hash_page.c revision 1.7 1 1.7 cgd /* $NetBSD: hash_page.c,v 1.7 1995/02/27 13:22:34 cgd Exp $ */
2 1.7 cgd
3 1.1 cgd /*-
4 1.6 cgd * Copyright (c) 1990, 1993, 1994
5 1.1 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Margo Seltzer.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.1 cgd * 3. All advertising materials mentioning features or use of this software
19 1.1 cgd * must display the following acknowledgement:
20 1.1 cgd * This product includes software developed by the University of
21 1.1 cgd * California, Berkeley and its contributors.
22 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
23 1.1 cgd * may be used to endorse or promote products derived from this software
24 1.1 cgd * without specific prior written permission.
25 1.1 cgd *
26 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 1.1 cgd * SUCH DAMAGE.
37 1.1 cgd */
38 1.1 cgd
39 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
40 1.7 cgd #if 0
41 1.6 cgd static char sccsid[] = "@(#)hash_page.c 8.6 (Berkeley) 6/16/94";
42 1.7 cgd #else
43 1.7 cgd static char rcsid[] = "$NetBSD: hash_page.c,v 1.7 1995/02/27 13:22:34 cgd Exp $";
44 1.7 cgd #endif
45 1.1 cgd #endif /* LIBC_SCCS and not lint */
46 1.1 cgd
47 1.1 cgd /*
48 1.1 cgd * PACKAGE: hashing
49 1.1 cgd *
50 1.1 cgd * DESCRIPTION:
51 1.1 cgd * Page manipulation for hashing package.
52 1.1 cgd *
53 1.1 cgd * ROUTINES:
54 1.1 cgd *
55 1.1 cgd * External
56 1.1 cgd * __get_page
57 1.1 cgd * __add_ovflpage
58 1.1 cgd * Internal
59 1.1 cgd * overflow_page
60 1.1 cgd * open_temp
61 1.1 cgd */
62 1.1 cgd
63 1.1 cgd #include <sys/types.h>
64 1.1 cgd
65 1.1 cgd #include <errno.h>
66 1.1 cgd #include <fcntl.h>
67 1.1 cgd #include <signal.h>
68 1.1 cgd #include <stdio.h>
69 1.1 cgd #include <stdlib.h>
70 1.1 cgd #include <string.h>
71 1.1 cgd #include <unistd.h>
72 1.1 cgd #ifdef DEBUG
73 1.1 cgd #include <assert.h>
74 1.1 cgd #endif
75 1.1 cgd
76 1.1 cgd #include <db.h>
77 1.1 cgd #include "hash.h"
78 1.1 cgd #include "page.h"
79 1.1 cgd #include "extern.h"
80 1.1 cgd
81 1.6 cgd static u_int32_t *fetch_bitmap __P((HTAB *, int));
82 1.6 cgd static u_int32_t first_free __P((u_int32_t));
83 1.1 cgd static int open_temp __P((HTAB *));
84 1.6 cgd static u_int16_t overflow_page __P((HTAB *));
85 1.1 cgd static void putpair __P((char *, const DBT *, const DBT *));
86 1.6 cgd static void squeeze_key __P((u_int16_t *, const DBT *, const DBT *));
87 1.1 cgd static int ugly_split
88 1.6 cgd __P((HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int));
89 1.1 cgd
90 1.1 cgd #define PAGE_INIT(P) { \
91 1.6 cgd ((u_int16_t *)(P))[0] = 0; \
92 1.6 cgd ((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
93 1.6 cgd ((u_int16_t *)(P))[2] = hashp->BSIZE; \
94 1.1 cgd }
95 1.1 cgd
96 1.1 cgd /*
97 1.1 cgd * This is called AFTER we have verified that there is room on the page for
98 1.1 cgd * the pair (PAIRFITS has returned true) so we go right ahead and start moving
99 1.1 cgd * stuff on.
