Home | History | Annotate | Line # | Download | only in hash
hash_page.c revision 1.24.4.2
      1  1.24.4.2      yamt /*	$NetBSD: hash_page.c,v 1.24.4.2 2014/05/22 11:36:51 yamt Exp $	*/
      2       1.7       cgd 
      3       1.1       cgd /*-
      4       1.6       cgd  * Copyright (c) 1990, 1993, 1994
      5       1.1       cgd  *	The Regents of the University of California.  All rights reserved.
      6       1.1       cgd  *
      7       1.1       cgd  * This code is derived from software contributed to Berkeley by
      8       1.1       cgd  * Margo Seltzer.
      9       1.1       cgd  *
     10       1.1       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.1       cgd  * modification, are permitted provided that the following conditions
     12       1.1       cgd  * are met:
     13       1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.1       cgd  *    documentation and/or other materials provided with the distribution.
     18      1.16       agc  * 3. Neither the name of the University nor the names of its contributors
     19       1.1       cgd  *    may be used to endorse or promote products derived from this software
     20       1.1       cgd  *    without specific prior written permission.
     21       1.1       cgd  *
     22       1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23       1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24       1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25       1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26       1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27       1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28       1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29       1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30       1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31       1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32       1.1       cgd  * SUCH DAMAGE.
     33       1.1       cgd  */
     34       1.1       cgd 
     35      1.23     joerg #if HAVE_NBTOOL_CONFIG_H
     36      1.23     joerg #include "nbtool_config.h"
     37      1.23     joerg #endif
     38      1.23     joerg 
     39       1.9  christos #include <sys/cdefs.h>
     40  1.24.4.2      yamt __RCSID("$NetBSD: hash_page.c,v 1.24.4.2 2014/05/22 11:36:51 yamt Exp $");
     41       1.1       cgd 
     42       1.1       cgd /*
     43       1.1       cgd  * PACKAGE:  hashing
     44       1.1       cgd  *
     45       1.1       cgd  * DESCRIPTION:
     46       1.1       cgd  *	Page manipulation for hashing package.
     47       1.1       cgd  *
     48       1.1       cgd  * ROUTINES:
     49       1.1       cgd  *
     50       1.1       cgd  * External
     51       1.1       cgd  *	__get_page
     52       1.1       cgd  *	__add_ovflpage
     53       1.1       cgd  * Internal
     54       1.1       cgd  *	overflow_page
     55       1.1       cgd  */
     56      1.12    kleink 
     57      1.12    kleink #include "namespace.h"
     58       1.1       cgd 
     59       1.1       cgd #include <sys/types.h>
     60       1.1       cgd 
     61       1.1       cgd #include <errno.h>
     62       1.1       cgd #include <fcntl.h>
     63       1.1       cgd #include <signal.h>
     64       1.1       cgd #include <stdio.h>
     65       1.1       cgd #include <stdlib.h>
     66       1.1       cgd #include <string.h>
     67       1.1       cgd #include <unistd.h>
     68      1.18       rtr #include <paths.h>
     69       1.1       cgd #include <assert.h>
     70       1.1       cgd 
     71       1.1       cgd #include <db.h>
     72       1.1       cgd #include "hash.h"
     73       1.1       cgd #include "page.h"
     74       1.1       cgd #include "extern.h"
     75       1.1       cgd 
     76      1.21     joerg static uint32_t	*fetch_bitmap(HTAB *, int);
     77      1.21     joerg static uint32_t	 first_free(uint32_t);
     78      1.21     joerg static uint16_t	 overflow_page(HTAB *);
     79      1.20  christos static void	 putpair(char *, const DBT *, const DBT *);
     80      1.21     joerg static void	 squeeze_key(uint16_t *, const DBT *, const DBT *);
     81      1.21     joerg static int	 ugly_split(HTAB *, uint32_t, BUFHEAD *, BUFHEAD *, int, int);
     82       1.1       cgd 
     83       1.1       cgd #define	PAGE_INIT(P) { \
     84      1.21     joerg 	((uint16_t *)(void *)(P))[0] = 0; \
     85      1.21     joerg 	temp = 3 * sizeof(uint16_t); \
     86  1.24.4.1      yamt 	_DIAGASSERT((size_t)hashp->BSIZE >= temp); \
     87      1.21     joerg 	((uint16_t *)(void *)(P))[1] = (uint16_t)(hashp->BSIZE - temp); \
     88      1.21     joerg 	((uint16_t *)(void *)(P))[2] = hashp->BSIZE; \
     89       1.1       cgd }
     90       1.1       cgd 
     91       1.1       cgd /*
     92       1.1       cgd  * This is called AFTER we have verified that there is room on the page for
     93       1.1       cgd  * the pair (PAIRFITS has returned true) so we go right ahead and start moving
     94       1.1       cgd  * stuff on.
