hash_page.c revision 1.23 1 1.23 joerg /* $NetBSD: hash_page.c,v 1.23 2008/09/11 12:58:00 joerg Exp $ */
2 1.7 cgd
3 1.1 cgd /*-
4 1.6 cgd * Copyright (c) 1990, 1993, 1994
5 1.1 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Margo Seltzer.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.16 agc * 3. Neither the name of the University nor the names of its contributors
19 1.1 cgd * may be used to endorse or promote products derived from this software
20 1.1 cgd * without specific prior written permission.
21 1.1 cgd *
22 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 cgd * SUCH DAMAGE.
33 1.1 cgd */
34 1.1 cgd
35 1.23 joerg #if HAVE_NBTOOL_CONFIG_H
36 1.23 joerg #include "nbtool_config.h"
37 1.23 joerg #endif
38 1.23 joerg
39 1.9 christos #include <sys/cdefs.h>
40 1.23 joerg __RCSID("$NetBSD: hash_page.c,v 1.23 2008/09/11 12:58:00 joerg Exp $");
41 1.1 cgd
42 1.1 cgd /*
43 1.1 cgd * PACKAGE: hashing
44 1.1 cgd *
45 1.1 cgd * DESCRIPTION:
46 1.1 cgd * Page manipulation for hashing package.
47 1.1 cgd *
48 1.1 cgd * ROUTINES:
49 1.1 cgd *
50 1.1 cgd * External
51 1.1 cgd * __get_page
52 1.1 cgd * __add_ovflpage
53 1.1 cgd * Internal
54 1.1 cgd * overflow_page
55 1.1 cgd * open_temp
56 1.1 cgd */
57 1.12 kleink
58 1.12 kleink #include "namespace.h"
59 1.1 cgd
60 1.1 cgd #include <sys/types.h>
61 1.1 cgd
62 1.1 cgd #include <errno.h>
63 1.1 cgd #include <fcntl.h>
64 1.1 cgd #include <signal.h>
65 1.1 cgd #include <stdio.h>
66 1.1 cgd #include <stdlib.h>
67 1.1 cgd #include <string.h>
68 1.1 cgd #include <unistd.h>
69 1.18 rtr #include <paths.h>
70 1.1 cgd #include <assert.h>
71 1.1 cgd
72 1.1 cgd #include <db.h>
73 1.1 cgd #include "hash.h"
74 1.1 cgd #include "page.h"
75 1.1 cgd #include "extern.h"
76 1.1 cgd
77 1.21 joerg static uint32_t *fetch_bitmap(HTAB *, int);
78 1.21 joerg static uint32_t first_free(uint32_t);
79 1.20 christos static int open_temp(HTAB *);
80 1.21 joerg static uint16_t overflow_page(HTAB *);
81 1.20 christos static void putpair(char *, const DBT *, const DBT *);
82 1.21 joerg static void squeeze_key(uint16_t *, const DBT *, const DBT *);
83 1.21 joerg static int ugly_split(HTAB *, uint32_t, BUFHEAD *, BUFHEAD *, int, int);
84 1.1 cgd
85 1.1 cgd #define PAGE_INIT(P) { \
86 1.21 joerg ((uint16_t *)(void *)(P))[0] = 0; \
87 1.21 joerg temp = 3 * sizeof(uint16_t); \
88 1.20 christos _DIAGASSERT(hashp->BSIZE >= temp); \
89 1.21 joerg ((uint16_t *)(void *)(P))[1] = (uint16_t)(hashp->BSIZE - temp); \
90 1.21 joerg ((uint16_t *)(void *)(P))[2] = hashp->BSIZE; \
91 1.1 cgd }
92 1.1 cgd
93 1.1 cgd /*
94 1.1 cgd * This is called AFTER we have verified that there is room on the page for
95 1.1 cgd * the pair (PAIRFITS has returned true) so we go right ahead and start moving
96 1.1 cgd * stuff on.
97 1.1 cgd */
98 1.1 cgd static void
99 1.20 christos putpair(char *p, const DBT *key, const DBT *val)
100 1.1 cgd {
101 1.21 joerg uint16_t *bp, n, off;
102 1.20 christos size_t temp;
103 1.1 cgd
104 1.21 joerg bp = (uint16_t *)(void *)p;
105 1.1 cgd
106 1.1 cgd /* Enter the key first. */
107 1.1 cgd n = bp[0];
108 1.1 cgd
109 1.20 christos temp = OFFSET(bp);
110 1.20 christos _DIAGASSERT(temp >= key->size);
111 1.21 joerg off = (uint16_t)(temp - key->size);
112 1.1 cgd memmove(p + off, key->data, key->size);
113 1.1 cgd bp[++n] = off;
114 1.1 cgd
115 1.1 cgd /* Now the data. */
116 1.20 christos _DIAGASSERT(off >= val->size);
117 1.21 joerg off -= (uint16_t)val->size;
118 1.1 cgd memmove(p + off, val->data, val->size);
119 1.1 cgd bp[++n] = off;
120 1.1 cgd
121 1.1 cgd /* Adjust page info. */
122 1.1 cgd bp[0] = n;
123 1.21 joerg temp = (n + 3) * sizeof(uint16_t);
124 1.20 christos _DIAGASSERT(off >= temp);
125 1.21 joerg bp[n + 1] = (uint16_t)(off - temp);
126 1.1 cgd bp[n + 2] = off;
127 1.1 cgd }
128 1.1 cgd
129 1.1 cgd /*
130 1.1 cgd * Returns:
131 1.1 cgd * 0 OK
132 1.1 cgd * -1 error
133 1.1 cgd */
134 1.20 christos int
135 1.20 christos __delpair(HTAB *hashp, BUFHEAD *bufp, int ndx)
136 1.1 cgd {
137 1.21 joerg uint16_t *bp, newoff;
138 1.20 christos int n;
139 1.21 joerg uint16_t pairlen;
140 1.20 christos size_t temp;
141 1.1 cgd
142 1.21 joerg bp = (uint16_t *)(void *)bufp->page;
143 1.1 cgd n = bp[0];
144 1.1 cgd
145 1.1 cgd if (bp[ndx + 1] < REAL_KEY)
146 1.1 cgd return (__big_delete(hashp, bufp));
147 1.1 cgd if (ndx != 1)
148 1.1 cgd newoff = bp[ndx - 1];
149 1.1 cgd else