100 1.1 cgd */
101 1.1 cgd static void
102 1.1 cgd putpair(p, key, val)
103 1.1 cgd char *p;
104 1.1 cgd const DBT *key, *val;
105 1.1 cgd {
106 1.6 cgd register u_int16_t *bp, n, off;
107 1.1 cgd
108 1.6 cgd bp = (u_int16_t *)p;
109 1.1 cgd
110 1.1 cgd /* Enter the key first. */
111 1.1 cgd n = bp[0];
112 1.1 cgd
113 1.1 cgd off = OFFSET(bp) - key->size;
114 1.1 cgd memmove(p + off, key->data, key->size);
115 1.1 cgd bp[++n] = off;
116 1.1 cgd
117 1.1 cgd /* Now the data. */
118 1.1 cgd off -= val->size;
119 1.1 cgd memmove(p + off, val->data, val->size);
120 1.1 cgd bp[++n] = off;
121 1.1 cgd
122 1.1 cgd /* Adjust page info. */
123 1.1 cgd bp[0] = n;
124 1.6 cgd bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
125 1.1 cgd bp[n + 2] = off;
126 1.1 cgd }
127 1.1 cgd
128 1.1 cgd /*
129 1.1 cgd * Returns:
130 1.1 cgd * 0 OK
131 1.1 cgd * -1 error
132 1.1 cgd */
133 1.1 cgd extern int
134 1.1 cgd __delpair(hashp, bufp, ndx)
135 1.1 cgd HTAB *hashp;
136 1.1 cgd BUFHEAD *bufp;
137 1.1 cgd register int ndx;
138 1.1 cgd {
139 1.6 cgd register u_int16_t *bp, newoff;
140 1.1 cgd register int n;
141 1.6 cgd u_int16_t pairlen;
142 1.1 cgd
143 1.6 cgd bp = (u_int16_t *)bufp->page;
144 1.1 cgd n = bp[0];
145 1.1 cgd
146 1.1 cgd if (bp[ndx + 1] < REAL_KEY)
147 1.1 cgd return (__big_delete(hashp, bufp));
148 1.1 cgd if (ndx != 1)
149 1.1 cgd newoff = bp[ndx - 1];
150 1.1 cgd else
151 1.1 cgd newoff = hashp->BSIZE;
152 1.1 cgd pairlen = newoff - bp[ndx + 1];
153 1.1 cgd
154 1.1 cgd if (ndx != (n - 1)) {
155 1.1 cgd /* Hard Case -- need to shuffle keys */
156 1.1 cgd register int i;
157 1.1 cgd register char *src = bufp->page + (int)OFFSET(bp);
158 1.1 cgd register char *dst = src + (int)pairlen;
159 1.1 cgd memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
160 1.1 cgd
161 1.1 cgd /* Now adjust the pointers */
162 1.1 cgd for (i = ndx + 2; i <= n; i += 2) {
163 1.1 cgd if (bp[i + 1] == OVFLPAGE) {
164 1.1 cgd bp[i - 2] = bp[i];
165 1.1 cgd bp[i - 1] = bp[i + 1];
166 1.1 cgd } else {
167 1.1 cgd bp[i - 2] = bp[i] + pairlen;
168 1.1 cgd bp[i - 1] = bp[i + 1] + pairlen;
169 1.1 cgd }
170 1.1 cgd }
171 1.1 cgd }
172 1.1 cgd /* Finally adjust the page data */
173 1.1 cgd bp[n] = OFFSET(bp) + pairlen;
174 1.6 cgd bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
175 1.1 cgd bp[0] = n - 2;
176 1.1 cgd hashp->NKEYS--;
177 1.1 cgd
178 1.1 cgd bufp->flags |= BUF_MOD;
179 1.1 cgd return (0);
180 1.1 cgd }
181 1.1 cgd /*
182 1.1 cgd * Returns:
183 1.1 cgd * 0 ==> OK
184 1.1 cgd * -1 ==> Error
185 1.1 cgd */
186 1.1 cgd extern int
187 1.1 cgd __split_page(hashp, obucket, nbucket)
188 1.1 cgd HTAB *hashp;
189 1.6 cgd u_int32_t obucket, nbucket;
190 1.1 cgd {
191 1.1 cgd register BUFHEAD *new_bufp, *old_bufp;
192 1.6 cgd register u_int16_t *ino;
193 1.1 cgd register char *np;
194 1.1 cgd DBT key, val;
195 1.1 cgd int n, ndx, retval;
196 1.6 cgd u_int16_t copyto, diff, off, moved;
197 1.1 cgd char *op;
198 1.1 cgd
199 1.6 cgd copyto = (u_int16_t)hashp->BSIZE;
200 1.6 cgd off = (u_int16_t)hashp->BSIZE;
201 1.1 cgd old_bufp = __get_buf(hashp, obucket, NULL, 0);
202 1.1 cgd if (old_bufp == NULL)
203 1.1 cgd return (-1);
204 1.1 cgd new_bufp = __get_buf(hashp, nbucket, NULL, 0);
205 1.1 cgd if (new_bufp == NULL)
206 1.1 cgd return (-1);
207 1.1 cgd
208 1.1 cgd old_bufp->flags |= (BUF_MOD | BUF_PIN);
209 1.1 cgd new_bufp->flags |= (BUF_MOD | BUF_PIN);
210 1.1 cgd
211 1.6 cgd ino = (u_int16_t *)(op = old_bufp->page);