     95       1.1       cgd  */
     96       1.1       cgd static void
     97      1.20  christos putpair(char *p, const DBT *key, const DBT *val)
     98       1.1       cgd {
     99      1.21     joerg 	uint16_t *bp, n, off;
    100      1.20  christos 	size_t temp;
    101       1.1       cgd 
    102      1.21     joerg 	bp = (uint16_t *)(void *)p;
    103       1.1       cgd 
    104       1.1       cgd 	/* Enter the key first. */
    105       1.1       cgd 	n = bp[0];
    106       1.1       cgd 
    107      1.20  christos 	temp = OFFSET(bp);
    108      1.20  christos 	_DIAGASSERT(temp >= key->size);
    109      1.21     joerg 	off = (uint16_t)(temp - key->size);
    110       1.1       cgd 	memmove(p + off, key->data, key->size);
    111       1.1       cgd 	bp[++n] = off;
    112       1.1       cgd 
    113       1.1       cgd 	/* Now the data. */
    114      1.20  christos 	_DIAGASSERT(off >= val->size);
    115      1.21     joerg 	off -= (uint16_t)val->size;
    116       1.1       cgd 	memmove(p + off, val->data, val->size);
    117       1.1       cgd 	bp[++n] = off;
    118       1.1       cgd 
    119       1.1       cgd 	/* Adjust page info. */
    120       1.1       cgd 	bp[0] = n;
    121      1.21     joerg 	temp = (n + 3) * sizeof(uint16_t);
    122      1.20  christos 	_DIAGASSERT(off >= temp);
    123      1.21     joerg 	bp[n + 1] = (uint16_t)(off - temp);
    124       1.1       cgd 	bp[n + 2] = off;
    125       1.1       cgd }
    126       1.1       cgd 
    127       1.1       cgd /*
    128       1.1       cgd  * Returns:
    129       1.1       cgd  *	 0 OK
    130       1.1       cgd  *	-1 error
    131       1.1       cgd  */
    132      1.20  christos int
    133      1.20  christos __delpair(HTAB *hashp, BUFHEAD *bufp, int ndx)
    134       1.1       cgd {
    135      1.21     joerg 	uint16_t *bp, newoff;
    136      1.20  christos 	int n;
    137      1.21     joerg 	uint16_t pairlen;
    138      1.20  christos 	size_t temp;
    139       1.1       cgd 
    140      1.21     joerg 	bp = (uint16_t *)(void *)bufp->page;
    141       1.1       cgd 	n = bp[0];
    142       1.1       cgd 
    143       1.1       cgd 	if (bp[ndx + 1] < REAL_KEY)
    144       1.1       cgd 		return (__big_delete(hashp, bufp));
    145       1.1       cgd 	if (ndx != 1)
    146       1.1       cgd 		newoff = bp[ndx - 1];
    147       1.1       cgd 	else
    148       1.1       cgd 		newoff = hashp->BSIZE;
    149       1.1       cgd 	pairlen = newoff - bp[ndx + 1];
    150       1.1       cgd 
    151       1.1       cgd 	if (ndx != (n - 1)) {
    152       1.1       cgd 		/* Hard Case -- need to shuffle keys */
    153      1.20  christos 		int i;
    154      1.20  christos 		char *src = bufp->page + (int)OFFSET(bp);
    155      1.20  christos 		char *dst = src + (int)pairlen;
    156      1.13  christos 		memmove(dst, src, (size_t)(bp[ndx + 1] - OFFSET(bp)));
    157       1.1       cgd 
    158       1.1       cgd 		/* Now adjust the pointers */
    159       1.1       cgd 		for (i = ndx + 2; i <= n; i += 2) {
    160       1.1       cgd 			if (bp[i + 1] == OVFLPAGE) {
    161       1.1       cgd 				bp[i - 2] = bp[i];
    162       1.1       cgd 				bp[i - 1] = bp[i + 1];
    163       1.1       cgd 			} else {
    164       1.1       cgd 				bp[i - 2] = bp[i] + pairlen;
    165       1.1       cgd 				bp[i - 1] = bp[i + 1] + pairlen;
    166       1.1       cgd 			}
    167       1.1       cgd 		}
    168       1.1       cgd 	}
    169       1.1       cgd 	/* Finally adjust the page data */
    170       1.1       cgd 	bp[n] = OFFSET(bp) + pairlen;
    171      1.21     joerg 	temp = bp[n + 1] + pairlen + 2 * sizeof(uint16_t);
    172      1.20  christos 	_DIAGASSERT(temp <= 0xffff);
    173      1.21     joerg 	bp[n - 1] = (uint16_t)temp;
    174       1.1       cgd 	bp[0] = n - 2;
    175       1.1       cgd 	hashp->NKEYS--;
    176       1.1       cgd 
    177       1.1       cgd 	bufp->flags |= BUF_MOD;
    178       1.1       cgd 	return (0);
    179       1.1       cgd }
    180       1.1       cgd /*
    181       1.1       cgd  * Returns:
    182       1.1       cgd  *	 0 ==> OK
    183       1.1       cgd  *	-1 ==> Error
    184       1.1       cgd  */
    185      1.20  christos int
    186      1.21     joerg __split_page(HTAB *hashp, uint32_t obucket, uint32_t nbucket)
    187      1.20  christos {
    188      1.20  christos 	BUFHEAD *new_bufp, *old_bufp;
    189      1.21     joerg 	uint16_t *ino;
    190      1.20  christos 	char *np;
    191       1.1       cgd 	DBT key, val;
    192       1.1       cgd 	int n, ndx, retval;
    193      1.21     joerg 	uint16_t copyto, diff, off, moved;
    194       1.1       cgd 	char *op;
    195      1.20  christos 	size_t temp;
    196       1.1       cgd 
    197      1.21     joerg 	copyto = (uint16_t)hashp->BSIZE;
    198      1.21     joerg 	off = (uint16_t)hashp->BSIZE;
    199       1.1       cgd 	old_bufp = __get_buf(hashp, obucket, NULL, 0);
    200       1.1       cgd 	if (old_bufp == NULL)
    201       1.1       cgd 		return (-1);
    202       1.1       cgd 	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
    203       1.1       cgd 	if (new_bufp == NULL)
    204       1.1       cgd 		return (-1);
    205       1.1       cgd 
    206       1.1       cgd 	old_bufp->flags |= (BUF_MOD | BUF_PIN);
    207       1.1       cgd 	new_bufp->flags |= (BUF_MOD | BUF_PIN);
    208       1.1       cgd 
    209      1.21     joerg 	ino = (uint16_t *)(void *)(op = old_bufp->page);
    210       1.1       cgd 	np = new_bufp->page;
    211       1.1       cgd 
    212       1.1       cgd 	moved = 0;
    213       1.1       cgd 
    214       1.1       cgd 	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
    215       1.1       cgd 		if (ino[n + 1] < REAL_KEY) {
    216       1.1       cgd 			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
    217       1.1       cgd 			    (int)copyto, (int)moved);
    218       1.1       cgd 			old_bufp->flags &= ~BUF_PIN;
    219       1.1       cgd 			new_bufp->flags &= ~BUF_PIN;
    220       1.1       cgd 			return (retval);
    221       1.1       cgd 
    222       1.1       cgd 		}