150 1.1 cgd newoff = hashp->BSIZE;
151 1.1 cgd pairlen = newoff - bp[ndx + 1];
152 1.1 cgd
153 1.1 cgd if (ndx != (n - 1)) {
154 1.1 cgd /* Hard Case -- need to shuffle keys */
155 1.20 christos int i;
156 1.20 christos char *src = bufp->page + (int)OFFSET(bp);
157 1.20 christos char *dst = src + (int)pairlen;
158 1.13 christos memmove(dst, src, (size_t)(bp[ndx + 1] - OFFSET(bp)));
159 1.1 cgd
160 1.1 cgd /* Now adjust the pointers */
161 1.1 cgd for (i = ndx + 2; i <= n; i += 2) {
162 1.1 cgd if (bp[i + 1] == OVFLPAGE) {
163 1.1 cgd bp[i - 2] = bp[i];
164 1.1 cgd bp[i - 1] = bp[i + 1];
165 1.1 cgd } else {
166 1.1 cgd bp[i - 2] = bp[i] + pairlen;
167 1.1 cgd bp[i - 1] = bp[i + 1] + pairlen;
168 1.1 cgd }
169 1.1 cgd }
170 1.1 cgd }
171 1.1 cgd /* Finally adjust the page data */
172 1.1 cgd bp[n] = OFFSET(bp) + pairlen;
173 1.21 joerg temp = bp[n + 1] + pairlen + 2 * sizeof(uint16_t);
174 1.20 christos _DIAGASSERT(temp <= 0xffff);
175 1.21 joerg bp[n - 1] = (uint16_t)temp;
176 1.1 cgd bp[0] = n - 2;
177 1.1 cgd hashp->NKEYS--;
178 1.1 cgd
179 1.1 cgd bufp->flags |= BUF_MOD;
180 1.1 cgd return (0);
181 1.1 cgd }
182 1.1 cgd /*
183 1.1 cgd * Returns:
184 1.1 cgd * 0 ==> OK
185 1.1 cgd * -1 ==> Error
186 1.1 cgd */
187 1.20 christos int
188 1.21 joerg __split_page(HTAB *hashp, uint32_t obucket, uint32_t nbucket)
189 1.20 christos {
190 1.20 christos BUFHEAD *new_bufp, *old_bufp;
191 1.21 joerg uint16_t *ino;
192 1.20 christos char *np;
193 1.1 cgd DBT key, val;
194 1.1 cgd int n, ndx, retval;
195 1.21 joerg uint16_t copyto, diff, off, moved;
196 1.1 cgd char *op;
197 1.20 christos size_t temp;
198 1.1 cgd
199 1.21 joerg copyto = (uint16_t)hashp->BSIZE;
200 1.21 joerg off = (uint16_t)hashp->BSIZE;
201 1.1 cgd old_bufp = __get_buf(hashp, obucket, NULL, 0);
202 1.1 cgd if (old_bufp == NULL)
203 1.1 cgd return (-1);
204 1.1 cgd new_bufp = __get_buf(hashp, nbucket, NULL, 0);
205 1.1 cgd if (new_bufp == NULL)
206 1.1 cgd return (-1);
207 1.1 cgd
208 1.1 cgd old_bufp->flags |= (BUF_MOD | BUF_PIN);
209 1.1 cgd new_bufp->flags |= (BUF_MOD | BUF_PIN);
210 1.1 cgd
211 1.21 joerg ino = (uint16_t *)(void *)(op = old_bufp->page);
212 1.1 cgd np = new_bufp->page;
213 1.1 cgd
214 1.1 cgd moved = 0;
215 1.1 cgd
216 1.1 cgd for (n = 1, ndx = 1; n < ino[0]; n += 2) {
217 1.1 cgd if (ino[n + 1] < REAL_KEY) {
218 1.1 cgd retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
219 1.1 cgd (int)copyto, (int)moved);
220 1.1 cgd old_bufp->flags &= ~BUF_PIN;
221 1.1 cgd new_bufp->flags &= ~BUF_PIN;
222 1.1 cgd return (retval);
223 1.1 cgd
224 1.1 cgd }
225 1.21 joerg key.data = (uint8_t *)op + ino[n];
226 1.1 cgd key.size = off - ino[n];
227 1.1 cgd
228 1.13 christos if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
229 1.1 cgd /* Don't switch page */
230 1.1 cgd diff = copyto - off;
231 1.1 cgd if (diff) {
232 1.1 cgd copyto = ino[n + 1] + diff;
233 1.1 cgd memmove(op + copyto, op + ino[n + 1],
234 1.13 christos (size_t)(off - ino[n + 1]));
235 1.1 cgd ino[ndx] = copyto + ino[n] - ino[n + 1];
236 1.1 cgd ino[ndx + 1] = copyto;
237 1.1 cgd } else
238 1.1 cgd copyto = ino[n + 1];
239 1.1 cgd ndx += 2;
240 1.1 cgd } else {
241 1.1 cgd /* Switch page */
242 1.21 joerg val.data = (uint8_t *)op + ino[n + 1];
243 1.1 cgd val.size = ino[n] - ino[n + 1];
244 1.1 cgd putpair(np, &key, &val);
245 1.1 cgd moved += 2;
246 1.1 cgd }
247 1.1 cgd
248 1.1 cgd off = ino[n + 1];
249 1.1 cgd }
250 1.1 cgd
251 1.1 cgd /* Now clean up the page */
252 1.1 cgd ino[0] -= moved;
253 1.21 joerg temp = sizeof(uint16_t) * (ino[0] + 3);
254 1.20 christos _DIAGASSERT(copyto >= temp);
255 1.21 joerg FREESPACE(ino) = (uint16_t)(copyto - temp);
256 1.1 cgd OFFSET(ino) = copyto;
257 1.1 cgd
258 1.1 cgd #ifdef DEBUG3
259 1.1 cgd (void)fprintf(stderr, "split %d/%d\n",
260 1.21 joerg ((uint16_t *)np)[0] / 2,
261 1.21 joerg ((uint16_t *)op)[0] / 2);
262 1.1 cgd #endif
263 1.1 cgd /* unpin both pages */
264 1.1 cgd old_bufp->flags &= ~BUF_PIN;
265 1.1 cgd new_bufp->flags &= ~BUF_PIN;
266 1.1 cgd return (0);
267 1.1 cgd }
268 1.1 cgd
269 1.1 cgd /*
270 1.1 cgd * Called when we encounter an overflow or big key/data page during split
271 1.1 cgd * handling. This is special cased since we have to begin checking whether
272 1.1 cgd * the key/data pairs fit on their respective pages and because we may need
273 1.1 cgd * overflow pages for both the old and new pages.