212 1.1 cgd np = new_bufp->page;
213 1.1 cgd
214 1.1 cgd moved = 0;
215 1.1 cgd
216 1.1 cgd for (n = 1, ndx = 1; n < ino[0]; n += 2) {
217 1.1 cgd if (ino[n + 1] < REAL_KEY) {
218 1.1 cgd retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
219 1.1 cgd (int)copyto, (int)moved);
220 1.1 cgd old_bufp->flags &= ~BUF_PIN;
221 1.1 cgd new_bufp->flags &= ~BUF_PIN;
222 1.1 cgd return (retval);
223 1.1 cgd
224 1.1 cgd }
225 1.1 cgd key.data = (u_char *)op + ino[n];
226 1.1 cgd key.size = off - ino[n];
227 1.1 cgd
228 1.1 cgd if (__call_hash(hashp, key.data, key.size) == obucket) {
229 1.1 cgd /* Don't switch page */
230 1.1 cgd diff = copyto - off;
231 1.1 cgd if (diff) {
232 1.1 cgd copyto = ino[n + 1] + diff;
233 1.1 cgd memmove(op + copyto, op + ino[n + 1],
234 1.1 cgd off - ino[n + 1]);
235 1.1 cgd ino[ndx] = copyto + ino[n] - ino[n + 1];
236 1.1 cgd ino[ndx + 1] = copyto;
237 1.1 cgd } else
238 1.1 cgd copyto = ino[n + 1];
239 1.1 cgd ndx += 2;
240 1.1 cgd } else {
241 1.1 cgd /* Switch page */
242 1.1 cgd val.data = (u_char *)op + ino[n + 1];
243 1.1 cgd val.size = ino[n] - ino[n + 1];
244 1.1 cgd putpair(np, &key, &val);
245 1.1 cgd moved += 2;
246 1.1 cgd }
247 1.1 cgd
248 1.1 cgd off = ino[n + 1];
249 1.1 cgd }
250 1.1 cgd
251 1.1 cgd /* Now clean up the page */
252 1.1 cgd ino[0] -= moved;
253 1.6 cgd FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
254 1.1 cgd OFFSET(ino) = copyto;
255 1.1 cgd
256 1.1 cgd #ifdef DEBUG3
257 1.1 cgd (void)fprintf(stderr, "split %d/%d\n",
258 1.6 cgd ((u_int16_t *)np)[0] / 2,
259 1.6 cgd ((u_int16_t *)op)[0] / 2);
260 1.1 cgd #endif
261 1.1 cgd /* unpin both pages */
262 1.1 cgd old_bufp->flags &= ~BUF_PIN;
263 1.1 cgd new_bufp->flags &= ~BUF_PIN;
264 1.1 cgd return (0);
265 1.1 cgd }
266 1.1 cgd
267 1.1 cgd /*
268 1.1 cgd * Called when we encounter an overflow or big key/data page during split
269 1.1 cgd * handling. This is special cased since we have to begin checking whether
270 1.1 cgd * the key/data pairs fit on their respective pages and because we may need
271 1.1 cgd * overflow pages for both the old and new pages.
272 1.1 cgd *
273 1.1 cgd * The first page might be a page with regular key/data pairs in which case
274 1.1 cgd * we have a regular overflow condition and just need to go on to the next
275 1.1 cgd * page or it might be a big key/data pair in which case we need to fix the
276 1.1 cgd * big key/data pair.
277 1.1 cgd *
278 1.1 cgd * Returns:
279 1.1 cgd * 0 ==> success
280 1.1 cgd * -1 ==> failure
281 1.1 cgd */
282 1.1 cgd static int
283 1.1 cgd ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
284 1.1 cgd HTAB *hashp;
285 1.6 cgd u_int32_t obucket; /* Same as __split_page. */
286 1.1 cgd BUFHEAD *old_bufp, *new_bufp;
287 1.1 cgd int copyto; /* First byte on page which contains key/data values. */
288 1.1 cgd int moved; /* Number of pairs moved to new page. */
289 1.1 cgd {
290 1.1 cgd register BUFHEAD *bufp; /* Buffer header for ino */
291 1.6 cgd register u_int16_t *ino; /* Page keys come off of */
292 1.6 cgd register u_int16_t *np; /* New page */
293 1.6 cgd register u_int16_t *op; /* Page keys go on to if they aren't moving */
294 1.1 cgd
295 1.1 cgd BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */
296 1.1 cgd DBT key, val;
297 1.1 cgd SPLIT_RETURN ret;
298 1.6 cgd u_int16_t n, off, ov_addr, scopyto;
299 1.1 cgd char *cino; /* Character value of ino */
300 1.1 cgd
301 1.1 cgd bufp = old_bufp;
