    202   1.6       cgd 	copyto = (u_int16_t)hashp->BSIZE;
    203   1.6       cgd 	off = (u_int16_t)hashp->BSIZE;
    204   1.1       cgd 	old_bufp = __get_buf(hashp, obucket, NULL, 0);
    205   1.1       cgd 	if (old_bufp == NULL)
    206   1.1       cgd 		return (-1);
    207   1.1       cgd 	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
    208   1.1       cgd 	if (new_bufp == NULL)
    209   1.1       cgd 		return (-1);
    210   1.1       cgd 
    211   1.1       cgd 	old_bufp->flags |= (BUF_MOD | BUF_PIN);
    212   1.1       cgd 	new_bufp->flags |= (BUF_MOD | BUF_PIN);
    213   1.1       cgd 
    214  1.13  christos 	ino = (u_int16_t *)(void *)(op = old_bufp->page);
    215   1.1       cgd 	np = new_bufp->page;
    216   1.1       cgd 
    217   1.1       cgd 	moved = 0;
    218   1.1       cgd 
    219   1.1       cgd 	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
    220   1.1       cgd 		if (ino[n + 1] < REAL_KEY) {
    221   1.1       cgd 			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
    222   1.1       cgd 			    (int)copyto, (int)moved);
    223   1.1       cgd 			old_bufp->flags &= ~BUF_PIN;
    224   1.1       cgd 			new_bufp->flags &= ~BUF_PIN;
    225   1.1       cgd 			return (retval);
    226   1.1       cgd 
    227   1.1       cgd 		}
    228   1.1       cgd 		key.data = (u_char *)op + ino[n];
    229   1.1       cgd 		key.size = off - ino[n];
    230   1.1       cgd 
    231  1.13  christos 		if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
    232   1.1       cgd 			/* Don't switch page */
    233   1.1       cgd 			diff = copyto - off;
    234   1.1       cgd 			if (diff) {
    235   1.1       cgd 				copyto = ino[n + 1] + diff;
    236   1.1       cgd 				memmove(op + copyto, op + ino[n + 1],
    237  1.13  christos 				    (size_t)(off - ino[n + 1]));
    238   1.1       cgd 				ino[ndx] = copyto + ino[n] - ino[n + 1];
    239   1.1       cgd 				ino[ndx + 1] = copyto;
    240   1.1       cgd 			} else
    241   1.1       cgd 				copyto = ino[n + 1];
    242   1.1       cgd 			ndx += 2;
    243   1.1       cgd 		} else {
    244   1.1       cgd 			/* Switch page */
    245   1.1       cgd 			val.data = (u_char *)op + ino[n + 1];
    246   1.1       cgd 			val.size = ino[n] - ino[n + 1];
    247   1.1       cgd 			putpair(np, &key, &val);
    248   1.1       cgd 			moved += 2;
    249   1.1       cgd 		}
    250   1.1       cgd 
    251   1.1       cgd 		off = ino[n + 1];
    252   1.1       cgd 	}
    253   1.1       cgd 
    254   1.1       cgd 	/* Now clean up the page */
    255   1.1       cgd 	ino[0] -= moved;
    256   1.6       cgd 	FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
    257   1.1       cgd 	OFFSET(ino) = copyto;
    258   1.1       cgd 
    259   1.1       cgd #ifdef DEBUG3
    260   1.1       cgd 	(void)fprintf(stderr, "split %d/%d\n",
    261   1.6       cgd 	    ((u_int16_t *)np)[0] / 2,
    262   1.6       cgd 	    ((u_int16_t *)op)[0] / 2);
    263   1.1       cgd #endif
    264   1.1       cgd 	/* unpin both pages */
    265   1.1       cgd 	old_bufp->flags &= ~BUF_PIN;
    266   1.1       cgd 	new_bufp->flags &= ~BUF_PIN;
    267   1.1       cgd 	return (0);
    268   1.1       cgd }
    269   1.1       cgd 
    270   1.1       cgd /*
    271   1.1       cgd  * Called when we encounter an overflow or big key/data page during split
    272   1.1       cgd  * handling.  This is special cased since we have to begin checking whether
    273   1.1       cgd  * the key/data pairs fit on their respective pages and because we may need
    274   1.1       cgd  * overflow pages for both the old and new pages.
    275   1.1       cgd  *
    276   1.1       cgd  * The first page might be a page with regular key/data pairs in which case
    277   1.1       cgd  * we have a regular overflow condition and just need to go on to the next
    278   1.1       cgd  * page or it might be a big key/data pair in which case we need to fix the
    279   1.1       cgd  * big key/data pair.