274 1.1 cgd *
275 1.1 cgd * The first page might be a page with regular key/data pairs in which case
276 1.1 cgd * we have a regular overflow condition and just need to go on to the next
277 1.1 cgd * page or it might be a big key/data pair in which case we need to fix the
278 1.1 cgd * big key/data pair.
279 1.1 cgd *
280 1.1 cgd * Returns:
281 1.1 cgd * 0 ==> success
282 1.1 cgd * -1 ==> failure
283 1.1 cgd */
284 1.1 cgd static int
285 1.20 christos ugly_split(
286 1.20 christos HTAB *hashp,
287 1.21 joerg uint32_t obucket, /* Same as __split_page. */
288 1.20 christos BUFHEAD *old_bufp,
289 1.20 christos BUFHEAD *new_bufp,
290 1.20 christos int copyto, /* First byte on page which contains key/data values. */
291 1.20 christos int moved /* Number of pairs moved to new page. */
292 1.20 christos )
293 1.20 christos {
294 1.20 christos BUFHEAD *bufp; /* Buffer header for ino */
295 1.21 joerg uint16_t *ino; /* Page keys come off of */
296 1.21 joerg uint16_t *np; /* New page */
297 1.21 joerg uint16_t *op; /* Page keys go on to if they aren't moving */
298 1.20 christos size_t temp;
299 1.1 cgd
300 1.1 cgd BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */
301 1.1 cgd DBT key, val;
302 1.1 cgd SPLIT_RETURN ret;
303 1.21 joerg uint16_t n, off, ov_addr, scopyto;
304 1.1 cgd char *cino; /* Character value of ino */
305 1.1 cgd
306 1.1 cgd bufp = old_bufp;
307 1.21 joerg ino = (uint16_t *)(void *)old_bufp->page;
308 1.21 joerg np = (uint16_t *)(void *)new_bufp->page;
309 1.21 joerg op = (uint16_t *)(void *)old_bufp->page;
310 1.1 cgd last_bfp = NULL;
311 1.21 joerg scopyto = (uint16_t)copyto; /* ANSI */
312 1.1 cgd
313 1.1 cgd n = ino[0] - 1;
314 1.1 cgd while (n < ino[0]) {
315 1.1 cgd if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
316 1.1 cgd if (__big_split(hashp, old_bufp,
317 1.13 christos new_bufp, bufp, (int)bufp->addr, obucket, &ret))
318 1.1 cgd return (-1);
319 1.1 cgd old_bufp = ret.oldp;
320 1.1 cgd if (!old_bufp)
321 1.1 cgd return (-1);
322 1.21 joerg op = (uint16_t *)(void *)old_bufp->page;
323 1.1 cgd new_bufp = ret.newp;
324 1.1 cgd if (!new_bufp)
325 1.1 cgd return (-1);
326 1.21 joerg np = (uint16_t *)(void *)new_bufp->page;
327 1.1 cgd bufp = ret.nextp;
328 1.1 cgd if (!bufp)
329 1.1 cgd return (0);
330 1.1 cgd cino = (char *)bufp->page;
331 1.21 joerg ino = (uint16_t *)(void *)cino;
332 1.1 cgd last_bfp = ret.nextp;
333 1.1 cgd } else if (ino[n + 1] == OVFLPAGE) {
334 1.1 cgd ov_addr = ino[n];
335 1.1 cgd /*
336 1.1 cgd * Fix up the old page -- the extra 2 are the fields
337 1.1 cgd * which contained the overflow information.