    223      1.21     joerg 		key.data = (uint8_t *)op + ino[n];
    224       1.1       cgd 		key.size = off - ino[n];
    225       1.1       cgd 
    226      1.13  christos 		if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
    227       1.1       cgd 			/* Don't switch page */
    228       1.1       cgd 			diff = copyto - off;
    229       1.1       cgd 			if (diff) {
    230       1.1       cgd 				copyto = ino[n + 1] + diff;
    231       1.1       cgd 				memmove(op + copyto, op + ino[n + 1],
    232      1.13  christos 				    (size_t)(off - ino[n + 1]));
    233       1.1       cgd 				ino[ndx] = copyto + ino[n] - ino[n + 1];
    234       1.1       cgd 				ino[ndx + 1] = copyto;
    235       1.1       cgd 			} else
    236       1.1       cgd 				copyto = ino[n + 1];
    237       1.1       cgd 			ndx += 2;
    238       1.1       cgd 		} else {
    239       1.1       cgd 			/* Switch page */
    240      1.21     joerg 			val.data = (uint8_t *)op + ino[n + 1];
    241       1.1       cgd 			val.size = ino[n] - ino[n + 1];
    242       1.1       cgd 			putpair(np, &key, &val);
    243       1.1       cgd 			moved += 2;
    244       1.1       cgd 		}
    245       1.1       cgd 
    246       1.1       cgd 		off = ino[n + 1];
    247       1.1       cgd 	}
    248       1.1       cgd 
    249       1.1       cgd 	/* Now clean up the page */
    250       1.1       cgd 	ino[0] -= moved;
    251      1.21     joerg 	temp = sizeof(uint16_t) * (ino[0] + 3);
    252      1.20  christos 	_DIAGASSERT(copyto >= temp);
    253      1.21     joerg 	FREESPACE(ino) = (uint16_t)(copyto - temp);
    254       1.1       cgd 	OFFSET(ino) = copyto;
    255       1.1       cgd 
    256       1.1       cgd #ifdef DEBUG3
    257       1.1       cgd 	(void)fprintf(stderr, "split %d/%d\n",
    258      1.21     joerg 	    ((uint16_t *)np)[0] / 2,
    259      1.21     joerg 	    ((uint16_t *)op)[0] / 2);
    260       1.1       cgd #endif
    261       1.1       cgd 	/* unpin both pages */
    262       1.1       cgd 	old_bufp->flags &= ~BUF_PIN;
    263       1.1       cgd 	new_bufp->flags &= ~BUF_PIN;
    264       1.1       cgd 	return (0);
    265       1.1       cgd }
    266       1.1       cgd 
    267       1.1       cgd /*
    268       1.1       cgd  * Called when we encounter an overflow or big key/data page during split
    269       1.1       cgd  * handling.  This is special cased since we have to begin checking whether
    270       1.1       cgd  * the key/data pairs fit on their respective pages and because we may need
    271       1.1       cgd  * overflow pages for both the old and new pages.
    272       1.1       cgd  *
    273       1.1       cgd  * The first page might be a page with regular key/data pairs in which case
    274       1.1       cgd  * we have a regular overflow condition and just need to go on to the next
    275       1.1       cgd  * page or it might be a big key/data pair in which case we need to fix the
    276       1.1       cgd  * big key/data pair.
    277       1.1       cgd  *
    278       1.1       cgd  * Returns:
    279       1.1       cgd  *	 0 ==> success
    280       1.1       cgd  *	-1 ==> failure
    281       1.1       cgd  */
    282       1.1       cgd static int
    283      1.20  christos ugly_split(
    284      1.20  christos 	HTAB *hashp,
    285      1.21     joerg 	uint32_t obucket,	/* Same as __split_page. */
    286      1.20  christos 	BUFHEAD *old_bufp,
    287      1.20  christos 	BUFHEAD *new_bufp,
    288      1.20  christos 	int copyto,	/* First byte on page which contains key/data values. */
    289      1.20  christos 	int moved	/* Number of pairs moved to new page. */
    290      1.20  christos )
    291      1.20  christos {
    292      1.20  christos 	BUFHEAD *bufp;	/* Buffer header for ino */
    293      1.21     joerg 	uint16_t *ino;	/* Page keys come off of */
    294      1.21     joerg 	uint16_t *np;	/* New page */
    295      1.21     joerg 	uint16_t *op;	/* Page keys go on to if they aren't moving */
    296      1.20  christos 	size_t temp;
    297       1.1       cgd 
    298       1.1       cgd 	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
    299       1.1       cgd 	DBT key, val;
    300       1.1       cgd 	SPLIT_RETURN ret;
    301      1.21     joerg 	uint16_t n, off, ov_addr, scopyto;
    302       1.1       cgd 	char *cino;		/* Character value of ino */
    303       1.1       cgd 
    304       1.1       cgd 	bufp = old_bufp;
    305      1.21     joerg 	ino = (uint16_t *)(void *)old_bufp->page;
    306      1.21     joerg 	np = (uint16_t *)(void *)new_bufp->page;
    307      1.21     joerg 	op = (uint16_t *)(void *)old_bufp->page;
    308       1.1       cgd 	last_bfp = NULL;
    309      1.21     joerg 	scopyto = (uint16_t)copyto;	/* ANSI */
    310       1.1       cgd 
    311       1.1       cgd 	n = ino[0] - 1;
    312       1.1       cgd 	while (n < ino[0]) {
    313       1.1       cgd 		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
    314       1.1       cgd 			if (__big_split(hashp, old_bufp,
    315      1.13  christos 			    new_bufp, bufp, (int)bufp->addr, obucket, &ret))
    316       1.1       cgd 				return (-1);
    317       1.1       cgd 			old_bufp = ret.oldp;
    318       1.1       cgd 			if (!old_bufp)
    319       1.1       cgd 				return (-1);
    320      1.21     joerg 			op = (uint16_t *)(void *)old_bufp->page;
    321       1.1       cgd 			new_bufp = ret.newp;
    322       1.1       cgd 			if (!new_bufp)
    323       1.1       cgd 				return (-1);
    324      1.21     joerg 			np = (uint16_t *)(void *)new_bufp->page;
    325       1.1       cgd 			bufp = ret.nextp;
    326       1.1       cgd 			if (!bufp)
    327       1.1       cgd 				return (0);
    328       1.1       cgd 			cino = (char *)bufp->page;
    329      1.21     joerg 			ino = (uint16_t *)(void *)cino;
    330       1.1       cgd 			last_bfp = ret.nextp;
    331       1.1       cgd 		} else if (ino[n + 1] == OVFLPAGE) {
    332       1.1       cgd 			ov_addr = ino[n];
    333       1.1       cgd 			/*
    334       1.1       cgd 			 * Fix up the old page -- the extra 2 are the fields
    335       1.1       cgd 			 * which contained the overflow information.
