hash_page.c revision 1.29 1 1.29 christos /* $NetBSD: hash_page.c,v 1.29 2016/09/24 20:08:29 christos Exp $ */
2 1.7 cgd
3 1.1 cgd /*-
4 1.6 cgd * Copyright (c) 1990, 1993, 1994
5 1.1 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Margo Seltzer.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.16 agc * 3. Neither the name of the University nor the names of its contributors
19 1.1 cgd * may be used to endorse or promote products derived from this software
20 1.1 cgd * without specific prior written permission.
21 1.1 cgd *
22 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 cgd * SUCH DAMAGE.
33 1.1 cgd */
34 1.1 cgd
35 1.23 joerg #if HAVE_NBTOOL_CONFIG_H
36 1.23 joerg #include "nbtool_config.h"
37 1.23 joerg #endif
38 1.23 joerg
39 1.9 christos #include <sys/cdefs.h>
40 1.29 christos __RCSID("$NetBSD: hash_page.c,v 1.29 2016/09/24 20:08:29 christos Exp $");
41 1.1 cgd
42 1.1 cgd /*
43 1.1 cgd * PACKAGE: hashing
44 1.1 cgd *
45 1.1 cgd * DESCRIPTION:
46 1.1 cgd * Page manipulation for hashing package.
47 1.1 cgd *
48 1.1 cgd * ROUTINES:
49 1.1 cgd *
50 1.1 cgd * External
51 1.1 cgd * __get_page
52 1.1 cgd * __add_ovflpage
53 1.1 cgd * Internal
54 1.1 cgd * overflow_page
55 1.1 cgd */
56 1.12 kleink
57 1.12 kleink #include "namespace.h"
58 1.1 cgd
59 1.1 cgd #include <sys/types.h>
60 1.1 cgd
61 1.1 cgd #include <errno.h>
62 1.1 cgd #include <fcntl.h>
63 1.1 cgd #include <signal.h>
64 1.1 cgd #include <stdio.h>
65 1.1 cgd #include <stdlib.h>
66 1.1 cgd #include <string.h>
67 1.1 cgd #include <unistd.h>
68 1.18 rtr #include <paths.h>
69 1.1 cgd #include <assert.h>
70 1.1 cgd
71 1.1 cgd #include <db.h>
72 1.1 cgd #include "hash.h"
73 1.1 cgd #include "page.h"
74 1.1 cgd #include "extern.h"
75 1.1 cgd
76 1.21 joerg static uint32_t *fetch_bitmap(HTAB *, int);
77 1.21 joerg static uint32_t first_free(uint32_t);
78 1.21 joerg static uint16_t overflow_page(HTAB *);
79 1.20 christos static void putpair(char *, const DBT *, const DBT *);
80 1.21 joerg static void squeeze_key(uint16_t *, const DBT *, const DBT *);
81 1.21 joerg static int ugly_split(HTAB *, uint32_t, BUFHEAD *, BUFHEAD *, int, int);
82 1.1 cgd
83 1.1 cgd #define PAGE_INIT(P) { \
84 1.21 joerg ((uint16_t *)(void *)(P))[0] = 0; \
85 1.21 joerg temp = 3 * sizeof(uint16_t); \
86 1.28 christos _DIAGASSERT((size_t)HASH_BSIZE(hashp) >= temp); \
87 1.28 christos ((uint16_t *)(void *)(P))[1] = (uint16_t)(HASH_BSIZE(hashp) - temp); \
88 1.28 christos ((uint16_t *)(void *)(P))[2] = HASH_BSIZE(hashp); \
89 1.1 cgd }
90 1.1 cgd
91 1.1 cgd /*
92 1.1 cgd * This is called AFTER we have verified that there is room on the page for
93 1.1 cgd * the pair (PAIRFITS has returned true) so we go right ahead and start moving
94 1.1 cgd * stuff on.
95 1.1 cgd */
96 1.1 cgd static void
97 1.20 christos putpair(char *p, const DBT *key, const DBT *val)
98 1.1 cgd {
99 1.21 joerg uint16_t *bp, n, off;
100 1.20 christos size_t temp;
101 1.1 cgd
102 1.21 joerg bp = (uint16_t *)(void *)p;
103 1.1 cgd
104 1.1 cgd /* Enter the key first. */
105 1.1 cgd n = bp[0];
106 1.1 cgd
107 1.20 christos temp = OFFSET(bp);
108 1.20 christos _DIAGASSERT(temp >= key->size);
109 1.21 joerg off = (uint16_t)(temp - key->size);
110 1.1 cgd memmove(p + off, key->data, key->size);
111 1.1 cgd bp[++n] = off;
112 1.1 cgd
113 1.1 cgd /* Now the data. */
114 1.20 christos _DIAGASSERT(off >= val->size);
115 1.21 joerg off -= (uint16_t)val->size;
116 1.1 cgd memmove(p + off, val->data, val->size);
117 1.1 cgd bp[++n] = off;
118 1.1 cgd
119 1.1 cgd /* Adjust page info. */
120 1.1 cgd bp[0] = n;
121 1.21 joerg temp = (n + 3) * sizeof(uint16_t);
122 1.20 christos _DIAGASSERT(off >= temp);
123 1.21 joerg bp[n + 1] = (uint16_t)(off - temp);
124 1.1 cgd bp[n + 2] = off;
125 1.1 cgd }
126 1.1 cgd
127 1.1 cgd /*
128 1.1 cgd * Returns:
129 1.1 cgd * 0 OK
130 1.1 cgd * -1 error
131 1.1 cgd */
132 1.20 christos int
133 1.20 christos __delpair(HTAB *hashp, BUFHEAD *bufp, int ndx)
134 1.1 cgd {
135 1.21 joerg uint16_t *bp, newoff;
136 1.20 christos int n;
137 1.21 joerg uint16_t pairlen;
138 1.20 christos size_t temp;
139 1.1 cgd
140 1.21 joerg bp = (uint16_t *)(void *)bufp->page;
141 1.1 cgd n = bp[0];
142 1.1 cgd
143 1.1 cgd if (bp[ndx + 1] < REAL_KEY)
144 1.1 cgd return (__big_delete(hashp, bufp));
145 1.1 cgd if (ndx != 1)
146 1.1 cgd newoff = bp[ndx - 1];
147 1.1 cgd else