    280   1.1       cgd  *
    281   1.1       cgd  * Returns:
    282   1.1       cgd  *	 0 ==> success
    283   1.1       cgd  *	-1 ==> failure
    284   1.1       cgd  */
    285   1.1       cgd static int
    286   1.1       cgd ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
    287   1.1       cgd 	HTAB *hashp;
    288   1.6       cgd 	u_int32_t obucket;	/* Same as __split_page. */
    289   1.1       cgd 	BUFHEAD *old_bufp, *new_bufp;
    290   1.1       cgd 	int copyto;	/* First byte on page which contains key/data values. */
    291   1.1       cgd 	int moved;	/* Number of pairs moved to new page. */
    292   1.1       cgd {
    293   1.1       cgd 	register BUFHEAD *bufp;	/* Buffer header for ino */
    294   1.6       cgd 	register u_int16_t *ino;	/* Page keys come off of */
    295   1.6       cgd 	register u_int16_t *np;	/* New page */
    296   1.6       cgd 	register u_int16_t *op;	/* Page keys go on to if they aren't moving */
    297   1.1       cgd 
    298   1.1       cgd 	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
    299   1.1       cgd 	DBT key, val;
    300   1.1       cgd 	SPLIT_RETURN ret;
    301   1.6       cgd 	u_int16_t n, off, ov_addr, scopyto;
    302   1.1       cgd 	char *cino;		/* Character value of ino */
    303   1.1       cgd 
    304   1.1       cgd 	bufp = old_bufp;
    305  1.13  christos 	ino = (u_int16_t *)(void *)old_bufp->page;
    306  1.13  christos 	np = (u_int16_t *)(void *)new_bufp->page;
    307  1.13  christos 	op = (u_int16_t *)(void *)old_bufp->page;
    308   1.1       cgd 	last_bfp = NULL;
    309   1.6       cgd 	scopyto = (u_int16_t)copyto;	/* ANSI */
    310   1.1       cgd 
    311   1.1       cgd 	n = ino[0] - 1;
    312   1.1       cgd 	while (n < ino[0]) {
    313   1.1       cgd 		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
    314   1.1       cgd 			if (__big_split(hashp, old_bufp,
    315  1.13  christos 			    new_bufp, bufp, (int)bufp->addr, obucket, &ret))
    316   1.1       cgd 				return (-1);
    317   1.1       cgd 			old_bufp = ret.oldp;
    318   1.1       cgd 			if (!old_bufp)
    319   1.1       cgd 				return (-1);
    320  1.13  christos 			op = (u_int16_t *)(void *)old_bufp->page;
    321   1.1       cgd 			new_bufp = ret.newp;
    322   1.1       cgd 			if (!new_bufp)
    323   1.1       cgd 				return (-1);
    324  1.13  christos 			np = (u_int16_t *)(void *)new_bufp->page;
    325   1.1       cgd 			bufp = ret.nextp;
    326   1.1       cgd 			if (!bufp)
    327   1.1       cgd 				return (0);
    328   1.1       cgd 			cino = (char *)bufp->page;
    329  1.13  christos 			ino = (u_int16_t *)(void *)cino;
    330   1.1       cgd 			last_bfp = ret.nextp;
    331   1.1       cgd 		} else if (ino[n + 1] == OVFLPAGE) {
    332   1.1       cgd 			ov_addr = ino[n];
    333   1.1       cgd 			/*
    334   1.1       cgd 			 * Fix up the old page -- the extra 2 are the fields
    335   1.1       cgd 			 * which contained the overflow information.
    336   1.1       cgd 			 */
    337   1.1       cgd 			ino[0] -= (moved + 2);
    338   1.1       cgd 			FREESPACE(ino) =
    339   1.6       cgd 			    scopyto - sizeof(u_int16_t) * (ino[0] + 3);
    340   1.1       cgd 			OFFSET(ino) = scopyto;
    341   1.1       cgd 
    342  1.13  christos 			bufp = __get_buf(hashp, (u_int32_t)ov_addr, bufp, 0);
    343   1.1       cgd 			if (!bufp)
    344   1.1       cgd 				return (-1);
    345   1.1       cgd 
    346  1.13  christos 			ino = (u_int16_t *)(void *)bufp->page;
    347   1.1       cgd 			n = 1;
    348   1.1       cgd 			scopyto = hashp->BSIZE;
    349   1.1       cgd 			moved = 0;
    350   1.1       cgd 
    351   1.1       cgd 			if (last_bfp)
    352   1.1       cgd 				__free_ovflpage(hashp, last_bfp);
    353   1.1       cgd 			last_bfp = bufp;
    354   1.1       cgd 		}
    355   1.1       cgd 		/* Move regular sized pairs of there are any */
    356   1.1       cgd 		off = hashp->BSIZE;
    357   1.1       cgd 		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
    358  1.13  christos 			cino = (char *)(void *)ino;
    359   1.1       cgd 			key.data = (u_char *)cino + ino[n];
    360   1.1       cgd 			key.size = off - ino[n];
    361   1.1       cgd 			val.data = (u_char *)cino + ino[n + 1];
    362   1.1       cgd 			val.size = ino[n] - ino[n + 1];
    363   1.1       cgd 			off = ino[n + 1];
    364   1.1       cgd 
    365  1.13  christos 			if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
    366   1.1       cgd 				/* Keep on old page */