302 1.6 cgd ino = (u_int16_t *)old_bufp->page;
303 1.6 cgd np = (u_int16_t *)new_bufp->page;
304 1.6 cgd op = (u_int16_t *)old_bufp->page;
305 1.1 cgd last_bfp = NULL;
306 1.6 cgd scopyto = (u_int16_t)copyto; /* ANSI */
307 1.1 cgd
308 1.1 cgd n = ino[0] - 1;
309 1.1 cgd while (n < ino[0]) {
310 1.1 cgd if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
311 1.1 cgd if (__big_split(hashp, old_bufp,
312 1.4 cgd new_bufp, bufp, bufp->addr, obucket, &ret))
313 1.1 cgd return (-1);
314 1.1 cgd old_bufp = ret.oldp;
315 1.1 cgd if (!old_bufp)
316 1.1 cgd return (-1);
317 1.6 cgd op = (u_int16_t *)old_bufp->page;
318 1.1 cgd new_bufp = ret.newp;
319 1.1 cgd if (!new_bufp)
320 1.1 cgd return (-1);
321 1.6 cgd np = (u_int16_t *)new_bufp->page;
322 1.1 cgd bufp = ret.nextp;
323 1.1 cgd if (!bufp)
324 1.1 cgd return (0);
325 1.1 cgd cino = (char *)bufp->page;
326 1.6 cgd ino = (u_int16_t *)cino;
327 1.1 cgd last_bfp = ret.nextp;
328 1.1 cgd } else if (ino[n + 1] == OVFLPAGE) {
329 1.1 cgd ov_addr = ino[n];
330 1.1 cgd /*
331 1.1 cgd * Fix up the old page -- the extra 2 are the fields
332 1.1 cgd * which contained the overflow information.
333 1.1 cgd */
334 1.1 cgd ino[0] -= (moved + 2);
335 1.1 cgd FREESPACE(ino) =
336 1.6 cgd scopyto - sizeof(u_int16_t) * (ino[0] + 3);
337 1.1 cgd OFFSET(ino) = scopyto;
338 1.1 cgd
339 1.1 cgd bufp = __get_buf(hashp, ov_addr, bufp, 0);
340 1.1 cgd if (!bufp)
341 1.1 cgd return (-1);
342 1.1 cgd
343 1.6 cgd ino = (u_int16_t *)bufp->page;
344 1.1 cgd n = 1;
345 1.1 cgd scopyto = hashp->BSIZE;
346 1.1 cgd moved = 0;
347 1.1 cgd
348 1.1 cgd if (last_bfp)
349 1.1 cgd __free_ovflpage(hashp, last_bfp);
350 1.1 cgd last_bfp = bufp;
351 1.1 cgd }
352 1.1 cgd /* Move regular sized pairs of there are any */
353 1.1 cgd off = hashp->BSIZE;
354 1.1 cgd for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
355 1.1 cgd cino = (char *)ino;
356 1.1 cgd key.data = (u_char *)cino + ino[n];
357 1.1 cgd key.size = off - ino[n];
358 1.1 cgd val.data = (u_char *)cino + ino[n + 1];
359 1.1 cgd val.size = ino[n] - ino[n + 1];
360 1.1 cgd off = ino[n + 1];
361 1.1 cgd
362 1.1 cgd if (__call_hash(hashp, key.data, key.size) == obucket) {
363 1.1 cgd /* Keep on old page */
364 1.1 cgd if (PAIRFITS(op, (&key), (&val)))
365 1.1 cgd putpair((char *)op, &key, &val);
366 1.1 cgd else {
367 1.1 cgd old_bufp =
368 1.1 cgd __add_ovflpage(hashp, old_bufp);
369 1.1 cgd if (!old_bufp)
370 1.1 cgd return (-1);
371 1.6 cgd op = (u_int16_t *)old_bufp->page;
372 1.1 cgd putpair((char *)op, &key, &val);
373 1.1 cgd }
374 1.1 cgd old_bufp->flags |= BUF_MOD;
375 1.1 cgd } else {
376 1.1 cgd /* Move to new page */
377 1.1 cgd if (PAIRFITS(np, (&key), (&val)))
378 1.1 cgd putpair((char *)np, &key, &val);
379 1.1 cgd else {
380 1.1 cgd new_bufp =
381 1.1 cgd __add_ovflpage(hashp, new_bufp);
382 1.1 cgd if (!new_bufp)
383 1.1 cgd return (-1);
384 1.6 cgd np = (u_int16_t *)new_bufp->page;
385 1.1 cgd putpair((char *)np, &key, &val);
386 1.1 cgd }
387 1.1 cgd new_bufp->flags |= BUF_MOD;
388 1.1 cgd }
389 1.1 cgd }
390 1.1 cgd }
391 1.1 cgd if (last_bfp)
392 1.1 cgd __free_ovflpage(hashp, last_bfp);
393 1.1 cgd return (0);
394 1.1 cgd }
395 1.1 cgd
396 1.1 cgd /*
397 1.1 cgd * Add the given pair to the page
398 1.1 cgd *
399 1.1 cgd * Returns:
400 1.1 cgd * 0 ==> OK
401 1.1 cgd * 1 ==> failure
402 1.1 cgd */
403 1.1 cgd extern int
404 1.1 cgd __addel(hashp, bufp, key, val)
405 1.1 cgd HTAB *hashp;
406 1.1 cgd BUFHEAD *bufp;