148 1.28 christos newoff = HASH_BSIZE(hashp);
149 1.1 cgd pairlen = newoff - bp[ndx + 1];
150 1.1 cgd
151 1.1 cgd if (ndx != (n - 1)) {
152 1.1 cgd /* Hard Case -- need to shuffle keys */
153 1.20 christos int i;
154 1.20 christos char *src = bufp->page + (int)OFFSET(bp);
155 1.20 christos char *dst = src + (int)pairlen;
156 1.13 christos memmove(dst, src, (size_t)(bp[ndx + 1] - OFFSET(bp)));
157 1.1 cgd
158 1.1 cgd /* Now adjust the pointers */
159 1.1 cgd for (i = ndx + 2; i <= n; i += 2) {
160 1.1 cgd if (bp[i + 1] == OVFLPAGE) {
161 1.1 cgd bp[i - 2] = bp[i];
162 1.1 cgd bp[i - 1] = bp[i + 1];
163 1.1 cgd } else {
164 1.1 cgd bp[i - 2] = bp[i] + pairlen;
165 1.1 cgd bp[i - 1] = bp[i + 1] + pairlen;
166 1.1 cgd }
167 1.1 cgd }
168 1.1 cgd }
169 1.1 cgd /* Finally adjust the page data */
170 1.1 cgd bp[n] = OFFSET(bp) + pairlen;
171 1.21 joerg temp = bp[n + 1] + pairlen + 2 * sizeof(uint16_t);
172 1.20 christos _DIAGASSERT(temp <= 0xffff);
173 1.21 joerg bp[n - 1] = (uint16_t)temp;
174 1.1 cgd bp[0] = n - 2;
175 1.1 cgd hashp->NKEYS--;
176 1.1 cgd
177 1.1 cgd bufp->flags |= BUF_MOD;
178 1.1 cgd return (0);
179 1.1 cgd }
180 1.1 cgd /*
181 1.1 cgd * Returns:
182 1.1 cgd * 0 ==> OK
183 1.1 cgd * -1 ==> Error
184 1.1 cgd */
185 1.20 christos int
186 1.21 joerg __split_page(HTAB *hashp, uint32_t obucket, uint32_t nbucket)
187 1.20 christos {
188 1.20 christos BUFHEAD *new_bufp, *old_bufp;
189 1.21 joerg uint16_t *ino;
190 1.20 christos char *np;
191 1.1 cgd DBT key, val;
192 1.1 cgd int n, ndx, retval;
193 1.21 joerg uint16_t copyto, diff, off, moved;
194 1.1 cgd char *op;
195 1.20 christos size_t temp;
196 1.1 cgd
197 1.28 christos copyto = HASH_BSIZE(hashp);
198 1.28 christos off = HASH_BSIZE(hashp);
199 1.1 cgd old_bufp = __get_buf(hashp, obucket, NULL, 0);
200 1.1 cgd if (old_bufp == NULL)
201 1.1 cgd return (-1);
202 1.1 cgd new_bufp = __get_buf(hashp, nbucket, NULL, 0);
203 1.1 cgd if (new_bufp == NULL)
204 1.1 cgd return (-1);
205 1.1 cgd
206 1.1 cgd old_bufp->flags |= (BUF_MOD | BUF_PIN);
207 1.1 cgd new_bufp->flags |= (BUF_MOD | BUF_PIN);
208 1.1 cgd
209 1.21 joerg ino = (uint16_t *)(void *)(op = old_bufp->page);
210 1.1 cgd np = new_bufp->page;
211 1.1 cgd
212 1.1 cgd moved = 0;
213 1.1 cgd
214 1.1 cgd for (n = 1, ndx = 1; n < ino[0]; n += 2) {
215 1.1 cgd if (ino[n + 1] < REAL_KEY) {
216 1.1 cgd retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
217 1.1 cgd (int)copyto, (int)moved);
218 1.1 cgd old_bufp->flags &= ~BUF_PIN;
219 1.1 cgd new_bufp->flags &= ~BUF_PIN;
220 1.1 cgd return (retval);
221 1.1 cgd
222 1.1 cgd }
223 1.21 joerg key.data = (uint8_t *)op + ino[n];
224 1.1 cgd key.size = off - ino[n];
225 1.1 cgd
226 1.13 christos if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
227 1.1 cgd /* Don't switch page */
228 1.1 cgd diff = copyto - off;
229 1.1 cgd if (diff) {
230 1.1 cgd copyto = ino[n + 1] + diff;
231 1.1 cgd memmove(op + copyto, op + ino[n + 1],
232 1.13 christos (size_t)(off - ino[n + 1]));
233 1.1 cgd ino[ndx] = copyto + ino[n] - ino[n + 1];
234 1.1 cgd ino[ndx + 1] = copyto;
235 1.1 cgd } else
236 1.1 cgd copyto = ino[n + 1];
237 1.1 cgd ndx += 2;
238 1.1 cgd } else {
239 1.1 cgd /* Switch page */
240 1.21 joerg val.data = (uint8_t *)op + ino[n + 1];
241 1.1 cgd val.size = ino[n] - ino[n + 1];
242 1.1 cgd putpair(np, &key, &val);
243 1.1 cgd moved += 2;
244 1.1 cgd }
245 1.1 cgd
246 1.1 cgd off = ino[n + 1];
247 1.1 cgd }
248 1.1 cgd
249 1.1 cgd /* Now clean up the page */
250 1.1 cgd ino[0] -= moved;
251 1.21 joerg temp = sizeof(uint16_t) * (ino[0] + 3);
252 1.20 christos _DIAGASSERT(copyto >= temp);
253 1.21 joerg FREESPACE(ino) = (uint16_t)(copyto - temp);
254 1.1 cgd OFFSET(ino) = copyto;
255 1.1 cgd
256 1.1 cgd #ifdef DEBUG3
257 1.1 cgd (void)fprintf(stderr, "split %d/%d\n",
258 1.21 joerg ((uint16_t *)np)[0] / 2,
259 1.21 joerg ((uint16_t *)op)[0] / 2);
260 1.1 cgd #endif
261 1.1 cgd /* unpin both pages */
262 1.1 cgd old_bufp->flags &= ~BUF_PIN;
263 1.1 cgd new_bufp->flags &= ~BUF_PIN;
264 1.1 cgd return (0);
265 1.1 cgd }
266 1.1 cgd
267 1.1 cgd /*
268 1.1 cgd * Called when we encounter an overflow or big key/data page during split
269 1.1 cgd * handling. This is special cased since we have to begin checking whether
270 1.1 cgd * the key/data pairs fit on their respective pages and because we may need
271 1.1 cgd * overflow pages for both the old and new pages.