    367   1.1       cgd 				if (PAIRFITS(op, (&key), (&val)))
    368  1.13  christos 					putpair((char *)(void *)op, &key, &val);
    369   1.1       cgd 				else {
    370   1.1       cgd 					old_bufp =
    371   1.1       cgd 					    __add_ovflpage(hashp, old_bufp);
    372   1.1       cgd 					if (!old_bufp)
    373   1.1       cgd 						return (-1);
    374  1.13  christos 					op = (u_int16_t *)(void *)old_bufp->page;
    375  1.13  christos 					putpair((char *)(void *)op, &key, &val);
    376   1.1       cgd 				}
    377   1.1       cgd 				old_bufp->flags |= BUF_MOD;
    378   1.1       cgd 			} else {
    379   1.1       cgd 				/* Move to new page */
    380   1.1       cgd 				if (PAIRFITS(np, (&key), (&val)))
    381  1.13  christos 					putpair((char *)(void *)np, &key, &val);
    382   1.1       cgd 				else {
    383   1.1       cgd 					new_bufp =
    384   1.1       cgd 					    __add_ovflpage(hashp, new_bufp);
    385   1.1       cgd 					if (!new_bufp)
    386   1.1       cgd 						return (-1);
    387  1.13  christos 					np = (u_int16_t *)(void *)new_bufp->page;
    388  1.13  christos 					putpair((char *)(void *)np, &key, &val);
    389   1.1       cgd 				}
    390   1.1       cgd 				new_bufp->flags |= BUF_MOD;
    391   1.1       cgd 			}
    392   1.1       cgd 		}
    393   1.1       cgd 	}
    394   1.1       cgd 	if (last_bfp)
    395   1.1       cgd 		__free_ovflpage(hashp, last_bfp);
    396   1.1       cgd 	return (0);
    397   1.1       cgd }
    398   1.1       cgd 
    399   1.1       cgd /*
    400   1.1       cgd  * Add the given pair to the page
    401   1.1       cgd  *
    402   1.1       cgd  * Returns:
    403   1.1       cgd  *	0 ==> OK
    404   1.1       cgd  *	1 ==> failure
    405   1.1       cgd  */
    406   1.1       cgd extern int
    407   1.1       cgd __addel(hashp, bufp, key, val)
    408   1.1       cgd 	HTAB *hashp;
    409   1.1       cgd 	BUFHEAD *bufp;
    410   1.1       cgd 	const DBT *key, *val;
    411   1.1       cgd {
    412   1.6       cgd 	register u_int16_t *bp, *sop;
    413   1.1       cgd 	int do_expand;
    414   1.1       cgd 
    415  1.13  christos 	bp = (u_int16_t *)(void *)bufp->page;
    416   1.1       cgd 	do_expand = 0;
    417   1.4       cgd 	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
    418   1.1       cgd 		/* Exception case */
    419   1.4       cgd 		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
    420   1.4       cgd 			/* This is the last page of a big key/data pair
    421   1.4       cgd 			   and we need to add another page */
    422   1.4       cgd 			break;
    423   1.4       cgd 		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
    424  1.13  christos 			bufp = __get_buf(hashp, (u_int32_t)bp[bp[0] - 1], bufp,
    425  1.13  christos 			    0);
    426   1.1       cgd 			if (!bufp)
    427   1.1       cgd 				return (-1);
    428  1.13  christos 			bp = (u_int16_t *)(void *)bufp->page;
    429   1.1       cgd 		} else
    430   1.1       cgd 			/* Try to squeeze key on this page */
    431   1.1       cgd 			if (FREESPACE(bp) > PAIRSIZE(key, val)) {
    432   1.1       cgd 				squeeze_key(bp, key, val);
    433   1.1       cgd 				return (0);
    434   1.1       cgd 			} else {
    435  1.13  christos 				bufp = __get_buf(hashp,
    436  1.13  christos 				    (u_int32_t)bp[bp[0] - 1], bufp, 0);
    437   1.1       cgd 				if (!bufp)
    438   1.1       cgd 					return (-1);
    439  1.13  christos 				bp = (u_int16_t *)(void *)bufp->page;
    440   1.1       cgd 			}
    441   1.1       cgd 
    442   1.1       cgd 	if (PAIRFITS(bp, key, val))
    443   1.1       cgd 		putpair(bufp->page, key, val);
    444   1.1       cgd 	else {
    445   1.1       cgd 		do_expand = 1;
    446   1.1       cgd 		bufp = __add_ovflpage(hashp, bufp);
    447   1.1       cgd 		if (!bufp)
    448   1.1       cgd 			return (-1);
    449  1.13  christos 		sop = (u_int16_t *)(void *)bufp->page;
    450   1.1       cgd 
    451   1.1       cgd 		if (PAIRFITS(sop, key, val))
    452  1.13  christos 			putpair((char *)(void *)sop, key, val);
    453   1.1       cgd 		else
    454   1.1       cgd 			if (__big_insert(hashp, bufp, key, val))
    455   1.1       cgd 				return (-1);
    456   1.1       cgd 	}
    457   1.1       cgd 	bufp->flags |= BUF_MOD;
    458   1.1       cgd 	/*
    459   1.1       cgd 	 * If the average number of keys per bucket exceeds the fill factor,
    460   1.1       cgd 	 * expand the table.