407 1.1 cgd const DBT *key, *val;
408 1.1 cgd {
409 1.6 cgd register u_int16_t *bp, *sop;
410 1.1 cgd int do_expand;
411 1.1 cgd
412 1.6 cgd bp = (u_int16_t *)bufp->page;
413 1.1 cgd do_expand = 0;
414 1.4 cgd while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
415 1.1 cgd /* Exception case */
416 1.4 cgd if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
417 1.4 cgd /* This is the last page of a big key/data pair
418 1.4 cgd and we need to add another page */
419 1.4 cgd break;
420 1.4 cgd else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
421 1.4 cgd bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
422 1.1 cgd if (!bufp)
423 1.1 cgd return (-1);
424 1.6 cgd bp = (u_int16_t *)bufp->page;
425 1.1 cgd } else
426 1.1 cgd /* Try to squeeze key on this page */
427 1.1 cgd if (FREESPACE(bp) > PAIRSIZE(key, val)) {
428 1.1 cgd squeeze_key(bp, key, val);
429 1.1 cgd return (0);
430 1.1 cgd } else {
431 1.1 cgd bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
432 1.1 cgd if (!bufp)
433 1.1 cgd return (-1);
434 1.6 cgd bp = (u_int16_t *)bufp->page;
435 1.1 cgd }
436 1.1 cgd
437 1.1 cgd if (PAIRFITS(bp, key, val))
438 1.1 cgd putpair(bufp->page, key, val);
439 1.1 cgd else {
440 1.1 cgd do_expand = 1;
441 1.1 cgd bufp = __add_ovflpage(hashp, bufp);
442 1.1 cgd if (!bufp)
443 1.1 cgd return (-1);
444 1.6 cgd sop = (u_int16_t *)bufp->page;
445 1.1 cgd
446 1.1 cgd if (PAIRFITS(sop, key, val))
447 1.1 cgd putpair((char *)sop, key, val);
448 1.1 cgd else
449 1.1 cgd if (__big_insert(hashp, bufp, key, val))
450 1.1 cgd return (-1);
451 1.1 cgd }
452 1.1 cgd bufp->flags |= BUF_MOD;
453 1.1 cgd /*
454 1.1 cgd * If the average number of keys per bucket exceeds the fill factor,
455 1.1 cgd * expand the table.
456 1.1 cgd */
457 1.1 cgd hashp->NKEYS++;
458 1.1 cgd if (do_expand ||
459 1.1 cgd (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
460 1.1 cgd return (__expand_table(hashp));
461 1.1 cgd return (0);
462 1.1 cgd }
463 1.1 cgd
464 1.1 cgd /*
465 1.1 cgd *
466 1.1 cgd * Returns:
467 1.1 cgd * pointer on success
468 1.1 cgd * NULL on error
469 1.1 cgd */
470 1.1 cgd extern BUFHEAD *
471 1.1 cgd __add_ovflpage(hashp, bufp)
472 1.1 cgd HTAB *hashp;
473 1.1 cgd BUFHEAD *bufp;
474 1.1 cgd {
475 1.6 cgd register u_int16_t *sp;
476 1.6 cgd u_int16_t ndx, ovfl_num;
477 1.1 cgd #ifdef DEBUG1
478 1.1 cgd int tmp1, tmp2;
479 1.1 cgd #endif
480 1.6 cgd sp = (u_int16_t *)bufp->page;
481 1.1 cgd
482 1.1 cgd /* Check if we are dynamically determining the fill factor */
483 1.1 cgd if (hashp->FFACTOR == DEF_FFACTOR) {
484 1.1 cgd hashp->FFACTOR = sp[0] >> 1;
485 1.1 cgd if (hashp->FFACTOR < MIN_FFACTOR)
486 1.1 cgd hashp->FFACTOR = MIN_FFACTOR;
487 1.1 cgd }
488 1.1 cgd bufp->flags |= BUF_MOD;
489 1.1 cgd ovfl_num = overflow_page(hashp);
490 1.1 cgd #ifdef DEBUG1
491 1.1 cgd tmp1 = bufp->addr;
492 1.1 cgd tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
493 1.1 cgd #endif
494 1.1 cgd if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
495 1.1 cgd return (NULL);
496 1.1 cgd bufp->ovfl->flags |= BUF_MOD;
497 1.1 cgd #ifdef DEBUG1
498 1.1 cgd (void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
499 1.1 cgd tmp1, tmp2, bufp->ovfl->addr);
500 1.1 cgd #endif
501 1.1 cgd ndx = sp[0];
502 1.1 cgd /*
503 1.1 cgd * Since a pair is allocated on a page only if there's room to add
504 1.1 cgd * an overflow page, we know that the OVFL information will fit on
505 1.1 cgd * the page.