272 1.1 cgd *
273 1.1 cgd * The first page might be a page with regular key/data pairs in which case
274 1.1 cgd * we have a regular overflow condition and just need to go on to the next
275 1.1 cgd * page or it might be a big key/data pair in which case we need to fix the
276 1.1 cgd * big key/data pair.
277 1.1 cgd *
278 1.1 cgd * Returns:
279 1.1 cgd * 0 ==> success
280 1.1 cgd * -1 ==> failure
281 1.1 cgd */
282 1.1 cgd static int
283 1.20 christos ugly_split(
284 1.20 christos HTAB *hashp,
285 1.21 joerg uint32_t obucket, /* Same as __split_page. */
286 1.20 christos BUFHEAD *old_bufp,
287 1.20 christos BUFHEAD *new_bufp,
288 1.20 christos int copyto, /* First byte on page which contains key/data values. */
289 1.20 christos int moved /* Number of pairs moved to new page. */
290 1.20 christos )
291 1.20 christos {
292 1.20 christos BUFHEAD *bufp; /* Buffer header for ino */
293 1.21 joerg uint16_t *ino; /* Page keys come off of */
294 1.21 joerg uint16_t *np; /* New page */
295 1.21 joerg uint16_t *op; /* Page keys go on to if they aren't moving */
296 1.20 christos size_t temp;
297 1.1 cgd
298 1.1 cgd BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */
299 1.1 cgd DBT key, val;
300 1.1 cgd SPLIT_RETURN ret;
301 1.21 joerg uint16_t n, off, ov_addr, scopyto;
302 1.1 cgd char *cino; /* Character value of ino */
303 1.1 cgd
304 1.1 cgd bufp = old_bufp;
305 1.21 joerg ino = (uint16_t *)(void *)old_bufp->page;
306 1.21 joerg np = (uint16_t *)(void *)new_bufp->page;
307 1.21 joerg op = (uint16_t *)(void *)old_bufp->page;
308 1.1 cgd last_bfp = NULL;
309 1.21 joerg scopyto = (uint16_t)copyto; /* ANSI */
310 1.1 cgd
311 1.1 cgd n = ino[0] - 1;
312 1.1 cgd while (n < ino[0]) {
313 1.1 cgd if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
314 1.1 cgd if (__big_split(hashp, old_bufp,
315 1.13 christos new_bufp, bufp, (int)bufp->addr, obucket, &ret))
316 1.1 cgd return (-1);
317 1.1 cgd old_bufp = ret.oldp;
318 1.1 cgd if (!old_bufp)
319 1.1 cgd return (-1);
320 1.21 joerg op = (uint16_t *)(void *)old_bufp->page;
321 1.1 cgd new_bufp = ret.newp;
322 1.1 cgd if (!new_bufp)
323 1.1 cgd return (-1);
324 1.21 joerg np = (uint16_t *)(void *)new_bufp->page;
325 1.1 cgd bufp = ret.nextp;
326 1.1 cgd if (!bufp)
327 1.1 cgd return (0);
328 1.1 cgd cino = (char *)bufp->page;
329 1.21 joerg ino = (uint16_t *)(void *)cino;
330 1.1 cgd last_bfp = ret.nextp;
331 1.1 cgd } else if (ino[n + 1] == OVFLPAGE) {
332 1.1 cgd ov_addr = ino[n];
333 1.1 cgd /*
334 1.1 cgd * Fix up the old page -- the extra 2 are the fields
335 1.1 cgd * which contained the overflow information.