338 1.1 cgd */
339 1.1 cgd ino[0] -= (moved + 2);
340 1.21 joerg temp = sizeof(uint16_t) * (ino[0] + 3);
341 1.20 christos _DIAGASSERT(scopyto >= temp);
342 1.21 joerg FREESPACE(ino) = (uint16_t)(scopyto - temp);
343 1.1 cgd OFFSET(ino) = scopyto;
344 1.1 cgd
345 1.21 joerg bufp = __get_buf(hashp, (uint32_t)ov_addr, bufp, 0);
346 1.1 cgd if (!bufp)
347 1.1 cgd return (-1);
348 1.1 cgd
349 1.21 joerg ino = (uint16_t *)(void *)bufp->page;
350 1.1 cgd n = 1;
351 1.1 cgd scopyto = hashp->BSIZE;
352 1.1 cgd moved = 0;
353 1.1 cgd
354 1.1 cgd if (last_bfp)
355 1.1 cgd __free_ovflpage(hashp, last_bfp);
356 1.1 cgd last_bfp = bufp;
357 1.1 cgd }
358 1.1 cgd /* Move regular sized pairs of there are any */
359 1.1 cgd off = hashp->BSIZE;
360 1.1 cgd for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
361 1.13 christos cino = (char *)(void *)ino;
362 1.21 joerg key.data = (uint8_t *)cino + ino[n];
363 1.1 cgd key.size = off - ino[n];
364 1.21 joerg val.data = (uint8_t *)cino + ino[n + 1];
365 1.1 cgd val.size = ino[n] - ino[n + 1];
366 1.1 cgd off = ino[n + 1];
367 1.1 cgd
368 1.13 christos if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
369 1.1 cgd /* Keep on old page */
370 1.1 cgd if (PAIRFITS(op, (&key), (&val)))
371 1.13 christos putpair((char *)(void *)op, &key, &val);
372 1.1 cgd else {
373 1.1 cgd old_bufp =
374 1.1 cgd __add_ovflpage(hashp, old_bufp);
375 1.1 cgd if (!old_bufp)
376 1.1 cgd return (-1);
377 1.21 joerg op = (uint16_t *)(void *)old_bufp->page;
378 1.13 christos putpair((char *)(void *)op, &key, &val);
379 1.1 cgd }
380 1.1 cgd old_bufp->flags |= BUF_MOD;
381 1.1 cgd } else {
382 1.1 cgd /* Move to new page */
383 1.1 cgd if (PAIRFITS(np, (&key), (&val)))
384 1.13 christos putpair((char *)(void *)np, &key, &val);
385 1.1 cgd else {
386 1.1 cgd new_bufp =
387 1.1 cgd __add_ovflpage(hashp, new_bufp);
388 1.1 cgd if (!new_bufp)
389 1.1 cgd return (-1);
390 1.21 joerg np = (uint16_t *)(void *)new_bufp->page;
391 1.13 christos putpair((char *)(void *)np, &key, &val);
392 1.1 cgd }
393 1.1 cgd new_bufp->flags |= BUF_MOD;
394 1.1 cgd }
395 1.1 cgd }
396 1.1 cgd }
397 1.1 cgd if (last_bfp)
398 1.1 cgd __free_ovflpage(hashp, last_bfp);
399 1.1 cgd return (0);
400 1.1 cgd }
401 1.1 cgd
402 1.1 cgd /*
403 1.1 cgd * Add the given pair to the page
404 1.1 cgd *
405 1.1 cgd * Returns:
406 1.1 cgd * 0 ==> OK
407 1.1 cgd * 1 ==> failure
408 1.1 cgd */
409 1.20 christos int
410 1.20 christos __addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
411 1.1 cgd {
412 1.21 joerg uint16_t *bp, *sop;
413 1.1 cgd int do_expand;
414 1.1 cgd
415 1.21 joerg bp = (uint16_t *)(void *)bufp->page;
416 1.1 cgd do_expand = 0;
417 1.4 cgd while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
418 1.1 cgd /* Exception case */
419 1.4 cgd if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
420 1.4 cgd /* This is the last page of a big key/data pair
421 1.4 cgd and we need to add another page */
422 1.4 cgd break;
423 1.4 cgd else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
424 1.21 joerg bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp,
425 1.13 christos 0);
426 1.1 cgd if (!bufp)
427 1.1 cgd return (-1);
428 1.21 joerg bp = (uint16_t *)(void *)bufp->page;
429 1.15 mycroft } else if (bp[bp[0]] != OVFLPAGE) {
430 1.15 mycroft /* Short key/data pairs, no more pages */
431 1.15 mycroft break;
432 1.15 mycroft } else {
433 1.1 cgd /* Try to squeeze key on this page */
434 1.15 mycroft if (bp[2] >= REAL_KEY &&
435 1.15 mycroft FREESPACE(bp) >= PAIRSIZE(key, val)) {
436 1.1 cgd squeeze_key(bp, key, val);
437 1.15 mycroft goto stats;
438 1.1 cgd } else {
439 1.13 christos bufp = __get_buf(hashp,
440 1.21 joerg (uint32_t)bp[bp[0] - 1], bufp, 0);
441 1.1 cgd if (!bufp)
442 1.1 cgd return (-1);
443 1.21 joerg bp = (uint16_t *)(void *)bufp->page;
444 1.1 cgd }
445 1.15 mycroft }
446 1.1 cgd
447 1.1 cgd if (PAIRFITS(bp, key, val))
448 1.1 cgd putpair(bufp->page, key, val);
449 1.1 cgd else {
450 1.1 cgd do_expand = 1;
451 1.1 cgd bufp = __add_ovflpage(hashp, bufp);
452 1.1 cgd if (!bufp)
453 1.1 cgd return (-1);
454 1.21 joerg sop = (uint16_t *)(void *)bufp->page;
455 1.1 cgd
456 1.1 cgd if (PAIRFITS(sop, key, val))
457 1.13 christos putpair((char *)(void *)sop, key, val);
458 1.1 cgd else
459 1.1 cgd if (__big_insert(hashp, bufp, key, val))
460 1.1 cgd return (-1);
461 1.1 cgd }
462 1.15 mycroft stats:
463 1.1 cgd bufp->flags |= BUF_MOD;
464 1.1 cgd /*
465 1.1 cgd * If the average number of keys per bucket exceeds the fill factor,
466 1.1 cgd * expand the table.