    336       1.1       cgd 			 */
    337       1.1       cgd 			ino[0] -= (moved + 2);
    338      1.21     joerg 			temp = sizeof(uint16_t) * (ino[0] + 3);
    339      1.20  christos 			_DIAGASSERT(scopyto >= temp);
    340      1.21     joerg 			FREESPACE(ino) = (uint16_t)(scopyto - temp);
    341       1.1       cgd 			OFFSET(ino) = scopyto;
    342       1.1       cgd 
    343      1.21     joerg 			bufp = __get_buf(hashp, (uint32_t)ov_addr, bufp, 0);
    344       1.1       cgd 			if (!bufp)
    345       1.1       cgd 				return (-1);
    346       1.1       cgd 
    347      1.21     joerg 			ino = (uint16_t *)(void *)bufp->page;
    348       1.1       cgd 			n = 1;
    349       1.1       cgd 			scopyto = hashp->BSIZE;
    350       1.1       cgd 			moved = 0;
    351       1.1       cgd 
    352       1.1       cgd 			if (last_bfp)
    353       1.1       cgd 				__free_ovflpage(hashp, last_bfp);
    354       1.1       cgd 			last_bfp = bufp;
    355       1.1       cgd 		}
    356       1.1       cgd 		/* Move regular sized pairs of there are any */
    357       1.1       cgd 		off = hashp->BSIZE;
    358       1.1       cgd 		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
    359      1.13  christos 			cino = (char *)(void *)ino;
    360      1.21     joerg 			key.data = (uint8_t *)cino + ino[n];
    361       1.1       cgd 			key.size = off - ino[n];
    362      1.21     joerg 			val.data = (uint8_t *)cino + ino[n + 1];
    363       1.1       cgd 			val.size = ino[n] - ino[n + 1];
    364       1.1       cgd 			off = ino[n + 1];
    365       1.1       cgd 
    366      1.13  christos 			if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
    367       1.1       cgd 				/* Keep on old page */
    368       1.1       cgd 				if (PAIRFITS(op, (&key), (&val)))
    369      1.13  christos 					putpair((char *)(void *)op, &key, &val);
    370       1.1       cgd 				else {
    371       1.1       cgd 					old_bufp =
    372       1.1       cgd 					    __add_ovflpage(hashp, old_bufp);
    373       1.1       cgd 					if (!old_bufp)
    374       1.1       cgd 						return (-1);
    375      1.21     joerg 					op = (uint16_t *)(void *)old_bufp->page;
    376      1.13  christos 					putpair((char *)(void *)op, &key, &val);
    377       1.1       cgd 				}
    378       1.1       cgd 				old_bufp->flags |= BUF_MOD;
    379       1.1       cgd 			} else {
    380       1.1       cgd 				/* Move to new page */
    381       1.1       cgd 				if (PAIRFITS(np, (&key), (&val)))
    382      1.13  christos 					putpair((char *)(void *)np, &key, &val);
    383       1.1       cgd 				else {
    384       1.1       cgd 					new_bufp =
    385       1.1       cgd 					    __add_ovflpage(hashp, new_bufp);
    386       1.1       cgd 					if (!new_bufp)
    387       1.1       cgd 						return (-1);
    388      1.21     joerg 					np = (uint16_t *)(void *)new_bufp->page;
    389      1.13  christos 					putpair((char *)(void *)np, &key, &val);
    390       1.1       cgd 				}
    391       1.1       cgd 				new_bufp->flags |= BUF_MOD;
    392       1.1       cgd 			}
    393       1.1       cgd 		}
    394       1.1       cgd 	}
    395       1.1       cgd 	if (last_bfp)
    396       1.1       cgd 		__free_ovflpage(hashp, last_bfp);
    397       1.1       cgd 	return (0);
    398       1.1       cgd }
    399       1.1       cgd 
    400       1.1       cgd /*
    401       1.1       cgd  * Add the given pair to the page
    402       1.1       cgd  *
    403       1.1       cgd  * Returns:
    404       1.1       cgd  *	0 ==> OK
    405       1.1       cgd  *	1 ==> failure
    406       1.1       cgd  */
    407      1.20  christos int
    408      1.20  christos __addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
    409       1.1       cgd {
    410      1.21     joerg 	uint16_t *bp, *sop;
    411       1.1       cgd 	int do_expand;
    412       1.1       cgd 
    413      1.21     joerg 	bp = (uint16_t *)(void *)bufp->page;
    414       1.1       cgd 	do_expand = 0;
    415       1.4       cgd 	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
    416       1.1       cgd 		/* Exception case */
    417       1.4       cgd 		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
    418       1.4       cgd 			/* This is the last page of a big key/data pair
    419       1.4       cgd 			   and we need to add another page */
    420       1.4       cgd 			break;
    421       1.4       cgd 		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
    422      1.21     joerg 			bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp,
    423      1.13  christos 			    0);
    424       1.1       cgd 			if (!bufp)
    425       1.1       cgd 				return (-1);
    426      1.21     joerg 			bp = (uint16_t *)(void *)bufp->page;
    427      1.15   mycroft 		} else if (bp[bp[0]] != OVFLPAGE) {
    428      1.15   mycroft 			/* Short key/data pairs, no more pages */
    429      1.15   mycroft 			break;
    430      1.15   mycroft 		} else {
    431       1.1       cgd 			/* Try to squeeze key on this page */
    432      1.15   mycroft 			if (bp[2] >= REAL_KEY &&
    433      1.15   mycroft 			    FREESPACE(bp) >= PAIRSIZE(key, val)) {
    434       1.1       cgd 				squeeze_key(bp, key, val);
    435      1.15   mycroft 				goto stats;
    436       1.1       cgd 			} else {
    437      1.13  christos 				bufp = __get_buf(hashp,
    438      1.21     joerg 				    (uint32_t)bp[bp[0] - 1], bufp, 0);
    439       1.1       cgd 				if (!bufp)
    440       1.1       cgd 					return (-1);
    441      1.21     joerg 				bp = (uint16_t *)(void *)bufp->page;
    442       1.1       cgd 			}
    443      1.15   mycroft 		}
    444       1.1       cgd 
    445       1.1       cgd 	if (PAIRFITS(bp, key, val))
    446       1.1       cgd 		putpair(bufp->page, key, val);
    447       1.1       cgd 	else {
    448       1.1       cgd 		do_expand = 1;
    449       1.1       cgd 		bufp = __add_ovflpage(hashp, bufp);
    450       1.1       cgd 		if (!bufp)
    451       1.1       cgd 			return (-1);
    452      1.21     joerg 		sop = (uint16_t *)(void *)bufp->page;
    453       1.1       cgd 
    454       1.1       cgd 		if (PAIRFITS(sop, key, val))
    455      1.13  christos 			putpair((char *)(void *)sop, key, val);
    456       1.1       cgd 		else
    457       1.1       cgd 			if (__big_insert(hashp, bufp, key, val))
    458       1.1       cgd 				return (-1);
    459       1.1       cgd 	}
    460      1.15   mycroft stats:
    461       1.1       cgd 	bufp->flags |= BUF_MOD;
    462       1.1       cgd 	/*
    463       1.1       cgd 	 * If the average number of keys per bucket exceeds the fill factor,
    464       1.1       cgd 	 * expand the table.