    461   1.1       cgd 	 */
    462   1.1       cgd 	hashp->NKEYS++;
    463   1.1       cgd 	if (do_expand ||
    464   1.1       cgd 	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
    465   1.1       cgd 		return (__expand_table(hashp));
    466   1.1       cgd 	return (0);
    467   1.1       cgd }
    468   1.1       cgd 
    469   1.1       cgd /*
    470   1.1       cgd  *
    471   1.1       cgd  * Returns:
    472   1.1       cgd  *	pointer on success
    473   1.1       cgd  *	NULL on error
    474   1.1       cgd  */
    475   1.1       cgd extern BUFHEAD *
    476   1.1       cgd __add_ovflpage(hashp, bufp)
    477   1.1       cgd 	HTAB *hashp;
    478   1.1       cgd 	BUFHEAD *bufp;
    479   1.1       cgd {
    480   1.6       cgd 	register u_int16_t *sp;
    481   1.6       cgd 	u_int16_t ndx, ovfl_num;
    482   1.1       cgd #ifdef DEBUG1
    483   1.1       cgd 	int tmp1, tmp2;
    484   1.1       cgd #endif
    485  1.13  christos 	sp = (u_int16_t *)(void *)bufp->page;
    486   1.1       cgd 
    487   1.1       cgd 	/* Check if we are dynamically determining the fill factor */
    488   1.1       cgd 	if (hashp->FFACTOR == DEF_FFACTOR) {
    489  1.13  christos 		hashp->FFACTOR = (u_int32_t)sp[0] >> 1;
    490   1.1       cgd 		if (hashp->FFACTOR < MIN_FFACTOR)
    491   1.1       cgd 			hashp->FFACTOR = MIN_FFACTOR;
    492   1.1       cgd 	}
    493   1.1       cgd 	bufp->flags |= BUF_MOD;
    494   1.1       cgd 	ovfl_num = overflow_page(hashp);
    495   1.1       cgd #ifdef DEBUG1
    496   1.1       cgd 	tmp1 = bufp->addr;
    497   1.1       cgd 	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
    498   1.1       cgd #endif
    499  1.13  christos 	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, (u_int32_t)ovfl_num,
    500  1.13  christos 	    bufp, 1)))
    501   1.1       cgd 		return (NULL);
    502   1.1       cgd 	bufp->ovfl->flags |= BUF_MOD;
    503   1.1       cgd #ifdef DEBUG1
    504   1.1       cgd 	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
    505   1.1       cgd 	    tmp1, tmp2, bufp->ovfl->addr);
    506   1.1       cgd #endif
    507   1.1       cgd 	ndx = sp[0];
    508   1.1       cgd 	/*
    509   1.1       cgd 	 * Since a pair is allocated on a page only if there's room to add
    510   1.1       cgd 	 * an overflow page, we know that the OVFL information will fit on
    511   1.1       cgd 	 * the page.
    512   1.1       cgd 	 */
    513   1.1       cgd 	sp[ndx + 4] = OFFSET(sp);
    514   1.1       cgd 	sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
    515   1.1       cgd 	sp[ndx + 1] = ovfl_num;
    516   1.1       cgd 	sp[ndx + 2] = OVFLPAGE;
    517   1.1       cgd 	sp[0] = ndx + 2;
    518   1.1       cgd #ifdef HASH_STATISTICS
    519   1.1       cgd 	hash_overflows++;
    520   1.1       cgd #endif
    521   1.1       cgd 	return (bufp->ovfl);
    522   1.1       cgd }
    523   1.1       cgd 
    524   1.1       cgd /*
    525   1.1       cgd  * Returns:
    526   1.1       cgd  *	 0 indicates SUCCESS
    527   1.1       cgd  *	-1 indicates FAILURE
    528   1.1       cgd  */
    529   1.1       cgd extern int
    530   1.1       cgd __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
    531   1.1       cgd 	HTAB *hashp;
    532   1.1       cgd 	char *p;
    533   1.6       cgd 	u_int32_t bucket;
    534   1.1       cgd 	int is_bucket, is_disk, is_bitmap;
    535   1.1       cgd {
    536   1.1       cgd 	register int fd, page, size;
    537   1.1       cgd 	int rsize;
    538   1.6       cgd 	u_int16_t *bp;
    539   1.1       cgd 
    540   1.1       cgd 	fd = hashp->fp;
    541   1.1       cgd 	size = hashp->BSIZE;
    542   1.1       cgd 
    543   1.1       cgd 	if ((fd == -1) || !is_disk) {
    544   1.1       cgd 		PAGE_INIT(p);
    545   1.1       cgd 		return (0);
    546   1.1       cgd 	}
    547   1.1       cgd 	if (is_bucket)
    548   1.1       cgd 		page = BUCKET_TO_PAGE(bucket);
    549   1.1       cgd 	else
    550   1.1       cgd 		page = OADDR_TO_PAGE(bucket);
    551  1.13  christos 	if ((rsize = pread(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
    552   1.1       cgd 		return (-1);
    553  1.13  christos 	bp = (u_int16_t *)(void *)p;
    554   1.1       cgd 	if (!rsize)
    555   1.1       cgd 		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
    556   1.1       cgd 	else
    557   1.1       cgd 		if (rsize != size) {
    558   1.1       cgd 			errno = EFTYPE;
    559   1.1       cgd 			return (-1);
    560   1.1       cgd 		}
    561   1.1       cgd 	if (!is_bitmap && !bp[0]) {
    562   1.1       cgd 		PAGE_INIT(p);