506 1.1 cgd */
507 1.1 cgd sp[ndx + 4] = OFFSET(sp);
508 1.1 cgd sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
509 1.1 cgd sp[ndx + 1] = ovfl_num;
510 1.1 cgd sp[ndx + 2] = OVFLPAGE;
511 1.1 cgd sp[0] = ndx + 2;
512 1.1 cgd #ifdef HASH_STATISTICS
513 1.1 cgd hash_overflows++;
514 1.1 cgd #endif
515 1.1 cgd return (bufp->ovfl);
516 1.1 cgd }
517 1.1 cgd
518 1.1 cgd /*
519 1.1 cgd * Returns:
520 1.1 cgd * 0 indicates SUCCESS
521 1.1 cgd * -1 indicates FAILURE
522 1.1 cgd */
523 1.1 cgd extern int
524 1.1 cgd __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
525 1.1 cgd HTAB *hashp;
526 1.1 cgd char *p;
527 1.6 cgd u_int32_t bucket;
528 1.1 cgd int is_bucket, is_disk, is_bitmap;
529 1.1 cgd {
530 1.1 cgd register int fd, page, size;
531 1.1 cgd int rsize;
532 1.6 cgd u_int16_t *bp;
533 1.1 cgd
534 1.1 cgd fd = hashp->fp;
535 1.1 cgd size = hashp->BSIZE;
536 1.1 cgd
537 1.1 cgd if ((fd == -1) || !is_disk) {
538 1.1 cgd PAGE_INIT(p);
539 1.1 cgd return (0);
540 1.1 cgd }
541 1.1 cgd if (is_bucket)
542 1.1 cgd page = BUCKET_TO_PAGE(bucket);
543 1.1 cgd else
544 1.1 cgd page = OADDR_TO_PAGE(bucket);
545 1.1 cgd if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
546 1.1 cgd ((rsize = read(fd, p, size)) == -1))
547 1.1 cgd return (-1);
548 1.6 cgd bp = (u_int16_t *)p;
549 1.1 cgd if (!rsize)
550 1.1 cgd bp[0] = 0; /* We hit the EOF, so initialize a new page */
551 1.1 cgd else
552 1.1 cgd if (rsize != size) {
553 1.1 cgd errno = EFTYPE;
554 1.1 cgd return (-1);
555 1.1 cgd }
556 1.1 cgd if (!is_bitmap && !bp[0]) {
557 1.1 cgd PAGE_INIT(p);
558 1.1 cgd } else
559 1.1 cgd if (hashp->LORDER != BYTE_ORDER) {
560 1.1 cgd register int i, max;
561 1.1 cgd
562 1.1 cgd if (is_bitmap) {
563 1.1 cgd max = hashp->BSIZE >> 2; /* divide by 4 */
564 1.1 cgd for (i = 0; i < max; i++)
565 1.6 cgd M_32_SWAP(((int *)p)[i]);
566 1.1 cgd } else {
567 1.6 cgd M_16_SWAP(bp[0]);
568 1.1 cgd max = bp[0] + 2;
569 1.1 cgd for (i = 1; i <= max; i++)
570 1.6 cgd M_16_SWAP(bp[i]);
571 1.1 cgd }
572 1.1 cgd }
573 1.1 cgd return (0);
574 1.1 cgd }
575 1.1 cgd
576 1.1 cgd /*
577 1.1 cgd * Write page p to disk
578 1.1 cgd *
579 1.1 cgd * Returns:
580 1.1 cgd * 0 ==> OK
581 1.1 cgd * -1 ==>failure
582 1.1 cgd */
583 1.1 cgd extern int
584 1.1 cgd __put_page(hashp, p, bucket, is_bucket, is_bitmap)
585 1.1 cgd HTAB *hashp;
586 1.1 cgd char *p;
587 1.6 cgd u_int32_t bucket;
588 1.1 cgd int is_bucket, is_bitmap;
589 1.1 cgd {
590 1.1 cgd register int fd, page, size;
591 1.1 cgd int wsize;
592 1.1 cgd
593 1.1 cgd size = hashp->BSIZE;
594 1.1 cgd if ((hashp->fp == -1) && open_temp(hashp))
595 1.1 cgd return (-1);
596 1.1 cgd fd = hashp->fp;
597 1.1 cgd
598 1.1 cgd if (hashp->LORDER != BYTE_ORDER) {
599 1.1 cgd register int i;
600 1.1 cgd register int max;
601 1.1 cgd
602 1.1 cgd if (is_bitmap) {
603 1.1 cgd max = hashp->BSIZE >> 2; /* divide by 4 */
604 1.1 cgd for (i = 0; i < max; i++)
605 1.6 cgd M_32_SWAP(((int *)p)[i]);
606 1.1 cgd } else {
607 1.6 cgd max = ((u_int16_t *)p)[0] + 2;
608 1.1 cgd for (i = 0; i <= max; i++)
609 1.6 cgd M_16_SWAP(((u_int16_t *)p)[i]);
610 1.1 cgd }
611 1.1 cgd }
612 1.1 cgd if (is_bucket)
613 1.1 cgd page = BUCKET_TO_PAGE(bucket);
614 1.1 cgd else
615 1.1 cgd page = OADDR_TO_PAGE(bucket);