336 1.1 cgd */
337 1.1 cgd ino[0] -= (moved + 2);
338 1.21 joerg temp = sizeof(uint16_t) * (ino[0] + 3);
339 1.20 christos _DIAGASSERT(scopyto >= temp);
340 1.21 joerg FREESPACE(ino) = (uint16_t)(scopyto - temp);
341 1.1 cgd OFFSET(ino) = scopyto;
342 1.1 cgd
343 1.21 joerg bufp = __get_buf(hashp, (uint32_t)ov_addr, bufp, 0);
344 1.1 cgd if (!bufp)
345 1.1 cgd return (-1);
346 1.1 cgd
347 1.21 joerg ino = (uint16_t *)(void *)bufp->page;
348 1.1 cgd n = 1;
349 1.28 christos scopyto = HASH_BSIZE(hashp);
350 1.1 cgd moved = 0;
351 1.1 cgd
352 1.1 cgd if (last_bfp)
353 1.1 cgd __free_ovflpage(hashp, last_bfp);
354 1.1 cgd last_bfp = bufp;
355 1.1 cgd }
356 1.1 cgd /* Move regular sized pairs of there are any */
357 1.28 christos off = HASH_BSIZE(hashp);
358 1.1 cgd for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
359 1.13 christos cino = (char *)(void *)ino;
360 1.21 joerg key.data = (uint8_t *)cino + ino[n];
361 1.1 cgd key.size = off - ino[n];
362 1.21 joerg val.data = (uint8_t *)cino + ino[n + 1];
363 1.1 cgd val.size = ino[n] - ino[n + 1];
364 1.1 cgd off = ino[n + 1];
365 1.1 cgd
366 1.13 christos if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
367 1.1 cgd /* Keep on old page */
368 1.1 cgd if (PAIRFITS(op, (&key), (&val)))
369 1.13 christos putpair((char *)(void *)op, &key, &val);
370 1.1 cgd else {
371 1.1 cgd old_bufp =
372 1.1 cgd __add_ovflpage(hashp, old_bufp);
373 1.1 cgd if (!old_bufp)
374 1.1 cgd return (-1);
375 1.21 joerg op = (uint16_t *)(void *)old_bufp->page;
376 1.13 christos putpair((char *)(void *)op, &key, &val);
377 1.1 cgd }
378 1.1 cgd old_bufp->flags |= BUF_MOD;
379 1.1 cgd } else {
380 1.1 cgd /* Move to new page */
381 1.1 cgd if (PAIRFITS(np, (&key), (&val)))
382 1.13 christos putpair((char *)(void *)np, &key, &val);
383 1.1 cgd else {
384 1.1 cgd new_bufp =
385 1.1 cgd __add_ovflpage(hashp, new_bufp);
386 1.1 cgd if (!new_bufp)
387 1.1 cgd return (-1);
388 1.21 joerg np = (uint16_t *)(void *)new_bufp->page;
389 1.13 christos putpair((char *)(void *)np, &key, &val);
390 1.1 cgd }
391 1.1 cgd new_bufp->flags |= BUF_MOD;
392 1.1 cgd }
393 1.1 cgd }
394 1.1 cgd }
395 1.1 cgd if (last_bfp)
396 1.1 cgd __free_ovflpage(hashp, last_bfp);
397 1.1 cgd return (0);
398 1.1 cgd }
399 1.1 cgd
400 1.1 cgd /*
401 1.1 cgd * Add the given pair to the page
402 1.1 cgd *
403 1.1 cgd * Returns:
404 1.1 cgd * 0 ==> OK
405 1.1 cgd * 1 ==> failure
406 1.1 cgd */
407 1.20 christos int
408 1.20 christos __addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
409 1.1 cgd {
410 1.21 joerg uint16_t *bp, *sop;
411 1.1 cgd int do_expand;
412 1.1 cgd
413 1.21 joerg bp = (uint16_t *)(void *)bufp->page;
414 1.1 cgd do_expand = 0;
415 1.4 cgd while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
416 1.1 cgd /* Exception case */
417 1.4 cgd if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
418 1.4 cgd /* This is the last page of a big key/data pair
419 1.4 cgd and we need to add another page */
420 1.4 cgd break;
421 1.4 cgd else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
422 1.21 joerg bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp,
423 1.13 christos 0);
424 1.1 cgd if (!bufp)
425 1.1 cgd return (-1);
426 1.21 joerg bp = (uint16_t *)(void *)bufp->page;
427 1.15 mycroft } else if (bp[bp[0]] != OVFLPAGE) {
428 1.15 mycroft /* Short key/data pairs, no more pages */
429 1.15 mycroft break;
430 1.15 mycroft } else {
431 1.1 cgd /* Try to squeeze key on this page */
432 1.15 mycroft if (bp[2] >= REAL_KEY &&
433 1.15 mycroft FREESPACE(bp) >= PAIRSIZE(key, val)) {
434 1.1 cgd squeeze_key(bp, key, val);
435 1.15 mycroft goto stats;
436 1.1 cgd } else {
437 1.13 christos bufp = __get_buf(hashp,
438 1.21 joerg (uint32_t)bp[bp[0] - 1], bufp, 0);
439 1.1 cgd if (!bufp)
440 1.1 cgd return (-1);
441 1.21 joerg bp = (uint16_t *)(void *)bufp->page;
442 1.1 cgd }
443 1.15 mycroft }
444 1.1 cgd
445 1.1 cgd if (PAIRFITS(bp, key, val))
446 1.1 cgd putpair(bufp->page, key, val);
447 1.1 cgd else {
448 1.1 cgd do_expand = 1;
449 1.1 cgd bufp = __add_ovflpage(hashp, bufp);
450 1.1 cgd if (!bufp)
451 1.1 cgd return (-1);
452 1.21 joerg sop = (uint16_t *)(void *)bufp->page;
453 1.1 cgd
454 1.1 cgd if (PAIRFITS(sop, key, val))
455 1.13 christos putpair((char *)(void *)sop, key, val);
456 1.1 cgd else
457 1.1 cgd if (__big_insert(hashp, bufp, key, val))
458 1.1 cgd return (-1);
459 1.1 cgd }
460 1.15 mycroft stats:
461 1.1 cgd bufp->flags |= BUF_MOD;
462 1.1 cgd /*
463 1.1 cgd * If the average number of keys per bucket exceeds the fill factor,
464 1.1 cgd * expand the table.