    563   1.1       cgd 	} else
    564   1.1       cgd 		if (hashp->LORDER != BYTE_ORDER) {
    565   1.1       cgd 			register int i, max;
    566   1.1       cgd 
    567   1.1       cgd 			if (is_bitmap) {
    568  1.13  christos 				max = (u_int32_t)hashp->BSIZE >> 2; /* divide by 4 */
    569   1.1       cgd 				for (i = 0; i < max; i++)
    570  1.13  christos 					M_32_SWAP(((int *)(void *)p)[i]);
    571   1.1       cgd 			} else {
    572   1.6       cgd 				M_16_SWAP(bp[0]);
    573   1.1       cgd 				max = bp[0] + 2;
    574   1.1       cgd 				for (i = 1; i <= max; i++)
    575   1.6       cgd 					M_16_SWAP(bp[i]);
    576   1.1       cgd 			}
    577   1.1       cgd 		}
    578   1.1       cgd 	return (0);
    579   1.1       cgd }
    580   1.1       cgd 
    581   1.1       cgd /*
    582   1.1       cgd  * Write page p to disk
    583   1.1       cgd  *
    584   1.1       cgd  * Returns:
    585   1.1       cgd  *	 0 ==> OK
    586   1.1       cgd  *	-1 ==>failure
    587   1.1       cgd  */
    588   1.1       cgd extern int
    589   1.1       cgd __put_page(hashp, p, bucket, is_bucket, is_bitmap)
    590   1.1       cgd 	HTAB *hashp;
    591   1.1       cgd 	char *p;
    592   1.6       cgd 	u_int32_t bucket;
    593   1.1       cgd 	int is_bucket, is_bitmap;
    594   1.1       cgd {
    595   1.1       cgd 	register int fd, page, size;
    596   1.1       cgd 	int wsize;
    597   1.1       cgd 
    598   1.1       cgd 	size = hashp->BSIZE;
    599   1.1       cgd 	if ((hashp->fp == -1) && open_temp(hashp))
    600   1.1       cgd 		return (-1);
    601   1.1       cgd 	fd = hashp->fp;
    602   1.1       cgd 
    603   1.1       cgd 	if (hashp->LORDER != BYTE_ORDER) {
    604   1.1       cgd 		register int i;
    605   1.1       cgd 		register int max;
    606   1.1       cgd 
    607   1.1       cgd 		if (is_bitmap) {
    608  1.13  christos 			max = (u_int32_t)hashp->BSIZE >> 2;	/* divide by 4 */
    609   1.1       cgd 			for (i = 0; i < max; i++)
    610  1.13  christos 				M_32_SWAP(((int *)(void *)p)[i]);
    611   1.1       cgd 		} else {
    612  1.13  christos 			max = ((u_int16_t *)(void *)p)[0] + 2;
    613   1.1       cgd 			for (i = 0; i <= max; i++)
    614  1.13  christos 				M_16_SWAP(((u_int16_t *)(void *)p)[i]);
    615   1.1       cgd 		}
    616   1.1       cgd 	}
    617   1.1       cgd 	if (is_bucket)
    618   1.1       cgd 		page = BUCKET_TO_PAGE(bucket);
    619   1.1       cgd 	else
    620   1.1       cgd 		page = OADDR_TO_PAGE(bucket);
    621  1.13  christos 	if ((wsize = pwrite(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
    622   1.1       cgd 		/* Errno is set */
    623   1.1       cgd 		return (-1);
    624   1.1       cgd 	if (wsize != size) {
    625   1.1       cgd 		errno = EFTYPE;
    626   1.1       cgd 		return (-1);
    627   1.1       cgd 	}
    628   1.1       cgd 	return (0);
    629   1.1       cgd }
    630   1.1       cgd 
    631   1.1       cgd #define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
    632   1.1       cgd /*
    633   1.1       cgd  * Initialize a new bitmap page.  Bitmap pages are left in memory
    634   1.1       cgd  * once they are read in.
    635   1.1       cgd  */
    636   1.1       cgd extern int
    637   1.6       cgd __ibitmap(hashp, pnum, nbits, ndx)
    638   1.1       cgd 	HTAB *hashp;
    639   1.1       cgd 	int pnum, nbits, ndx;
    640   1.1       cgd {
    641   1.6       cgd 	u_int32_t *ip;
    642   1.1       cgd 	int clearbytes, clearints;
    643   1.1       cgd 
    644  1.13  christos 	if ((ip = (u_int32_t *)malloc((size_t)hashp->BSIZE)) == NULL)
    645   1.1       cgd 		return (1);
    646   1.1       cgd 	hashp->nmaps++;
    647  1.13  christos 	clearints = ((u_int32_t)(nbits - 1) >> INT_BYTE_SHIFT) + 1;
    648   1.1       cgd 	clearbytes = clearints << INT_TO_BYTE;
    649  1.13  christos 	(void)memset(ip, 0, (size_t)clearbytes);
    650  1.13  christos 	(void)memset(((char *)(void *)ip) + clearbytes, 0xFF,
    651  1.13  christos 	    (size_t)(hashp->BSIZE - clearbytes));
    652   1.1       cgd 	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
    653   1.1       cgd 	SETBIT(ip, 0);
    654   1.6       cgd 	hashp->BITMAPS[ndx] = (u_int16_t)pnum;
    655   1.1       cgd 	hashp->mapp[ndx] = ip;
    656   1.1       cgd 	return (0);
    657   1.1       cgd }
    658   1.1       cgd 
    659   1.6       cgd static u_int32_t
    660   1.1       cgd first_free(map)
    661   1.6       cgd 	u_int32_t map;
    662   1.1       cgd {
    663   1.6       cgd 	register u_int32_t i, mask;
    664   1.1       cgd 