    465       1.1       cgd 	 */
    466       1.1       cgd 	hashp->NKEYS++;
    467       1.1       cgd 	if (do_expand ||
    468       1.1       cgd 	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
    469       1.1       cgd 		return (__expand_table(hashp));
    470       1.1       cgd 	return (0);
    471       1.1       cgd }
    472       1.1       cgd 
    473       1.1       cgd /*
    474       1.1       cgd  *
    475       1.1       cgd  * Returns:
    476       1.1       cgd  *	pointer on success
    477       1.1       cgd  *	NULL on error
    478       1.1       cgd  */
    479      1.20  christos BUFHEAD *
    480      1.20  christos __add_ovflpage(HTAB *hashp, BUFHEAD *bufp)
    481       1.1       cgd {
    482      1.21     joerg 	uint16_t *sp;
    483      1.21     joerg 	uint16_t ndx, ovfl_num;
    484      1.20  christos 	size_t temp;
    485       1.1       cgd #ifdef DEBUG1
    486       1.1       cgd 	int tmp1, tmp2;
    487       1.1       cgd #endif
    488      1.21     joerg 	sp = (uint16_t *)(void *)bufp->page;
    489       1.1       cgd 
    490       1.1       cgd 	/* Check if we are dynamically determining the fill factor */
    491       1.1       cgd 	if (hashp->FFACTOR == DEF_FFACTOR) {
    492      1.21     joerg 		hashp->FFACTOR = (uint32_t)sp[0] >> 1;
    493       1.1       cgd 		if (hashp->FFACTOR < MIN_FFACTOR)
    494       1.1       cgd 			hashp->FFACTOR = MIN_FFACTOR;
    495       1.1       cgd 	}
    496       1.1       cgd 	bufp->flags |= BUF_MOD;
    497       1.1       cgd 	ovfl_num = overflow_page(hashp);
    498       1.1       cgd #ifdef DEBUG1
    499       1.1       cgd 	tmp1 = bufp->addr;
    500       1.1       cgd 	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
    501       1.1       cgd #endif
    502      1.21     joerg 	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, (uint32_t)ovfl_num,
    503      1.13  christos 	    bufp, 1)))
    504       1.1       cgd 		return (NULL);
    505       1.1       cgd 	bufp->ovfl->flags |= BUF_MOD;
    506       1.1       cgd #ifdef DEBUG1
    507       1.1       cgd 	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
    508       1.1       cgd 	    tmp1, tmp2, bufp->ovfl->addr);
    509       1.1       cgd #endif
    510       1.1       cgd 	ndx = sp[0];
    511       1.1       cgd 	/*
    512       1.1       cgd 	 * Since a pair is allocated on a page only if there's room to add
    513       1.1       cgd 	 * an overflow page, we know that the OVFL information will fit on
    514       1.1       cgd 	 * the page.
    515       1.1       cgd 	 */
    516       1.1       cgd 	sp[ndx + 4] = OFFSET(sp);
    517      1.20  christos 	temp = FREESPACE(sp);
    518      1.20  christos 	_DIAGASSERT(temp >= OVFLSIZE);
    519      1.21     joerg 	sp[ndx + 3] = (uint16_t)(temp - OVFLSIZE);
    520       1.1       cgd 	sp[ndx + 1] = ovfl_num;
    521       1.1       cgd 	sp[ndx + 2] = OVFLPAGE;
    522       1.1       cgd 	sp[0] = ndx + 2;
    523       1.1       cgd #ifdef HASH_STATISTICS
    524       1.1       cgd 	hash_overflows++;
    525       1.1       cgd #endif
    526       1.1       cgd 	return (bufp->ovfl);
    527       1.1       cgd }
    528       1.1       cgd 
    529       1.1       cgd /*
    530       1.1       cgd  * Returns:
    531       1.1       cgd  *	 0 indicates SUCCESS
    532       1.1       cgd  *	-1 indicates FAILURE
    533       1.1       cgd  */
    534      1.20  christos int
    535      1.21     joerg __get_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_disk,
    536      1.20  christos     int is_bitmap)
    537       1.1       cgd {
    538      1.20  christos 	int fd, page, size;
    539      1.20  christos 	ssize_t rsize;
    540      1.21     joerg 	uint16_t *bp;
    541      1.20  christos 	size_t temp;
    542       1.1       cgd 
    543       1.1       cgd 	fd = hashp->fp;
    544       1.1       cgd 	size = hashp->BSIZE;
    545       1.1       cgd 
    546       1.1       cgd 	if ((fd == -1) || !is_disk) {
    547       1.1       cgd 		PAGE_INIT(p);
    548       1.1       cgd 		return (0);
    549       1.1       cgd 	}
    550       1.1       cgd 	if (is_bucket)
    551       1.1       cgd 		page = BUCKET_TO_PAGE(bucket);
    552       1.1       cgd 	else
    553       1.1       cgd 		page = OADDR_TO_PAGE(bucket);
    554      1.13  christos 	if ((rsize = pread(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
    555       1.1       cgd 		return (-1);
    556      1.21     joerg 	bp = (uint16_t *)(void *)p;
    557       1.1       cgd 	if (!rsize)
    558       1.1       cgd 		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
    559       1.1       cgd 	else
    560       1.1       cgd 		if (rsize != size) {
    561       1.1       cgd 			errno = EFTYPE;
    562       1.1       cgd 			return (-1);
    563       1.1       cgd 		}
    564       1.1       cgd 	if (!is_bitmap && !bp[0]) {
    565       1.1       cgd 		PAGE_INIT(p);
    566       1.1       cgd 	} else
    567       1.1       cgd 		if (hashp->LORDER != BYTE_ORDER) {
    568      1.20  christos 			int i, max;
    569       1.1       cgd 
    570       1.1       cgd 			if (is_bitmap) {
    571      1.21     joerg 				max = (uint32_t)hashp->BSIZE >> 2; /* divide by 4 */
    572       1.1       cgd 				for (i = 0; i < max; i++)
    573      1.13  christos 					M_32_SWAP(((int *)(void *)p)[i]);
    574       1.1       cgd 			} else {
    575       1.6       cgd 				M_16_SWAP(bp[0]);
    576       1.1       cgd 				max = bp[0] + 2;
    577       1.1       cgd 				for (i = 1; i <= max; i++)
    578       1.6       cgd 					M_16_SWAP(bp[i]);
    579       1.1       cgd 			}
    580       1.1       cgd 		}
    581       1.1       cgd 	return (0);
    582       1.1       cgd }
    583       1.1       cgd 
    584       1.1       cgd /*
    585       1.1       cgd  * Write page p to disk
    586       1.1       cgd  *
    587       1.1       cgd  * Returns:
    588       1.1       cgd  *	 0 ==> OK
    589       1.1       cgd  *	-1 ==>failure
    590       1.1       cgd  */
    591      1.20  christos int
    592      1.21     joerg __put_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_bitmap)