467 1.1 cgd */
468 1.1 cgd hashp->NKEYS++;
469 1.1 cgd if (do_expand ||
470 1.1 cgd (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
471 1.1 cgd return (__expand_table(hashp));
472 1.1 cgd return (0);
473 1.1 cgd }
474 1.1 cgd
475 1.1 cgd /*
476 1.1 cgd *
477 1.1 cgd * Returns:
478 1.1 cgd * pointer on success
479 1.1 cgd * NULL on error
480 1.1 cgd */
481 1.20 christos BUFHEAD *
482 1.20 christos __add_ovflpage(HTAB *hashp, BUFHEAD *bufp)
483 1.1 cgd {
484 1.21 joerg uint16_t *sp;
485 1.21 joerg uint16_t ndx, ovfl_num;
486 1.20 christos size_t temp;
487 1.1 cgd #ifdef DEBUG1
488 1.1 cgd int tmp1, tmp2;
489 1.1 cgd #endif
490 1.21 joerg sp = (uint16_t *)(void *)bufp->page;
491 1.1 cgd
492 1.1 cgd /* Check if we are dynamically determining the fill factor */
493 1.1 cgd if (hashp->FFACTOR == DEF_FFACTOR) {
494 1.21 joerg hashp->FFACTOR = (uint32_t)sp[0] >> 1;
495 1.1 cgd if (hashp->FFACTOR < MIN_FFACTOR)
496 1.1 cgd hashp->FFACTOR = MIN_FFACTOR;
497 1.1 cgd }
498 1.1 cgd bufp->flags |= BUF_MOD;
499 1.1 cgd ovfl_num = overflow_page(hashp);
500 1.1 cgd #ifdef DEBUG1
501 1.1 cgd tmp1 = bufp->addr;
502 1.1 cgd tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
503 1.1 cgd #endif
504 1.21 joerg if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, (uint32_t)ovfl_num,
505 1.13 christos bufp, 1)))
506 1.1 cgd return (NULL);
507 1.1 cgd bufp->ovfl->flags |= BUF_MOD;
508 1.1 cgd #ifdef DEBUG1
509 1.1 cgd (void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
510 1.1 cgd tmp1, tmp2, bufp->ovfl->addr);
511 1.1 cgd #endif
512 1.1 cgd ndx = sp[0];
513 1.1 cgd /*
514 1.1 cgd * Since a pair is allocated on a page only if there's room to add
515 1.1 cgd * an overflow page, we know that the OVFL information will fit on
516 1.1 cgd * the page.
517 1.1 cgd */
518 1.1 cgd sp[ndx + 4] = OFFSET(sp);
519 1.20 christos temp = FREESPACE(sp);
520 1.20 christos _DIAGASSERT(temp >= OVFLSIZE);
521 1.21 joerg sp[ndx + 3] = (uint16_t)(temp - OVFLSIZE);
522 1.1 cgd sp[ndx + 1] = ovfl_num;
523 1.1 cgd sp[ndx + 2] = OVFLPAGE;
524 1.1 cgd sp[0] = ndx + 2;
525 1.1 cgd #ifdef HASH_STATISTICS
526 1.1 cgd hash_overflows++;
527 1.1 cgd #endif
528 1.1 cgd return (bufp->ovfl);
529 1.1 cgd }
530 1.1 cgd
531 1.1 cgd /*
532 1.1 cgd * Returns:
533 1.1 cgd * 0 indicates SUCCESS
534 1.1 cgd * -1 indicates FAILURE
535 1.1 cgd */
536 1.20 christos int
537 1.21 joerg __get_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_disk,
538 1.20 christos int is_bitmap)
539 1.1 cgd {
540 1.20 christos int fd, page, size;
541 1.20 christos ssize_t rsize;
542 1.21 joerg uint16_t *bp;
543 1.20 christos size_t temp;
544 1.1 cgd
545 1.1 cgd fd = hashp->fp;
546 1.1 cgd size = hashp->BSIZE;
547 1.1 cgd
548 1.1 cgd if ((fd == -1) || !is_disk) {
549 1.1 cgd PAGE_INIT(p);
550 1.1 cgd return (0);
551 1.1 cgd }
552 1.1 cgd if (is_bucket)
553 1.1 cgd page = BUCKET_TO_PAGE(bucket);
554 1.1 cgd else
555 1.1 cgd page = OADDR_TO_PAGE(bucket);
556 1.13 christos if ((rsize = pread(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
557 1.1 cgd return (-1);
558 1.21 joerg bp = (uint16_t *)(void *)p;
559 1.1 cgd if (!rsize)
560 1.1 cgd bp[0] = 0; /* We hit the EOF, so initialize a new page */
561 1.1 cgd else
562 1.1 cgd if (rsize != size) {
563 1.1 cgd errno = EFTYPE;
564 1.1 cgd return (-1);
565 1.1 cgd }
566 1.1 cgd if (!is_bitmap && !bp[0]) {
567 1.1 cgd PAGE_INIT(p);
568 1.1 cgd } else
569 1.1 cgd if (hashp->LORDER != BYTE_ORDER) {
570 1.20 christos int i, max;
571 1.1 cgd
572 1.1 cgd if (is_bitmap) {
573 1.21 joerg max = (uint32_t)hashp->BSIZE >> 2; /* divide by 4 */
574 1.1 cgd for (i = 0; i < max; i++)
575 1.13 christos M_32_SWAP(((int *)(void *)p)[i]);
576 1.1 cgd } else {
577 1.6 cgd M_16_SWAP(bp[0]);
578 1.1 cgd max = bp[0] + 2;
579 1.1 cgd for (i = 1; i <= max; i++)
580 1.6 cgd M_16_SWAP(bp[i]);
581 1.1 cgd }
582 1.1 cgd }
583 1.1 cgd return (0);
584 1.1 cgd }
585 1.1 cgd
586 1.1 cgd /*
587 1.1 cgd * Write page p to disk
588 1.1 cgd *
589 1.1 cgd * Returns:
590 1.1 cgd * 0 ==> OK
591 1.1 cgd * -1 ==>failure
592 1.1 cgd */
593 1.20 christos int
594 1.21 joerg __put_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_bitmap)
595 1.1 cgd {
596 1.20 christos int fd, page, size;
597 1.20 christos ssize_t wsize;
598 1.1 cgd
599 1.1 cgd size = hashp->BSIZE;
600 1.1 cgd if ((hashp->fp == -1) && open_temp(hashp))
601 1.1 cgd return (-1);
602 1.1 cgd fd = hashp->fp;
603 1.1 cgd
604 1.1 cgd if (hashp->LORDER != BYTE_ORDER) {
605 1.20 christos int i;
606 1.20 christos int max;
607 1.1 cgd
608 1.1 cgd if (is_bitmap) {
609 1.21 joerg max = (uint32_t)hashp->BSIZE >> 2; /* divide by 4 */
610 1.1 cgd for (i = 0; i < max; i++)
611 1.13 christos M_32_SWAP(((int *)(void *)p)[i]);
612 1.1 cgd } else {
613 1.21 joerg max = ((uint16_t *)(void *)p)[0] + 2;
614 1.1 cgd for (i = 0; i <= max; i++)
615 1.21 joerg M_16_SWAP(((uint16_t *)(void *)p)[i]);
616 1.1 cgd }
617 1.1 cgd }
618 1.1 cgd if (is_bucket)
619 1.1 cgd page = BUCKET_TO_PAGE(bucket);
620 1.1 cgd else
621 1.1 cgd page = OADDR_TO_PAGE(bucket);
622 1.13 christos if ((wsize = pwrite(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
623 1.1 cgd /* Errno is set */
624 1.1 cgd return (-1);
625 1.1 cgd if (wsize != size) {
626 1.1 cgd errno = EFTYPE;
627 1.1 cgd return (-1);
628 1.1 cgd }
629 1.1 cgd return (0);
630 1.1 cgd }
631 1.1 cgd
632 1.1 cgd #define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1)
633 1.1 cgd /*
634 1.1 cgd * Initialize a new bitmap page. Bitmap pages are left in memory
635 1.1 cgd * once they are read in.