    665   1.1       cgd 	mask = 0x1;
    666   1.1       cgd 	for (i = 0; i < BITS_PER_MAP; i++) {
    667   1.1       cgd 		if (!(mask & map))
    668   1.1       cgd 			return (i);
    669   1.1       cgd 		mask = mask << 1;
    670   1.1       cgd 	}
    671   1.1       cgd 	return (i);
    672   1.1       cgd }
    673   1.1       cgd 
    674   1.6       cgd static u_int16_t
    675   1.1       cgd overflow_page(hashp)
    676   1.1       cgd 	HTAB *hashp;
    677   1.1       cgd {
    678   1.9  christos 	register u_int32_t *freep = NULL;
    679   1.1       cgd 	register int max_free, offset, splitnum;
    680   1.6       cgd 	u_int16_t addr;
    681   1.1       cgd 	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
    682   1.1       cgd #ifdef DEBUG2
    683   1.1       cgd 	int tmp1, tmp2;
    684   1.1       cgd #endif
    685   1.1       cgd 	splitnum = hashp->OVFL_POINT;
    686   1.1       cgd 	max_free = hashp->SPARES[splitnum];
    687   1.1       cgd 
    688  1.13  christos 	free_page = (u_int32_t)(max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
    689   1.1       cgd 	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
    690   1.1       cgd 
    691   1.1       cgd 	/* Look through all the free maps to find the first free block */
    692  1.13  christos 	first_page = (u_int32_t)hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
    693   1.1       cgd 	for ( i = first_page; i <= free_page; i++ ) {
    694   1.6       cgd 		if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
    695   1.1       cgd 		    !(freep = fetch_bitmap(hashp, i)))
    696   1.8       cgd 			return (0);
    697   1.1       cgd 		if (i == free_page)
    698   1.1       cgd 			in_use_bits = free_bit;
    699   1.1       cgd 		else
    700   1.1       cgd 			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
    701   1.1       cgd 
    702   1.1       cgd 		if (i == first_page) {
    703   1.1       cgd 			bit = hashp->LAST_FREED &
    704   1.1       cgd 			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
    705   1.1       cgd 			j = bit / BITS_PER_MAP;
    706   1.1       cgd 			bit = bit & ~(BITS_PER_MAP - 1);
    707   1.1       cgd 		} else {
    708   1.1       cgd 			bit = 0;
    709   1.1       cgd 			j = 0;
    710   1.1       cgd 		}
    711   1.1       cgd 		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
    712   1.1       cgd 			if (freep[j] != ALL_SET)
    713   1.1       cgd 				goto found;
    714   1.1       cgd 	}
    715   1.1       cgd 
    716   1.1       cgd 	/* No Free Page Found */
    717   1.1       cgd 	hashp->LAST_FREED = hashp->SPARES[splitnum];
    718   1.1       cgd 	hashp->SPARES[splitnum]++;
    719   1.1       cgd 	offset = hashp->SPARES[splitnum] -
    720   1.1       cgd 	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
    721   1.1       cgd 
    722   1.1       cgd #define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
    723   1.1       cgd 	if (offset > SPLITMASK) {
    724   1.1       cgd 		if (++splitnum >= NCACHED) {
    725   1.1       cgd 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
    726   1.8       cgd 			return (0);
    727   1.1       cgd 		}
    728   1.1       cgd 		hashp->OVFL_POINT = splitnum;
    729   1.1       cgd 		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
    730   1.1       cgd 		hashp->SPARES[splitnum-1]--;
    731   1.1       cgd 		offset = 1;
    732   1.1       cgd 	}
    733   1.1       cgd 
    734   1.1       cgd 	/* Check if we need to allocate a new bitmap page */
    735   1.1       cgd 	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
    736   1.1       cgd 		free_page++;
    737   1.1       cgd 		if (free_page >= NCACHED) {
    738   1.1       cgd 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
    739   1.8       cgd 			return (0);
    740   1.1       cgd 		}
    741   1.1       cgd 		/*
    742   1.1       cgd 		 * This is tricky.  The 1 indicates that you want the new page
    743   1.1       cgd 		 * allocated with 1 clear bit.  Actually, you are going to
    744   1.1       cgd 		 * allocate 2 pages from this map.  The first is going to be
    745   1.1       cgd 		 * the map page, the second is the overflow page we were
    746   1.1       cgd 		 * looking for.  The init_bitmap routine automatically, sets
    747   1.1       cgd 		 * the first bit of itself to indicate that the bitmap itself
    748   1.1       cgd 		 * is in use.  We would explicitly set the second bit, but
    749   1.1       cgd 		 * don't have to if we tell init_bitmap not to leave it clear
    750   1.1       cgd 		 * in the first place.