    593       1.1       cgd {
    594      1.20  christos 	int fd, page, size;
    595      1.20  christos 	ssize_t wsize;
    596       1.1       cgd 
    597       1.1       cgd 	size = hashp->BSIZE;
    598  1.24.4.2      yamt 	if ((hashp->fp == -1) && (hashp->fp = __dbtemp("_hash", NULL)) == -1)
    599       1.1       cgd 		return (-1);
    600       1.1       cgd 	fd = hashp->fp;
    601       1.1       cgd 
    602       1.1       cgd 	if (hashp->LORDER != BYTE_ORDER) {
    603      1.20  christos 		int i;
    604      1.20  christos 		int max;
    605       1.1       cgd 
    606       1.1       cgd 		if (is_bitmap) {
    607      1.21     joerg 			max = (uint32_t)hashp->BSIZE >> 2;	/* divide by 4 */
    608       1.1       cgd 			for (i = 0; i < max; i++)
    609      1.13  christos 				M_32_SWAP(((int *)(void *)p)[i]);
    610       1.1       cgd 		} else {
    611      1.21     joerg 			max = ((uint16_t *)(void *)p)[0] + 2;
    612       1.1       cgd 			for (i = 0; i <= max; i++)
    613      1.21     joerg 				M_16_SWAP(((uint16_t *)(void *)p)[i]);
    614       1.1       cgd 		}
    615       1.1       cgd 	}
    616       1.1       cgd 	if (is_bucket)
    617       1.1       cgd 		page = BUCKET_TO_PAGE(bucket);
    618       1.1       cgd 	else
    619       1.1       cgd 		page = OADDR_TO_PAGE(bucket);
    620      1.13  christos 	if ((wsize = pwrite(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
    621       1.1       cgd 		/* Errno is set */
    622       1.1       cgd 		return (-1);
    623       1.1       cgd 	if (wsize != size) {
    624       1.1       cgd 		errno = EFTYPE;
    625       1.1       cgd 		return (-1);
    626       1.1       cgd 	}
    627       1.1       cgd 	return (0);
    628       1.1       cgd }
    629       1.1       cgd 
    630       1.1       cgd #define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
    631       1.1       cgd /*
    632       1.1       cgd  * Initialize a new bitmap page.  Bitmap pages are left in memory
    633       1.1       cgd  * once they are read in.
    634       1.1       cgd  */
    635      1.20  christos int
    636      1.20  christos __ibitmap(HTAB *hashp, int pnum, int nbits, int ndx)
    637       1.1       cgd {
    638      1.21     joerg 	uint32_t *ip;
    639       1.1       cgd 	int clearbytes, clearints;
    640       1.1       cgd 
    641      1.20  christos 	if ((ip = malloc((size_t)hashp->BSIZE)) == NULL)
    642       1.1       cgd 		return (1);
    643       1.1       cgd 	hashp->nmaps++;
    644      1.21     joerg 	clearints = ((uint32_t)(nbits - 1) >> INT_BYTE_SHIFT) + 1;
    645       1.1       cgd 	clearbytes = clearints << INT_TO_BYTE;
    646      1.13  christos 	(void)memset(ip, 0, (size_t)clearbytes);
    647      1.13  christos 	(void)memset(((char *)(void *)ip) + clearbytes, 0xFF,
    648      1.13  christos 	    (size_t)(hashp->BSIZE - clearbytes));
    649       1.1       cgd 	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
    650       1.1       cgd 	SETBIT(ip, 0);
    651      1.21     joerg 	hashp->BITMAPS[ndx] = (uint16_t)pnum;
    652       1.1       cgd 	hashp->mapp[ndx] = ip;
    653       1.1       cgd 	return (0);
    654       1.1       cgd }
    655       1.1       cgd 
    656      1.21     joerg static uint32_t
    657      1.21     joerg first_free(uint32_t map)
    658       1.1       cgd {
    659      1.21     joerg 	uint32_t i, mask;
    660       1.1       cgd 
    661       1.1       cgd 	mask = 0x1;
    662       1.1       cgd 	for (i = 0; i < BITS_PER_MAP; i++) {
    663       1.1       cgd 		if (!(mask & map))
    664       1.1       cgd 			return (i);
    665       1.1       cgd 		mask = mask << 1;
    666       1.1       cgd 	}
    667       1.1       cgd 	return (i);
    668       1.1       cgd }
    669       1.1       cgd 
    670      1.21     joerg static uint16_t
    671      1.20  christos overflow_page(HTAB *hashp)
    672       1.1       cgd {
    673      1.21     joerg 	uint32_t *freep = NULL;
    674      1.20  christos 	int max_free, offset, splitnum;
    675      1.21     joerg 	uint16_t addr;
    676       1.1       cgd 	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
    677       1.1       cgd #ifdef DEBUG2
    678       1.1       cgd 	int tmp1, tmp2;
    679       1.1       cgd #endif
    680       1.1       cgd 	splitnum = hashp->OVFL_POINT;
    681       1.1       cgd 	max_free = hashp->SPARES[splitnum];
    682       1.1       cgd 
    683      1.21     joerg 	free_page = (uint32_t)(max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
    684       1.1       cgd 	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
    685       1.1       cgd 
    686       1.1       cgd 	/* Look through all the free maps to find the first free block */
    687      1.21     joerg 	first_page = (uint32_t)hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
    688       1.1       cgd 	for ( i = first_page; i <= free_page; i++ ) {
    689      1.21     joerg 		if (!(freep = (uint32_t *)hashp->mapp[i]) &&
    690       1.1       cgd 		    !(freep = fetch_bitmap(hashp, i)))
    691       1.8       cgd 			return (0);
    692       1.1       cgd 		if (i == free_page)
    693       1.1       cgd 			in_use_bits = free_bit;
    694       1.1       cgd 		else
    695       1.1       cgd 			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
    696       1.1       cgd 
    697       1.1       cgd 		if (i == first_page) {
    698       1.1       cgd 			bit = hashp->LAST_FREED &
    699       1.1       cgd 			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
    700       1.1       cgd 			j = bit / BITS_PER_MAP;
    701       1.1       cgd 			bit = bit & ~(BITS_PER_MAP - 1);
    702       1.1       cgd 		} else {
    703       1.1       cgd 			bit = 0;
    704       1.1       cgd 			j = 0;
    705       1.1       cgd 		}
    706       1.1       cgd 		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
    707       1.1       cgd 			if (freep[j] != ALL_SET)
    708       1.1       cgd 				goto found;
    709       1.1       cgd 	}
    710       1.1       cgd 