465 1.1 cgd */
466 1.1 cgd hashp->NKEYS++;
467 1.1 cgd if (do_expand ||
468 1.1 cgd (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
469 1.1 cgd return (__expand_table(hashp));
470 1.1 cgd return (0);
471 1.1 cgd }
472 1.1 cgd
473 1.1 cgd /*
474 1.1 cgd *
475 1.1 cgd * Returns:
476 1.1 cgd * pointer on success
477 1.1 cgd * NULL on error
478 1.1 cgd */
479 1.20 christos BUFHEAD *
480 1.20 christos __add_ovflpage(HTAB *hashp, BUFHEAD *bufp)
481 1.1 cgd {
482 1.21 joerg uint16_t *sp;
483 1.21 joerg uint16_t ndx, ovfl_num;
484 1.20 christos size_t temp;
485 1.1 cgd #ifdef DEBUG1
486 1.1 cgd int tmp1, tmp2;
487 1.1 cgd #endif
488 1.21 joerg sp = (uint16_t *)(void *)bufp->page;
489 1.1 cgd
490 1.1 cgd /* Check if we are dynamically determining the fill factor */
491 1.1 cgd if (hashp->FFACTOR == DEF_FFACTOR) {
492 1.21 joerg hashp->FFACTOR = (uint32_t)sp[0] >> 1;
493 1.1 cgd if (hashp->FFACTOR < MIN_FFACTOR)
494 1.1 cgd hashp->FFACTOR = MIN_FFACTOR;
495 1.1 cgd }
496 1.1 cgd bufp->flags |= BUF_MOD;
497 1.1 cgd ovfl_num = overflow_page(hashp);
498 1.1 cgd #ifdef DEBUG1
499 1.1 cgd tmp1 = bufp->addr;
500 1.1 cgd tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
501 1.1 cgd #endif
502 1.21 joerg if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, (uint32_t)ovfl_num,
503 1.13 christos bufp, 1)))
504 1.1 cgd return (NULL);
505 1.1 cgd bufp->ovfl->flags |= BUF_MOD;
506 1.1 cgd #ifdef DEBUG1
507 1.1 cgd (void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
508 1.1 cgd tmp1, tmp2, bufp->ovfl->addr);
509 1.1 cgd #endif
510 1.1 cgd ndx = sp[0];
511 1.1 cgd /*
512 1.1 cgd * Since a pair is allocated on a page only if there's room to add
513 1.1 cgd * an overflow page, we know that the OVFL information will fit on
514 1.1 cgd * the page.
515 1.1 cgd */
516 1.1 cgd sp[ndx + 4] = OFFSET(sp);
517 1.20 christos temp = FREESPACE(sp);
518 1.20 christos _DIAGASSERT(temp >= OVFLSIZE);
519 1.21 joerg sp[ndx + 3] = (uint16_t)(temp - OVFLSIZE);
520 1.1 cgd sp[ndx + 1] = ovfl_num;
521 1.1 cgd sp[ndx + 2] = OVFLPAGE;
522 1.1 cgd sp[0] = ndx + 2;
523 1.1 cgd #ifdef HASH_STATISTICS
524 1.1 cgd hash_overflows++;
525 1.1 cgd #endif
526 1.1 cgd return (bufp->ovfl);
527 1.1 cgd }
528 1.1 cgd
529 1.1 cgd /*
530 1.1 cgd * Returns:
531 1.1 cgd * 0 indicates SUCCESS
532 1.1 cgd * -1 indicates FAILURE
533 1.1 cgd */
534 1.20 christos int
535 1.21 joerg __get_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_disk,
536 1.20 christos int is_bitmap)
537 1.1 cgd {
538 1.20 christos int fd, page, size;
539 1.20 christos ssize_t rsize;
540 1.21 joerg uint16_t *bp;
541 1.20 christos size_t temp;
542 1.1 cgd
543 1.1 cgd fd = hashp->fp;
544 1.28 christos size = HASH_BSIZE(hashp);
545 1.1 cgd
546 1.1 cgd if ((fd == -1) || !is_disk) {
547 1.1 cgd PAGE_INIT(p);
548 1.1 cgd return (0);
549 1.1 cgd }
550 1.1 cgd if (is_bucket)
551 1.1 cgd page = BUCKET_TO_PAGE(bucket);
552 1.1 cgd else
553 1.1 cgd page = OADDR_TO_PAGE(bucket);
554 1.13 christos if ((rsize = pread(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
555 1.1 cgd return (-1);
556 1.21 joerg bp = (uint16_t *)(void *)p;
557 1.1 cgd if (!rsize)
558 1.1 cgd bp[0] = 0; /* We hit the EOF, so initialize a new page */
559 1.1 cgd else
560 1.1 cgd if (rsize != size) {
561 1.1 cgd errno = EFTYPE;
562 1.1 cgd return (-1);
563 1.1 cgd }
564 1.1 cgd if (!is_bitmap && !bp[0]) {
565 1.1 cgd PAGE_INIT(p);
566 1.1 cgd } else
567 1.1 cgd if (hashp->LORDER != BYTE_ORDER) {
568 1.20 christos int i, max;
569 1.1 cgd
570 1.1 cgd if (is_bitmap) {
571 1.21 joerg max = (uint32_t)hashp->BSIZE >> 2; /* divide by 4 */
572 1.1 cgd for (i = 0; i < max; i++)
573 1.13 christos M_32_SWAP(((int *)(void *)p)[i]);
574 1.1 cgd } else {
575 1.6 cgd M_16_SWAP(bp[0]);
576 1.1 cgd max = bp[0] + 2;
577 1.1 cgd for (i = 1; i <= max; i++)
578 1.6 cgd M_16_SWAP(bp[i]);
579 1.1 cgd }
580 1.1 cgd }
581 1.1 cgd return (0);
582 1.1 cgd }
583 1.1 cgd
584 1.1 cgd /*
585 1.1 cgd * Write page p to disk
586 1.1 cgd *
587 1.1 cgd * Returns:
588 1.1 cgd * 0 ==> OK
589 1.1 cgd * -1 ==>failure
590 1.1 cgd */
591 1.20 christos int
592 1.21 joerg __put_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_bitmap)
593 1.1 cgd {
594 1.20 christos int fd, page, size;
595 1.20 christos ssize_t wsize;
596 1.29 christos char pbuf[MAX_BSIZE];