    751   1.1       cgd 		 */
    752   1.8       cgd 		if (__ibitmap(hashp,
    753   1.8       cgd 		    (int)OADDR_OF(splitnum, offset), 1, free_page))
    754   1.8       cgd 			return (0);
    755   1.1       cgd 		hashp->SPARES[splitnum]++;
    756   1.1       cgd #ifdef DEBUG2
    757   1.1       cgd 		free_bit = 2;
    758   1.1       cgd #endif
    759   1.1       cgd 		offset++;
    760   1.1       cgd 		if (offset > SPLITMASK) {
    761   1.1       cgd 			if (++splitnum >= NCACHED) {
    762   1.1       cgd 				(void)write(STDERR_FILENO, OVMSG,
    763   1.1       cgd 				    sizeof(OVMSG) - 1);
    764   1.8       cgd 				return (0);
    765   1.1       cgd 			}
    766   1.1       cgd 			hashp->OVFL_POINT = splitnum;
    767   1.1       cgd 			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
    768   1.1       cgd 			hashp->SPARES[splitnum-1]--;
    769   1.1       cgd 			offset = 0;
    770   1.1       cgd 		}
    771   1.1       cgd 	} else {
    772   1.1       cgd 		/*
    773   1.1       cgd 		 * Free_bit addresses the last used bit.  Bump it to address
    774   1.1       cgd 		 * the first available bit.
    775   1.1       cgd 		 */
    776   1.1       cgd 		free_bit++;
    777   1.1       cgd 		SETBIT(freep, free_bit);
    778   1.1       cgd 	}
    779   1.1       cgd 
    780   1.1       cgd 	/* Calculate address of the new overflow page */
    781   1.1       cgd 	addr = OADDR_OF(splitnum, offset);
    782   1.1       cgd #ifdef DEBUG2
    783   1.1       cgd 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
    784   1.1       cgd 	    addr, free_bit, free_page);
    785   1.1       cgd #endif
    786   1.1       cgd 	return (addr);
    787   1.1       cgd 
    788   1.1       cgd found:
    789   1.1       cgd 	bit = bit + first_free(freep[j]);
    790   1.1       cgd 	SETBIT(freep, bit);
    791   1.1       cgd #ifdef DEBUG2
    792   1.1       cgd 	tmp1 = bit;
    793   1.1       cgd 	tmp2 = i;
    794   1.1       cgd #endif
    795   1.1       cgd 	/*
    796   1.1       cgd 	 * Bits are addressed starting with 0, but overflow pages are addressed
    797   1.1       cgd 	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
    798   1.1       cgd 	 * it to convert it to a page number.
    799   1.1       cgd 	 */
    800   1.1       cgd 	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
    801   1.1       cgd 	if (bit >= hashp->LAST_FREED)
    802   1.1       cgd 		hashp->LAST_FREED = bit - 1;
    803   1.1       cgd 
    804   1.1       cgd 	/* Calculate the split number for this page */
    805   1.1       cgd 	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
    806   1.1       cgd 	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
    807   1.1       cgd 	if (offset >= SPLITMASK)
    808   1.8       cgd 		return (0);	/* Out of overflow pages */
    809   1.1       cgd 	addr = OADDR_OF(i, offset);
    810   1.1       cgd #ifdef DEBUG2
    811   1.1       cgd 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
    812   1.1       cgd 	    addr, tmp1, tmp2);
    813   1.1       cgd #endif
    814   1.1       cgd 
    815   1.1       cgd 	/* Allocate and return the overflow page */
    816   1.1       cgd 	return (addr);
    817   1.1       cgd }
    818   1.1       cgd 
    819   1.1       cgd /*
    820   1.1       cgd  * Mark this overflow page as free.
    821   1.1       cgd  */
    822   1.1       cgd extern void
    823   1.1       cgd __free_ovflpage(hashp, obufp)
    824   1.1       cgd 	HTAB *hashp;
    825   1.1       cgd 	BUFHEAD *obufp;
    826   1.1       cgd {
    827   1.6       cgd 	register u_int16_t addr;
    828   1.6       cgd 	u_int32_t *freep;
    829   1.1       cgd 	int bit_address, free_page, free_bit;
    830   1.6       cgd 	u_int16_t ndx;
    831   1.1       cgd 
    832   1.1       cgd 	addr = obufp->addr;
    833   1.1       cgd #ifdef DEBUG1
    834   1.1       cgd 	(void)fprintf(stderr, "Freeing %d\n", addr);
    835   1.1       cgd #endif
    836  1.13  christos 	ndx = (((u_int32_t)addr) >> SPLITSHIFT);
    837   1.1       cgd 	bit_address =
    838   1.1       cgd 	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
    839   1.1       cgd 	 if (bit_address < hashp->LAST_FREED)
    840   1.1       cgd 		hashp->LAST_FREED = bit_address;
    841  1.13  christos 	free_page = ((u_int32_t)bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
    842   1.1       cgd 	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
    843   1.1       cgd 
    844   1.1       cgd 	if (!(freep = hashp->mapp[free_page]))
    845   1.1       cgd 		freep = fetch_bitmap(hashp, free_page);
    846   1.1       cgd #ifdef DEBUG
    847   1.1       cgd 	/*
    848   1.1       cgd 	 * This had better never happen.  It means we tried to read a bitmap
    849   1.1       cgd 	 * that has already had overflow pages allocated off it, and we
    850   1.1       cgd 	 * failed to read it from the file.