616 1.1 cgd if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
617 1.1 cgd ((wsize = write(fd, p, size)) == -1))
618 1.1 cgd /* Errno is set */
619 1.1 cgd return (-1);
620 1.1 cgd if (wsize != size) {
621 1.1 cgd errno = EFTYPE;
622 1.1 cgd return (-1);
623 1.1 cgd }
624 1.1 cgd return (0);
625 1.1 cgd }
626 1.1 cgd
627 1.1 cgd #define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1)
628 1.1 cgd /*
629 1.1 cgd * Initialize a new bitmap page. Bitmap pages are left in memory
630 1.1 cgd * once they are read in.
631 1.1 cgd */
632 1.1 cgd extern int
633 1.6 cgd __ibitmap(hashp, pnum, nbits, ndx)
634 1.1 cgd HTAB *hashp;
635 1.1 cgd int pnum, nbits, ndx;
636 1.1 cgd {
637 1.6 cgd u_int32_t *ip;
638 1.1 cgd int clearbytes, clearints;
639 1.1 cgd
640 1.6 cgd if ((ip = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
641 1.1 cgd return (1);
642 1.1 cgd hashp->nmaps++;
643 1.1 cgd clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
644 1.1 cgd clearbytes = clearints << INT_TO_BYTE;
645 1.1 cgd (void)memset((char *)ip, 0, clearbytes);
646 1.1 cgd (void)memset(((char *)ip) + clearbytes, 0xFF,
647 1.1 cgd hashp->BSIZE - clearbytes);
648 1.1 cgd ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
649 1.1 cgd SETBIT(ip, 0);
650 1.6 cgd hashp->BITMAPS[ndx] = (u_int16_t)pnum;
651 1.1 cgd hashp->mapp[ndx] = ip;
652 1.1 cgd return (0);
653 1.1 cgd }
654 1.1 cgd
655 1.6 cgd static u_int32_t
656 1.1 cgd first_free(map)
657 1.6 cgd u_int32_t map;
658 1.1 cgd {
659 1.6 cgd register u_int32_t i, mask;
660 1.1 cgd
661 1.1 cgd mask = 0x1;
662 1.1 cgd for (i = 0; i < BITS_PER_MAP; i++) {
663 1.1 cgd if (!(mask & map))
664 1.1 cgd return (i);
665 1.1 cgd mask = mask << 1;
666 1.1 cgd }
667 1.1 cgd return (i);
668 1.1 cgd }
669 1.1 cgd
670 1.6 cgd static u_int16_t
671 1.1 cgd overflow_page(hashp)
672 1.1 cgd HTAB *hashp;
673 1.1 cgd {
674 1.6 cgd register u_int32_t *freep;
675 1.1 cgd register int max_free, offset, splitnum;
676 1.6 cgd u_int16_t addr;
677 1.1 cgd int bit, first_page, free_bit, free_page, i, in_use_bits, j;
678 1.1 cgd #ifdef DEBUG2
679 1.1 cgd int tmp1, tmp2;
680 1.1 cgd #endif
681 1.1 cgd splitnum = hashp->OVFL_POINT;
682 1.1 cgd max_free = hashp->SPARES[splitnum];
683 1.1 cgd
684 1.1 cgd free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
685 1.1 cgd free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
686 1.1 cgd
687 1.1 cgd /* Look through all the free maps to find the first free block */
688 1.1 cgd first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
689 1.1 cgd for ( i = first_page; i <= free_page; i++ ) {
690 1.6 cgd if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
691 1.1 cgd !(freep = fetch_bitmap(hashp, i)))
692 1.1 cgd return (NULL);
693 1.1 cgd if (i == free_page)
694 1.1 cgd in_use_bits = free_bit;
695 1.1 cgd else
696 1.1 cgd in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
697 1.1 cgd
698 1.1 cgd if (i == first_page) {
699 1.1 cgd bit = hashp->LAST_FREED &
700 1.1 cgd ((hashp->BSIZE << BYTE_SHIFT) - 1);
701 1.1 cgd j = bit / BITS_PER_MAP;
702 1.1 cgd bit = bit & ~(BITS_PER_MAP - 1);
703 1.1 cgd } else {
704 1.1 cgd bit = 0;
705 1.1 cgd j = 0;
706 1.1 cgd }
707 1.1 cgd for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