597 1.1 cgd
598 1.28 christos size = HASH_BSIZE(hashp);
599 1.26 christos if ((hashp->fp == -1) && (hashp->fp = __dbtemp("_hash", NULL)) == -1)
600 1.1 cgd return (-1);
601 1.1 cgd fd = hashp->fp;
602 1.1 cgd
603 1.1 cgd if (hashp->LORDER != BYTE_ORDER) {
604 1.20 christos int i;
605 1.20 christos int max;
606 1.1 cgd
607 1.29 christos memcpy(pbuf, p, size);
608 1.1 cgd if (is_bitmap) {
609 1.21 joerg max = (uint32_t)hashp->BSIZE >> 2; /* divide by 4 */
610 1.1 cgd for (i = 0; i < max; i++)
611 1.29 christos M_32_SWAP(((int *)(void *)pbuf)[i]);
612 1.1 cgd } else {
613 1.29 christos uint16_t *bp = (uint16_t *)(void *)pbuf;
614 1.29 christos max = bp[0] + 2;
615 1.1 cgd for (i = 0; i <= max; i++)
616 1.29 christos M_16_SWAP(bp[i]);
617 1.1 cgd }
618 1.29 christos p = pbuf;
619 1.1 cgd }
620 1.1 cgd if (is_bucket)
621 1.1 cgd page = BUCKET_TO_PAGE(bucket);
622 1.1 cgd else
623 1.1 cgd page = OADDR_TO_PAGE(bucket);
624 1.13 christos if ((wsize = pwrite(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
625 1.1 cgd /* Errno is set */
626 1.1 cgd return (-1);
627 1.1 cgd if (wsize != size) {
628 1.1 cgd errno = EFTYPE;
629 1.1 cgd return (-1);
630 1.1 cgd }
631 1.1 cgd return (0);
632 1.1 cgd }
633 1.1 cgd
634 1.1 cgd #define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1)
635 1.1 cgd /*
636 1.1 cgd * Initialize a new bitmap page. Bitmap pages are left in memory
637 1.1 cgd * once they are read in.
638 1.1 cgd */
639 1.20 christos int
640 1.20 christos __ibitmap(HTAB *hashp, int pnum, int nbits, int ndx)
641 1.1 cgd {
642 1.21 joerg uint32_t *ip;
643 1.1 cgd int clearbytes, clearints;
644 1.1 cgd
645 1.20 christos if ((ip = malloc((size_t)hashp->BSIZE)) == NULL)
646 1.1 cgd return (1);
647 1.1 cgd hashp->nmaps++;
648 1.21 joerg clearints = ((uint32_t)(nbits - 1) >> INT_BYTE_SHIFT) + 1;
649 1.1 cgd clearbytes = clearints << INT_TO_BYTE;
650 1.13 christos (void)memset(ip, 0, (size_t)clearbytes);
651 1.13 christos (void)memset(((char *)(void *)ip) + clearbytes, 0xFF,
652 1.13 christos (size_t)(hashp->BSIZE - clearbytes));
653 1.1 cgd ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
654 1.1 cgd SETBIT(ip, 0);
655 1.21 joerg hashp->BITMAPS[ndx] = (uint16_t)pnum;
656 1.1 cgd hashp->mapp[ndx] = ip;
657 1.1 cgd return (0);
658 1.1 cgd }
659 1.1 cgd
660 1.21 joerg static uint32_t
661 1.21 joerg first_free(uint32_t map)
662 1.1 cgd {
663 1.21 joerg uint32_t i, mask;
664 1.1 cgd
665 1.1 cgd mask = 0x1;
666 1.1 cgd for (i = 0; i < BITS_PER_MAP; i++) {
667 1.1 cgd if (!(mask & map))
668 1.1 cgd return (i);
669 1.1 cgd mask = mask << 1;
670 1.1 cgd }
671 1.1 cgd return (i);
672 1.1 cgd }
673 1.1 cgd
674 1.21 joerg static uint16_t
675 1.20 christos overflow_page(HTAB *hashp)
676 1.1 cgd {
677 1.21 joerg uint32_t *freep = NULL;
678 1.20 christos int max_free, offset, splitnum;
679 1.21 joerg uint16_t addr;
680 1.1 cgd int bit, first_page, free_bit, free_page, i, in_use_bits, j;
681 1.1 cgd #ifdef DEBUG2
682 1.1 cgd int tmp1, tmp2;
683 1.1 cgd #endif
684 1.1 cgd splitnum = hashp->OVFL_POINT;
685 1.1 cgd max_free = hashp->SPARES[splitnum];
686 1.1 cgd
687 1.21 joerg free_page = (uint32_t)(max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
688 1.1 cgd free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
689 1.1 cgd
690 1.1 cgd /* Look through all the free maps to find the first free block */
691 1.21 joerg first_page = (uint32_t)hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
692 1.1 cgd for ( i = first_page; i <= free_page; i++ ) {
693 1.21 joerg if (!(freep = (uint32_t *)hashp->mapp[i]) &&
694 1.1 cgd !(freep = fetch_bitmap(hashp, i)))
695 1.8 cgd return (0);
696 1.1 cgd if (i == free_page)
697 1.1 cgd in_use_bits = free_bit;
698 1.1 cgd else
699 1.1 cgd in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
700 1.1 cgd
701 1.1 cgd if (i == first_page) {
702 1.1 cgd bit = hashp->LAST_FREED &
703 1.1 cgd ((hashp->BSIZE << BYTE_SHIFT) - 1);
704 1.1 cgd j = bit / BITS_PER_MAP;
705 1.1 cgd bit = bit & ~(BITS_PER_MAP - 1);
706 1.1 cgd } else {
707 1.1 cgd bit = 0;
708 1.1 cgd j = 0;
709 1.1 cgd }
710 1.1 cgd for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
711 1.1 cgd if (freep[j] != ALL_SET)
712 1.1 cgd goto found;
713 1.1 cgd }
714 1.1 cgd