636 1.1 cgd */
637 1.20 christos int
638 1.20 christos __ibitmap(HTAB *hashp, int pnum, int nbits, int ndx)
639 1.1 cgd {
640 1.21 joerg uint32_t *ip;
641 1.1 cgd int clearbytes, clearints;
642 1.1 cgd
643 1.20 christos if ((ip = malloc((size_t)hashp->BSIZE)) == NULL)
644 1.1 cgd return (1);
645 1.1 cgd hashp->nmaps++;
646 1.21 joerg clearints = ((uint32_t)(nbits - 1) >> INT_BYTE_SHIFT) + 1;
647 1.1 cgd clearbytes = clearints << INT_TO_BYTE;
648 1.13 christos (void)memset(ip, 0, (size_t)clearbytes);
649 1.13 christos (void)memset(((char *)(void *)ip) + clearbytes, 0xFF,
650 1.13 christos (size_t)(hashp->BSIZE - clearbytes));
651 1.1 cgd ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
652 1.1 cgd SETBIT(ip, 0);
653 1.21 joerg hashp->BITMAPS[ndx] = (uint16_t)pnum;
654 1.1 cgd hashp->mapp[ndx] = ip;
655 1.1 cgd return (0);
656 1.1 cgd }
657 1.1 cgd
658 1.21 joerg static uint32_t
659 1.21 joerg first_free(uint32_t map)
660 1.1 cgd {
661 1.21 joerg uint32_t i, mask;
662 1.1 cgd
663 1.1 cgd mask = 0x1;
664 1.1 cgd for (i = 0; i < BITS_PER_MAP; i++) {
665 1.1 cgd if (!(mask & map))
666 1.1 cgd return (i);
667 1.1 cgd mask = mask << 1;
668 1.1 cgd }
669 1.1 cgd return (i);
670 1.1 cgd }
671 1.1 cgd
672 1.21 joerg static uint16_t
673 1.20 christos overflow_page(HTAB *hashp)
674 1.1 cgd {
675 1.21 joerg uint32_t *freep = NULL;
676 1.20 christos int max_free, offset, splitnum;
677 1.21 joerg uint16_t addr;
678 1.1 cgd int bit, first_page, free_bit, free_page, i, in_use_bits, j;
679 1.1 cgd #ifdef DEBUG2
680 1.1 cgd int tmp1, tmp2;
681 1.1 cgd #endif
682 1.1 cgd splitnum = hashp->OVFL_POINT;
683 1.1 cgd max_free = hashp->SPARES[splitnum];
684 1.1 cgd
685 1.21 joerg free_page = (uint32_t)(max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
686 1.1 cgd free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
687 1.1 cgd
688 1.1 cgd /* Look through all the free maps to find the first free block */
689 1.21 joerg first_page = (uint32_t)hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
690 1.1 cgd for ( i = first_page; i <= free_page; i++ ) {
691 1.21 joerg if (!(freep = (uint32_t *)hashp->mapp[i]) &&
692 1.1 cgd !(freep = fetch_bitmap(hashp, i)))
693 1.8 cgd return (0);
694 1.1 cgd if (i == free_page)
695 1.1 cgd in_use_bits = free_bit;
696 1.1 cgd else
697 1.1 cgd in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
698 1.1 cgd
699 1.1 cgd if (i == first_page) {
700 1.1 cgd bit = hashp->LAST_FREED &
701 1.1 cgd ((hashp->BSIZE << BYTE_SHIFT) - 1);
702 1.1 cgd j = bit / BITS_PER_MAP;
703 1.1 cgd bit = bit & ~(BITS_PER_MAP - 1);
704 1.1 cgd } else {
705 1.1 cgd bit = 0;
706 1.1 cgd j = 0;
707 1.1 cgd }
708 1.1 cgd for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
709 1.1 cgd if (freep[j] != ALL_SET)
710 1.1 cgd goto found;
711 1.1 cgd }
712 1.1 cgd
713 1.1 cgd /* No Free Page Found */
714 1.1 cgd hashp->LAST_FREED = hashp->SPARES[splitnum];
715 1.1 cgd hashp->SPARES[splitnum]++;
716 1.1 cgd offset = hashp->SPARES[splitnum] -
717 1.1 cgd (splitnum ? hashp->SPARES[splitnum - 1] : 0);
718 1.1 cgd
719 1.1 cgd #define OVMSG "HASH: Out of overflow pages. Increase page size\n"
720 1.1 cgd if (offset > SPLITMASK) {
721 1.1 cgd if (++splitnum >= NCACHED) {
722 1.1 cgd (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
723 1.14 mycroft errno = EFBIG;
724 1.8 cgd return (0);
725 1.1 cgd }
726 1.1 cgd hashp->OVFL_POINT = splitnum;
727 1.1 cgd hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
728 1.1 cgd hashp->SPARES[splitnum-1]--;
729 1.1 cgd offset = 1;
730 1.1 cgd }
731 1.1 cgd
732 1.1 cgd /* Check if we need to allocate a new bitmap page */
733 1.1 cgd if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
734 1.1 cgd free_page++;
735 1.1 cgd if (free_page >= NCACHED) {
736 1.1 cgd (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
737 1.14 mycroft errno = EFBIG;
738 1.8 cgd return (0);
739 1.1 cgd }
740 1.1 cgd /*
741 1.1 cgd * This is tricky. The 1 indicates that you want the new page
742 1.1 cgd * allocated with 1 clear bit. Actually, you are going to
743 1.1 cgd * allocate 2 pages from this map. The first is going to be
744 1.1 cgd * the map page, the second is the overflow page we were
745 1.1 cgd * looking for. The init_bitmap routine automatically, sets
746 1.1 cgd * the first bit of itself to indicate that the bitmap itself
747 1.1 cgd * is in use. We would explicitly set the second bit, but
748 1.1 cgd * don't have to if we tell init_bitmap not to leave it clear
749 1.1 cgd * in the first place.