    711       1.1       cgd 	/* No Free Page Found */
    712       1.1       cgd 	hashp->LAST_FREED = hashp->SPARES[splitnum];
    713       1.1       cgd 	hashp->SPARES[splitnum]++;
    714       1.1       cgd 	offset = hashp->SPARES[splitnum] -
    715       1.1       cgd 	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
    716       1.1       cgd 
    717       1.1       cgd #define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
    718       1.1       cgd 	if (offset > SPLITMASK) {
    719       1.1       cgd 		if (++splitnum >= NCACHED) {
    720       1.1       cgd 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
    721      1.14   mycroft 			errno = EFBIG;
    722       1.8       cgd 			return (0);
    723       1.1       cgd 		}
    724       1.1       cgd 		hashp->OVFL_POINT = splitnum;
    725       1.1       cgd 		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
    726       1.1       cgd 		hashp->SPARES[splitnum-1]--;
    727       1.1       cgd 		offset = 1;
    728       1.1       cgd 	}
    729       1.1       cgd 
    730       1.1       cgd 	/* Check if we need to allocate a new bitmap page */
    731       1.1       cgd 	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
    732       1.1       cgd 		free_page++;
    733       1.1       cgd 		if (free_page >= NCACHED) {
    734       1.1       cgd 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
    735      1.14   mycroft 			errno = EFBIG;
    736       1.8       cgd 			return (0);
    737       1.1       cgd 		}
    738       1.1       cgd 		/*
    739       1.1       cgd 		 * This is tricky.  The 1 indicates that you want the new page
    740       1.1       cgd 		 * allocated with 1 clear bit.  Actually, you are going to
    741       1.1       cgd 		 * allocate 2 pages from this map.  The first is going to be
    742       1.1       cgd 		 * the map page, the second is the overflow page we were
    743       1.1       cgd 		 * looking for.  The init_bitmap routine automatically, sets
    744       1.1       cgd 		 * the first bit of itself to indicate that the bitmap itself
    745       1.1       cgd 		 * is in use.  We would explicitly set the second bit, but
    746       1.1       cgd 		 * don't have to if we tell init_bitmap not to leave it clear
    747       1.1       cgd 		 * in the first place.
    748       1.1       cgd 		 */
    749       1.8       cgd 		if (__ibitmap(hashp,
    750       1.8       cgd 		    (int)OADDR_OF(splitnum, offset), 1, free_page))
    751       1.8       cgd 			return (0);
    752       1.1       cgd 		hashp->SPARES[splitnum]++;
    753       1.1       cgd #ifdef DEBUG2
    754       1.1       cgd 		free_bit = 2;
    755       1.1       cgd #endif
    756       1.1       cgd 		offset++;
    757       1.1       cgd 		if (offset > SPLITMASK) {
    758       1.1       cgd 			if (++splitnum >= NCACHED) {
    759       1.1       cgd 				(void)write(STDERR_FILENO, OVMSG,
    760       1.1       cgd 				    sizeof(OVMSG) - 1);
    761      1.14   mycroft 				errno = EFBIG;
    762       1.8       cgd 				return (0);
    763       1.1       cgd 			}
    764       1.1       cgd 			hashp->OVFL_POINT = splitnum;
    765       1.1       cgd 			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
    766       1.1       cgd 			hashp->SPARES[splitnum-1]--;
    767       1.1       cgd 			offset = 0;
    768       1.1       cgd 		}
    769       1.1       cgd 	} else {
    770       1.1       cgd 		/*
    771       1.1       cgd 		 * Free_bit addresses the last used bit.  Bump it to address
    772       1.1       cgd 		 * the first available bit.
    773       1.1       cgd 		 */
    774       1.1       cgd 		free_bit++;
    775       1.1       cgd 		SETBIT(freep, free_bit);
    776       1.1       cgd 	}
    777       1.1       cgd 
    778       1.1       cgd 	/* Calculate address of the new overflow page */
    779       1.1       cgd 	addr = OADDR_OF(splitnum, offset);
    780       1.1       cgd #ifdef DEBUG2
    781       1.1       cgd 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
    782       1.1       cgd 	    addr, free_bit, free_page);
    783       1.1       cgd #endif
    784       1.1       cgd 	return (addr);
    785       1.1       cgd 
    786       1.1       cgd found:
    787       1.1       cgd 	bit = bit + first_free(freep[j]);
    788       1.1       cgd 	SETBIT(freep, bit);
    789       1.1       cgd #ifdef DEBUG2
    790       1.1       cgd 	tmp1 = bit;
    791       1.1       cgd 	tmp2 = i;
    792       1.1       cgd #endif
    793       1.1       cgd 	/*
    794       1.1       cgd 	 * Bits are addressed starting with 0, but overflow pages are addressed
    795       1.1       cgd 	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
    796       1.1       cgd 	 * it to convert it to a page number.
    797       1.1       cgd 	 */
    798       1.1       cgd 	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
    799       1.1       cgd 	if (bit >= hashp->LAST_FREED)
    800       1.1       cgd 		hashp->LAST_FREED = bit - 1;
    801       1.1       cgd 
    802       1.1       cgd 	/* Calculate the split number for this page */
    803       1.1       cgd 	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
    804       1.1       cgd 	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
    805      1.14   mycroft 	if (offset >= SPLITMASK) {
    806      1.14   mycroft 		(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
    807      1.14   mycroft 		errno = EFBIG;
    808       1.8       cgd 		return (0);	/* Out of overflow pages */
    809      1.14   mycroft 	}
    810       1.1       cgd 	addr = OADDR_OF(i, offset);
    811       1.1       cgd #ifdef DEBUG2
    812       1.1       cgd 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
    813       1.1       cgd 	    addr, tmp1, tmp2);
    814       1.1       cgd #endif
    815       1.1       cgd 
    816       1.1       cgd 	/* Allocate and return the overflow page */
    817       1.1       cgd 	return (addr);
    818       1.1       cgd }
    819       1.1       cgd 
    820       1.1       cgd /*
    821       1.1       cgd  * Mark this overflow page as free.