715 1.1 cgd /* No Free Page Found */
716 1.1 cgd hashp->LAST_FREED = hashp->SPARES[splitnum];
717 1.1 cgd hashp->SPARES[splitnum]++;
718 1.1 cgd offset = hashp->SPARES[splitnum] -
719 1.1 cgd (splitnum ? hashp->SPARES[splitnum - 1] : 0);
720 1.1 cgd
721 1.1 cgd #define OVMSG "HASH: Out of overflow pages. Increase page size\n"
722 1.1 cgd if (offset > SPLITMASK) {
723 1.1 cgd if (++splitnum >= NCACHED) {
724 1.1 cgd (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
725 1.14 mycroft errno = EFBIG;
726 1.8 cgd return (0);
727 1.1 cgd }
728 1.1 cgd hashp->OVFL_POINT = splitnum;
729 1.1 cgd hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
730 1.1 cgd hashp->SPARES[splitnum-1]--;
731 1.1 cgd offset = 1;
732 1.1 cgd }
733 1.1 cgd
734 1.1 cgd /* Check if we need to allocate a new bitmap page */
735 1.1 cgd if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
736 1.1 cgd free_page++;
737 1.1 cgd if (free_page >= NCACHED) {
738 1.1 cgd (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
739 1.14 mycroft errno = EFBIG;
740 1.8 cgd return (0);
741 1.1 cgd }
742 1.1 cgd /*
743 1.1 cgd * This is tricky. The 1 indicates that you want the new page
744 1.1 cgd * allocated with 1 clear bit. Actually, you are going to
745 1.1 cgd * allocate 2 pages from this map. The first is going to be
746 1.1 cgd * the map page, the second is the overflow page we were
747 1.1 cgd * looking for. The init_bitmap routine automatically, sets
748 1.1 cgd * the first bit of itself to indicate that the bitmap itself
749 1.1 cgd * is in use. We would explicitly set the second bit, but
750 1.1 cgd * don't have to if we tell init_bitmap not to leave it clear
751 1.1 cgd * in the first place.
752 1.1 cgd */
753 1.8 cgd if (__ibitmap(hashp,
754 1.8 cgd (int)OADDR_OF(splitnum, offset), 1, free_page))
755 1.8 cgd return (0);
756 1.1 cgd hashp->SPARES[splitnum]++;
757 1.1 cgd #ifdef DEBUG2
758 1.1 cgd free_bit = 2;
759 1.1 cgd #endif
760 1.1 cgd offset++;
761 1.1 cgd if (offset > SPLITMASK) {
762 1.1 cgd if (++splitnum >= NCACHED) {
763 1.1 cgd (void)write(STDERR_FILENO, OVMSG,
764 1.1 cgd sizeof(OVMSG) - 1);
765 1.14 mycroft errno = EFBIG;
766 1.8 cgd return (0);
767 1.1 cgd }
768 1.1 cgd hashp->OVFL_POINT = splitnum;
769 1.1 cgd hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
770 1.1 cgd hashp->SPARES[splitnum-1]--;
771 1.1 cgd offset = 0;
772 1.1 cgd }
773 1.1 cgd } else {
774 1.1 cgd /*
775 1.1 cgd * Free_bit addresses the last used bit. Bump it to address
776 1.1 cgd * the first available bit.
777 1.1 cgd */
778 1.1 cgd free_bit++;
779 1.1 cgd SETBIT(freep, free_bit);
780 1.1 cgd }
781 1.1 cgd
782 1.1 cgd /* Calculate address of the new overflow page */
783 1.1 cgd addr = OADDR_OF(splitnum, offset);
784 1.1 cgd #ifdef DEBUG2
785 1.1 cgd (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
786 1.1 cgd addr, free_bit, free_page);
787 1.1 cgd #endif
788 1.1 cgd return (addr);
789 1.1 cgd
790 1.1 cgd found:
791 1.1 cgd bit = bit + first_free(freep[j]);
792 1.1 cgd SETBIT(freep, bit);
793 1.1 cgd #ifdef DEBUG2
794 1.1 cgd tmp1 = bit;
795 1.1 cgd tmp2 = i;
796 1.1 cgd #endif
797 1.1 cgd /*
798 1.1 cgd * Bits are addressed starting with 0, but overflow pages are addressed
799 1.1 cgd * beginning at 1. Bit is a bit addressnumber, so we need to increment
800 1.1 cgd * it to convert it to a page number.
801 1.1 cgd */
802 1.1 cgd bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
803 1.1 cgd if (bit >= hashp->LAST_FREED)
804 1.1 cgd hashp->LAST_FREED = bit - 1;
805 1.1 cgd
806 1.1 cgd /* Calculate the split number for this page */
807 1.1 cgd for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
808 1.1 cgd offset = (i ? bit - hashp->SPARES[i - 1] : bit);
809 1.14 mycroft if (offset >= SPLITMASK) {
810 1.14 mycroft (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
811 1.14 mycroft errno = EFBIG;
812 1.8 cgd return (0); /* Out of overflow pages */
813 1.14 mycroft }
814 1.1 cgd addr = OADDR_OF(i, offset);
815 1.1 cgd #ifdef DEBUG2
816 1.1 cgd (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
817 1.1 cgd addr, tmp1, tmp2);
818 1.1 cgd #endif
819 1.1 cgd
820 1.1 cgd /* Allocate and return the overflow page */
821 1.1 cgd return (addr);
822 1.1 cgd }
823 1.1 cgd
824 1.1 cgd /*
825 1.1 cgd * Mark this overflow page as free.