750 1.1 cgd */
751 1.8 cgd if (__ibitmap(hashp,
752 1.8 cgd (int)OADDR_OF(splitnum, offset), 1, free_page))
753 1.8 cgd return (0);
754 1.1 cgd hashp->SPARES[splitnum]++;
755 1.1 cgd #ifdef DEBUG2
756 1.1 cgd free_bit = 2;
757 1.1 cgd #endif
758 1.1 cgd offset++;
759 1.1 cgd if (offset > SPLITMASK) {
760 1.1 cgd if (++splitnum >= NCACHED) {
761 1.1 cgd (void)write(STDERR_FILENO, OVMSG,
762 1.1 cgd sizeof(OVMSG) - 1);
763 1.14 mycroft errno = EFBIG;
764 1.8 cgd return (0);
765 1.1 cgd }
766 1.1 cgd hashp->OVFL_POINT = splitnum;
767 1.1 cgd hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
768 1.1 cgd hashp->SPARES[splitnum-1]--;
769 1.1 cgd offset = 0;
770 1.1 cgd }
771 1.1 cgd } else {
772 1.1 cgd /*
773 1.1 cgd * Free_bit addresses the last used bit. Bump it to address
774 1.1 cgd * the first available bit.
775 1.1 cgd */
776 1.1 cgd free_bit++;
777 1.1 cgd SETBIT(freep, free_bit);
778 1.1 cgd }
779 1.1 cgd
780 1.1 cgd /* Calculate address of the new overflow page */
781 1.1 cgd addr = OADDR_OF(splitnum, offset);
782 1.1 cgd #ifdef DEBUG2
783 1.1 cgd (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
784 1.1 cgd addr, free_bit, free_page);
785 1.1 cgd #endif
786 1.1 cgd return (addr);
787 1.1 cgd
788 1.1 cgd found:
789 1.1 cgd bit = bit + first_free(freep[j]);
790 1.1 cgd SETBIT(freep, bit);
791 1.1 cgd #ifdef DEBUG2
792 1.1 cgd tmp1 = bit;
793 1.1 cgd tmp2 = i;
794 1.1 cgd #endif
795 1.1 cgd /*
796 1.1 cgd * Bits are addressed starting with 0, but overflow pages are addressed
797 1.1 cgd * beginning at 1. Bit is a bit addressnumber, so we need to increment
798 1.1 cgd * it to convert it to a page number.
799 1.1 cgd */
800 1.1 cgd bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
801 1.1 cgd if (bit >= hashp->LAST_FREED)
802 1.1 cgd hashp->LAST_FREED = bit - 1;
803 1.1 cgd
804 1.1 cgd /* Calculate the split number for this page */
805 1.1 cgd for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
806 1.1 cgd offset = (i ? bit - hashp->SPARES[i - 1] : bit);
807 1.14 mycroft if (offset >= SPLITMASK) {
808 1.14 mycroft (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
809 1.14 mycroft errno = EFBIG;
810 1.8 cgd return (0); /* Out of overflow pages */
811 1.14 mycroft }
812 1.1 cgd addr = OADDR_OF(i, offset);
813 1.1 cgd #ifdef DEBUG2
814 1.1 cgd (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
815 1.1 cgd addr, tmp1, tmp2);
816 1.1 cgd #endif
817 1.1 cgd
818 1.1 cgd /* Allocate and return the overflow page */
819 1.1 cgd return (addr);
820 1.1 cgd }
821 1.1 cgd
822 1.1 cgd /*
823 1.1 cgd * Mark this overflow page as free.
824 1.1 cgd */
825 1.20 christos void
826 1.20 christos __free_ovflpage(HTAB *hashp, BUFHEAD *obufp)
827 1.1 cgd {
828 1.21 joerg uint16_t addr;
829 1.21 joerg uint32_t *freep;
830 1.1 cgd int bit_address, free_page, free_bit;
831 1.21 joerg uint16_t ndx;
832 1.1 cgd
833 1.1 cgd addr = obufp->addr;
834 1.1 cgd #ifdef DEBUG1
835 1.1 cgd (void)fprintf(stderr, "Freeing %d\n", addr);
836 1.1 cgd #endif
837 1.21 joerg ndx = (((uint32_t)addr) >> SPLITSHIFT);
838 1.1 cgd bit_address =
839 1.1 cgd (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
840 1.1 cgd if (bit_address < hashp->LAST_FREED)
841 1.1 cgd hashp->LAST_FREED = bit_address;
842 1.21 joerg free_page = ((uint32_t)bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
843 1.1 cgd free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
844 1.1 cgd
845 1.1 cgd if (!(freep = hashp->mapp[free_page]))
846 1.1 cgd freep = fetch_bitmap(hashp, free_page);
847 1.1 cgd /*
848 1.1 cgd * This had better never happen. It means we tried to read a bitmap
849 1.1 cgd * that has already had overflow pages allocated off it, and we
850 1.1 cgd * failed to read it from the file.