    822       1.1       cgd  */
    823      1.20  christos void
    824      1.20  christos __free_ovflpage(HTAB *hashp, BUFHEAD *obufp)
    825       1.1       cgd {
    826      1.21     joerg 	uint16_t addr;
    827      1.21     joerg 	uint32_t *freep;
    828       1.1       cgd 	int bit_address, free_page, free_bit;
    829      1.21     joerg 	uint16_t ndx;
    830       1.1       cgd 
    831       1.1       cgd 	addr = obufp->addr;
    832       1.1       cgd #ifdef DEBUG1
    833       1.1       cgd 	(void)fprintf(stderr, "Freeing %d\n", addr);
    834       1.1       cgd #endif
    835      1.21     joerg 	ndx = (((uint32_t)addr) >> SPLITSHIFT);
    836       1.1       cgd 	bit_address =
    837       1.1       cgd 	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
    838       1.1       cgd 	 if (bit_address < hashp->LAST_FREED)
    839       1.1       cgd 		hashp->LAST_FREED = bit_address;
    840      1.21     joerg 	free_page = ((uint32_t)bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
    841       1.1       cgd 	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
    842       1.1       cgd 
    843       1.1       cgd 	if (!(freep = hashp->mapp[free_page]))
    844       1.1       cgd 		freep = fetch_bitmap(hashp, free_page);
    845       1.1       cgd 	/*
    846       1.1       cgd 	 * This had better never happen.  It means we tried to read a bitmap
    847       1.1       cgd 	 * that has already had overflow pages allocated off it, and we
    848       1.1       cgd 	 * failed to read it from the file.
    849       1.1       cgd 	 */
    850      1.20  christos 	_DIAGASSERT(freep != NULL);
    851       1.1       cgd 	CLRBIT(freep, free_bit);
    852       1.1       cgd #ifdef DEBUG2
    853       1.1       cgd 	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
    854       1.1       cgd 	    obufp->addr, free_bit, free_page);
    855       1.1       cgd #endif
    856       1.1       cgd 	__reclaim_buf(hashp, obufp);
    857       1.1       cgd }
    858       1.1       cgd 
    859       1.1       cgd /*
    860       1.1       cgd  * We have to know that the key will fit, but the last entry on the page is
    861       1.1       cgd  * an overflow pair, so we need to shift things.
    862       1.1       cgd  */
    863       1.1       cgd static void
    864      1.21     joerg squeeze_key(uint16_t *sp, const DBT *key, const DBT *val)
    865       1.1       cgd {
    866      1.20  christos 	char *p;
    867      1.21     joerg 	uint16_t free_space, n, off, pageno;
    868      1.20  christos 	size_t temp;
    869       1.1       cgd 
    870      1.13  christos 	p = (char *)(void *)sp;
    871       1.1       cgd 	n = sp[0];
    872       1.1       cgd 	free_space = FREESPACE(sp);
    873       1.1       cgd 	off = OFFSET(sp);
    874       1.1       cgd 
    875       1.1       cgd 	pageno = sp[n - 1];
    876      1.20  christos 	_DIAGASSERT(off >= key->size);
    877      1.21     joerg 	off -= (uint16_t)key->size;
    878       1.1       cgd 	sp[n - 1] = off;
    879       1.1       cgd 	memmove(p + off, key->data, key->size);
    880      1.20  christos 	_DIAGASSERT(off >= val->size);
    881      1.21     joerg 	off -= (uint16_t)val->size;
    882       1.1       cgd 	sp[n] = off;
    883       1.1       cgd 	memmove(p + off, val->data, val->size);
    884       1.1       cgd 	sp[0] = n + 2;
    885       1.1       cgd 	sp[n + 1] = pageno;
    886       1.1       cgd 	sp[n + 2] = OVFLPAGE;
    887      1.20  christos 	temp = PAIRSIZE(key, val);
    888      1.20  christos 	_DIAGASSERT(free_space >= temp);
    889      1.21     joerg 	FREESPACE(sp) = (uint16_t)(free_space - temp);
    890       1.1       cgd 	OFFSET(sp) = off;
    891       1.1       cgd }
    892       1.1       cgd 
    893      1.21     joerg static uint32_t *
    894      1.20  christos fetch_bitmap(HTAB *hashp, int ndx)
    895       1.1       cgd {
    896       1.6       cgd 	if (ndx >= hashp->nmaps)
    897       1.1       cgd 		return (NULL);
    898      1.20  christos 	if ((hashp->mapp[ndx] = malloc((size_t)hashp->BSIZE)) == NULL)
    899       1.6       cgd 		return (NULL);
    900       1.6       cgd 	if (__get_page(hashp,
    901      1.21     joerg 	    (char *)(void *)hashp->mapp[ndx], (uint32_t)hashp->BITMAPS[ndx], 0, 1, 1)) {
    902       1.6       cgd 		free(hashp->mapp[ndx]);
    903       1.6       cgd 		return (NULL);
    904       1.6       cgd 	}
    905       1.1       cgd 	return (hashp->mapp[ndx]);
    906       1.1       cgd }
    907       1.1       cgd 
    908       1.1       cgd #ifdef DEBUG4
    909      1.21     joerg void print_chain(HTAB *, uint32_t);
    910      1.20  christos void
    911      1.21     joerg print_chain(HTAB *hashp, uint32_t addr)
    912       1.1       cgd {
    913       1.1       cgd 	BUFHEAD *bufp;
    914      1.21     joerg 	uint16_t *bp, oaddr;
    915       1.1       cgd 
    916       1.1       cgd 	(void)fprintf(stderr, "%d ", addr);
    917       1.1       cgd 	bufp = __get_buf(hashp, addr, NULL, 0);
    918      1.21     joerg 	bp = (uint16_t *)bufp->page;
    919       1.1       cgd 	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
    920       1.1       cgd 		((bp[0] > 2) && bp[2] < REAL_KEY))) {
    921       1.1       cgd 		oaddr = bp[bp[0] - 1];
    922       1.1       cgd 		(void)fprintf(stderr, "%d ", (int)oaddr);
    923      1.21     joerg 		bufp = __get_buf(hashp, (uint32_t)oaddr, bufp, 0);
    924      1.21     joerg 		bp = (uint16_t *)bufp->page;
    925       1.1       cgd 	}
    926       1.1       cgd 	(void)fprintf(stderr, "\n");
    927       1.1       cgd }
    928       1.1       cgd #endif
    929