826 1.1 cgd */
827 1.20 christos void
828 1.20 christos __free_ovflpage(HTAB *hashp, BUFHEAD *obufp)
829 1.1 cgd {
830 1.21 joerg uint16_t addr;
831 1.21 joerg uint32_t *freep;
832 1.1 cgd int bit_address, free_page, free_bit;
833 1.21 joerg uint16_t ndx;
834 1.1 cgd
835 1.1 cgd addr = obufp->addr;
836 1.1 cgd #ifdef DEBUG1
837 1.1 cgd (void)fprintf(stderr, "Freeing %d\n", addr);
838 1.1 cgd #endif
839 1.21 joerg ndx = (((uint32_t)addr) >> SPLITSHIFT);
840 1.1 cgd bit_address =
841 1.1 cgd (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
842 1.1 cgd if (bit_address < hashp->LAST_FREED)
843 1.1 cgd hashp->LAST_FREED = bit_address;
844 1.21 joerg free_page = ((uint32_t)bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
845 1.1 cgd free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
846 1.1 cgd
847 1.1 cgd if (!(freep = hashp->mapp[free_page]))
848 1.1 cgd freep = fetch_bitmap(hashp, free_page);
849 1.1 cgd /*
850 1.1 cgd * This had better never happen. It means we tried to read a bitmap
851 1.1 cgd * that has already had overflow pages allocated off it, and we
852 1.1 cgd * failed to read it from the file.
853 1.1 cgd */
854 1.20 christos _DIAGASSERT(freep != NULL);
855 1.1 cgd CLRBIT(freep, free_bit);
856 1.1 cgd #ifdef DEBUG2
857 1.1 cgd (void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
858 1.1 cgd obufp->addr, free_bit, free_page);
859 1.1 cgd #endif
860 1.1 cgd __reclaim_buf(hashp, obufp);
861 1.1 cgd }
862 1.1 cgd
863 1.1 cgd /*
864 1.1 cgd * We have to know that the key will fit, but the last entry on the page is
865 1.1 cgd * an overflow pair, so we need to shift things.
866 1.1 cgd */
867 1.1 cgd static void
868 1.21 joerg squeeze_key(uint16_t *sp, const DBT *key, const DBT *val)
869 1.1 cgd {
870 1.20 christos char *p;
871 1.21 joerg uint16_t free_space, n, off, pageno;
872 1.20 christos size_t temp;
873 1.1 cgd
874 1.13 christos p = (char *)(void *)sp;
875 1.1 cgd n = sp[0];
876 1.1 cgd free_space = FREESPACE(sp);
877 1.1 cgd off = OFFSET(sp);
878 1.1 cgd
879 1.1 cgd pageno = sp[n - 1];
880 1.20 christos _DIAGASSERT(off >= key->size);
881 1.21 joerg off -= (uint16_t)key->size;
882 1.1 cgd sp[n - 1] = off;
883 1.1 cgd memmove(p + off, key->data, key->size);
884 1.20 christos _DIAGASSERT(off >= val->size);
885 1.21 joerg off -= (uint16_t)val->size;
886 1.1 cgd sp[n] = off;
887 1.1 cgd memmove(p + off, val->data, val->size);
888 1.1 cgd sp[0] = n + 2;
889 1.1 cgd sp[n + 1] = pageno;
890 1.1 cgd sp[n + 2] = OVFLPAGE;
891 1.20 christos temp = PAIRSIZE(key, val);
892 1.20 christos _DIAGASSERT(free_space >= temp);
893 1.21 joerg FREESPACE(sp) = (uint16_t)(free_space - temp);
894 1.1 cgd OFFSET(sp) = off;
895 1.1 cgd }
896 1.1 cgd
897 1.21 joerg static uint32_t *
898 1.20 christos fetch_bitmap(HTAB *hashp, int ndx)
899 1.1 cgd {
900 1.6 cgd if (ndx >= hashp->nmaps)
901 1.1 cgd return (NULL);
902 1.20 christos if ((hashp->mapp[ndx] = malloc((size_t)hashp->BSIZE)) == NULL)
903 1.6 cgd return (NULL);
904 1.6 cgd if (__get_page(hashp,
905 1.21 joerg (char *)(void *)hashp->mapp[ndx], (uint32_t)hashp->BITMAPS[ndx], 0, 1, 1)) {
906 1.6 cgd free(hashp->mapp[ndx]);
907 1.6 cgd return (NULL);
908 1.6 cgd }
909 1.1 cgd return (hashp->mapp[ndx]);
910 1.1 cgd }
911 1.1 cgd
912 1.1 cgd #ifdef DEBUG4
913 1.21 joerg void print_chain(HTAB *, uint32_t);
914 1.20 christos void
915 1.21 joerg print_chain(HTAB *hashp, uint32_t addr)
916 1.1 cgd {
917 1.1 cgd BUFHEAD *bufp;
918 1.21 joerg uint16_t *bp, oaddr;
919 1.1 cgd
920 1.1 cgd (void)fprintf(stderr, "%d ", addr);
921 1.1 cgd bufp = __get_buf(hashp, addr, NULL, 0);
922 1.21 joerg bp = (uint16_t *)bufp->page;
923 1.1 cgd while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
924 1.1 cgd ((bp[0] > 2) && bp[2] < REAL_KEY))) {
925 1.1 cgd oaddr = bp[bp[0] - 1];
926 1.1 cgd (void)fprintf(stderr, "%d ", (int)oaddr);
927 1.21 joerg bufp = __get_buf(hashp, (uint32_t)oaddr, bufp, 0);
928 1.21 joerg bp = (uint16_t *)bufp->page;
929 1.1 cgd }
930 1.1 cgd (void)fprintf(stderr, "\n");
931 1.1 cgd }
932 1.1 cgd #endif
933