    851   1.1       cgd 	 */
    852   1.1       cgd 	if (!freep)
    853   1.1       cgd 		assert(0);
    854   1.1       cgd #endif
    855   1.1       cgd 	CLRBIT(freep, free_bit);
    856   1.1       cgd #ifdef DEBUG2
    857   1.1       cgd 	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
    858   1.1       cgd 	    obufp->addr, free_bit, free_page);
    859   1.1       cgd #endif
    860   1.1       cgd 	__reclaim_buf(hashp, obufp);
    861   1.1       cgd }
    862   1.1       cgd 
    863   1.1       cgd /*
    864   1.1       cgd  * Returns:
    865   1.1       cgd  *	 0 success
    866   1.1       cgd  *	-1 failure
    867   1.1       cgd  */
    868   1.1       cgd static int
    869   1.1       cgd open_temp(hashp)
    870   1.1       cgd 	HTAB *hashp;
    871   1.1       cgd {
    872   1.1       cgd 	sigset_t set, oset;
    873  1.11   mycroft 	char namestr[] = "_hashXXXXXX";
    874   1.1       cgd 
    875   1.1       cgd 	/* Block signals; make sure file goes away at process exit. */
    876   1.1       cgd 	(void)sigfillset(&set);
    877   1.1       cgd 	(void)sigprocmask(SIG_BLOCK, &set, &oset);
    878   1.1       cgd 	if ((hashp->fp = mkstemp(namestr)) != -1) {
    879   1.1       cgd 		(void)unlink(namestr);
    880   1.1       cgd 		(void)fcntl(hashp->fp, F_SETFD, 1);
    881   1.1       cgd 	}
    882   1.1       cgd 	(void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
    883   1.1       cgd 	return (hashp->fp != -1 ? 0 : -1);
    884   1.1       cgd }
    885   1.1       cgd 
    886   1.1       cgd /*
    887   1.1       cgd  * We have to know that the key will fit, but the last entry on the page is
    888   1.1       cgd  * an overflow pair, so we need to shift things.
    889   1.1       cgd  */
    890   1.1       cgd static void
    891   1.1       cgd squeeze_key(sp, key, val)
    892   1.6       cgd 	u_int16_t *sp;
    893   1.1       cgd 	const DBT *key, *val;
    894   1.1       cgd {
    895   1.1       cgd 	register char *p;
    896   1.6       cgd 	u_int16_t free_space, n, off, pageno;
    897   1.1       cgd 
    898  1.13  christos 	p = (char *)(void *)sp;
    899   1.1       cgd 	n = sp[0];
    900   1.1       cgd 	free_space = FREESPACE(sp);
    901   1.1       cgd 	off = OFFSET(sp);
    902   1.1       cgd 
    903   1.1       cgd 	pageno = sp[n - 1];
    904   1.1       cgd 	off -= key->size;
    905   1.1       cgd 	sp[n - 1] = off;
    906   1.1       cgd 	memmove(p + off, key->data, key->size);
    907   1.1       cgd 	off -= val->size;
    908   1.1       cgd 	sp[n] = off;
    909   1.1       cgd 	memmove(p + off, val->data, val->size);
    910   1.1       cgd 	sp[0] = n + 2;
    911   1.1       cgd 	sp[n + 1] = pageno;
    912   1.1       cgd 	sp[n + 2] = OVFLPAGE;
    913   1.1       cgd 	FREESPACE(sp) = free_space - PAIRSIZE(key, val);
    914   1.1       cgd 	OFFSET(sp) = off;
    915   1.1       cgd }
    916   1.1       cgd 
    917   1.6       cgd static u_int32_t *
    918   1.1       cgd fetch_bitmap(hashp, ndx)
    919   1.1       cgd 	HTAB *hashp;
    920   1.1       cgd 	int ndx;
    921   1.1       cgd {
    922   1.6       cgd 	if (ndx >= hashp->nmaps)
    923   1.1       cgd 		return (NULL);
    924  1.13  christos 	if ((hashp->mapp[ndx] = (u_int32_t *)malloc((size_t)hashp->BSIZE)) == NULL)
    925   1.6       cgd 		return (NULL);
    926   1.6       cgd 	if (__get_page(hashp,
    927  1.13  christos 	    (char *)(void *)hashp->mapp[ndx], (u_int32_t)hashp->BITMAPS[ndx], 0, 1, 1)) {
    928   1.6       cgd 		free(hashp->mapp[ndx]);
    929   1.6       cgd 		return (NULL);
    930   1.6       cgd 	}
    931   1.1       cgd 	return (hashp->mapp[ndx]);
    932   1.1       cgd }
    933   1.1       cgd 
    934   1.1       cgd #ifdef DEBUG4
    935   1.1       cgd int
    936   1.1       cgd print_chain(addr)
    937   1.1       cgd 	int addr;
    938   1.1       cgd {
    939   1.1       cgd 	BUFHEAD *bufp;
    940   1.1       cgd 	short *bp, oaddr;
    941   1.1       cgd 
    942   1.1       cgd 	(void)fprintf(stderr, "%d ", addr);
    943   1.1       cgd 	bufp = __get_buf(hashp, addr, NULL, 0);
    944   1.1       cgd 	bp = (short *)bufp->page;
    945   1.1       cgd 	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
    946   1.1       cgd 		((bp[0] > 2) && bp[2] < REAL_KEY))) {
    947   1.1       cgd 		oaddr = bp[bp[0] - 1];
    948   1.1       cgd 		(void)fprintf(stderr, "%d ", (int)oaddr);
    949   1.1       cgd 		bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
    950   1.1       cgd 		bp = (short *)bufp->page;
    951   1.1       cgd 	}
    952   1.1       cgd 	(void)fprintf(stderr, "\n");
    953   1.1       cgd }
    954   1.1       cgd #endif
    955