851 1.1 cgd */
852 1.20 christos _DIAGASSERT(freep != NULL);
853 1.1 cgd CLRBIT(freep, free_bit);
854 1.1 cgd #ifdef DEBUG2
855 1.1 cgd (void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
856 1.1 cgd obufp->addr, free_bit, free_page);
857 1.1 cgd #endif
858 1.1 cgd __reclaim_buf(hashp, obufp);
859 1.1 cgd }
860 1.1 cgd
861 1.1 cgd /*
862 1.1 cgd * Returns:
863 1.1 cgd * 0 success
864 1.1 cgd * -1 failure
865 1.1 cgd */
866 1.1 cgd static int
867 1.20 christos open_temp(HTAB *hashp)
868 1.1 cgd {
869 1.1 cgd sigset_t set, oset;
870 1.18 rtr char *envtmp;
871 1.18 rtr char namestr[PATH_MAX];
872 1.18 rtr
873 1.18 rtr if (issetugid())
874 1.18 rtr envtmp = NULL;
875 1.18 rtr else
876 1.18 rtr envtmp = getenv("TMPDIR");
877 1.18 rtr
878 1.18 rtr if (-1 == snprintf(namestr, sizeof(namestr), "%s/_hashXXXXXX",
879 1.18 rtr envtmp ? envtmp : _PATH_TMP))
880 1.18 rtr return -1;
881 1.1 cgd
882 1.1 cgd /* Block signals; make sure file goes away at process exit. */
883 1.1 cgd (void)sigfillset(&set);
884 1.1 cgd (void)sigprocmask(SIG_BLOCK, &set, &oset);
885 1.1 cgd if ((hashp->fp = mkstemp(namestr)) != -1) {
886 1.1 cgd (void)unlink(namestr);
887 1.19 christos (void)fcntl(hashp->fp, F_SETFD, FD_CLOEXEC);
888 1.1 cgd }
889 1.1 cgd (void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
890 1.1 cgd return (hashp->fp != -1 ? 0 : -1);
891 1.1 cgd }
892 1.1 cgd
893 1.1 cgd /*
894 1.1 cgd * We have to know that the key will fit, but the last entry on the page is
895 1.1 cgd * an overflow pair, so we need to shift things.
896 1.1 cgd */
897 1.1 cgd static void
898 1.21 joerg squeeze_key(uint16_t *sp, const DBT *key, const DBT *val)
899 1.1 cgd {
900 1.20 christos char *p;
901 1.21 joerg uint16_t free_space, n, off, pageno;
902 1.20 christos size_t temp;
903 1.1 cgd
904 1.13 christos p = (char *)(void *)sp;
905 1.1 cgd n = sp[0];
906 1.1 cgd free_space = FREESPACE(sp);
907 1.1 cgd off = OFFSET(sp);
908 1.1 cgd
909 1.1 cgd pageno = sp[n - 1];
910 1.20 christos _DIAGASSERT(off >= key->size);
911 1.21 joerg off -= (uint16_t)key->size;
912 1.1 cgd sp[n - 1] = off;
913 1.1 cgd memmove(p + off, key->data, key->size);
914 1.20 christos _DIAGASSERT(off >= val->size);
915 1.21 joerg off -= (uint16_t)val->size;
916 1.1 cgd sp[n] = off;
917 1.1 cgd memmove(p + off, val->data, val->size);
918 1.1 cgd sp[0] = n + 2;
919 1.1 cgd sp[n + 1] = pageno;
920 1.1 cgd sp[n + 2] = OVFLPAGE;
921 1.20 christos temp = PAIRSIZE(key, val);
922 1.20 christos _DIAGASSERT(free_space >= temp);
923 1.21 joerg FREESPACE(sp) = (uint16_t)(free_space - temp);
924 1.1 cgd OFFSET(sp) = off;
925 1.1 cgd }
926 1.1 cgd
927 1.21 joerg static uint32_t *
928 1.20 christos fetch_bitmap(HTAB *hashp, int ndx)
929 1.1 cgd {
930 1.6 cgd if (ndx >= hashp->nmaps)
931 1.1 cgd return (NULL);
932 1.20 christos if ((hashp->mapp[ndx] = malloc((size_t)hashp->BSIZE)) == NULL)
933 1.6 cgd return (NULL);
934 1.6 cgd if (__get_page(hashp,
935 1.21 joerg (char *)(void *)hashp->mapp[ndx], (uint32_t)hashp->BITMAPS[ndx], 0, 1, 1)) {
936 1.6 cgd free(hashp->mapp[ndx]);
937 1.6 cgd return (NULL);
938 1.6 cgd }
939 1.1 cgd return (hashp->mapp[ndx]);
940 1.1 cgd }
941 1.1 cgd
942 1.1 cgd #ifdef DEBUG4
943 1.21 joerg void print_chain(HTAB *, uint32_t);
944 1.20 christos void
945 1.21 joerg print_chain(HTAB *hashp, uint32_t addr)
946 1.1 cgd {
947 1.1 cgd BUFHEAD *bufp;
948 1.21 joerg uint16_t *bp, oaddr;
949 1.1 cgd
950 1.1 cgd (void)fprintf(stderr, "%d ", addr);
951 1.1 cgd bufp = __get_buf(hashp, addr, NULL, 0);
952 1.21 joerg bp = (uint16_t *)bufp->page;
953 1.1 cgd while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
954 1.1 cgd ((bp[0] > 2) && bp[2] < REAL_KEY))) {
955 1.1 cgd oaddr = bp[bp[0] - 1];
956 1.1 cgd (void)fprintf(stderr, "%d ", (int)oaddr);
957 1.21 joerg bufp = __get_buf(hashp, (uint32_t)oaddr, bufp, 0);
958 1.21 joerg bp = (uint16_t *)bufp->page;
959 1.1 cgd }
960 1.1 cgd (void)fprintf(stderr, "\n");
961 1.1 cgd }
962 1.1 cgd #endif
963