708 1.1 cgd if (freep[j] != ALL_SET)
709 1.1 cgd goto found;
710 1.1 cgd }
711 1.1 cgd
712 1.1 cgd /* No Free Page Found */
713 1.1 cgd hashp->LAST_FREED = hashp->SPARES[splitnum];
714 1.1 cgd hashp->SPARES[splitnum]++;
715 1.1 cgd offset = hashp->SPARES[splitnum] -
716 1.1 cgd (splitnum ? hashp->SPARES[splitnum - 1] : 0);
717 1.1 cgd
718 1.1 cgd #define OVMSG "HASH: Out of overflow pages. Increase page size\n"
719 1.1 cgd if (offset > SPLITMASK) {
720 1.1 cgd if (++splitnum >= NCACHED) {
721 1.1 cgd (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
722 1.1 cgd return (NULL);
723 1.1 cgd }
724 1.1 cgd hashp->OVFL_POINT = splitnum;
725 1.1 cgd hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
726 1.1 cgd hashp->SPARES[splitnum-1]--;
727 1.1 cgd offset = 1;
728 1.1 cgd }
729 1.1 cgd
730 1.1 cgd /* Check if we need to allocate a new bitmap page */
731 1.1 cgd if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
732 1.1 cgd free_page++;
733 1.1 cgd if (free_page >= NCACHED) {
734 1.1 cgd (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
735 1.1 cgd return (NULL);
736 1.1 cgd }
737 1.1 cgd /*
738 1.1 cgd * This is tricky. The 1 indicates that you want the new page
739 1.1 cgd * allocated with 1 clear bit. Actually, you are going to
740 1.1 cgd * allocate 2 pages from this map. The first is going to be
741 1.1 cgd * the map page, the second is the overflow page we were
742 1.1 cgd * looking for. The init_bitmap routine automatically, sets
743 1.1 cgd * the first bit of itself to indicate that the bitmap itself
744 1.1 cgd * is in use. We would explicitly set the second bit, but
745 1.1 cgd * don't have to if we tell init_bitmap not to leave it clear
746 1.1 cgd * in the first place.
747 1.1 cgd */
748 1.6 cgd if (__ibitmap(hashp, (int)OADDR_OF(splitnum, offset),
749 1.1 cgd 1, free_page))
750 1.1 cgd return (NULL);
751 1.1 cgd hashp->SPARES[splitnum]++;
752 1.1 cgd #ifdef DEBUG2
753 1.1 cgd free_bit = 2;
754 1.1 cgd #endif
755 1.1 cgd offset++;
756 1.1 cgd if (offset > SPLITMASK) {
757 1.1 cgd if (++splitnum >= NCACHED) {
758 1.1 cgd (void)write(STDERR_FILENO, OVMSG,
759 1.1 cgd sizeof(OVMSG) - 1);
760 1.1 cgd return (NULL);
761 1.1 cgd }
762 1.1 cgd hashp->OVFL_POINT = splitnum;
763 1.1 cgd hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
764 1.1 cgd hashp->SPARES[splitnum-1]--;
765 1.1 cgd offset = 0;
766 1.1 cgd }
767 1.1 cgd } else {
768 1.1 cgd /*
769 1.1 cgd * Free_bit addresses the last used bit. Bump it to address
770 1.1 cgd * the first available bit.
771 1.1 cgd */
772 1.1 cgd free_bit++;
773 1.1 cgd SETBIT(freep, free_bit);
774 1.1 cgd }
775 1.1 cgd
776 1.1 cgd /* Calculate address of the new overflow page */
777 1.1 cgd addr = OADDR_OF(splitnum, offset);
778 1.1 cgd #ifdef DEBUG2
779 1.1 cgd (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
780 1.1 cgd addr, free_bit, free_page);
781 1.1 cgd #endif
782 1.1 cgd return (addr);
783 1.1 cgd
784 1.1 cgd found:
785 1.1 cgd bit = bit + first_free(freep[j]);
786 1.1 cgd SETBIT(freep, bit);
787 1.1 cgd #ifdef DEBUG2
788 1.1 cgd tmp1 = bit;
789 1.1 cgd tmp2 = i;
790 1.1 cgd #endif
791 1.1 cgd /*
792 1.1 cgd * Bits are addressed starting with 0, but overflow pages are addressed
793 1.1 cgd * beginning at 1. Bit is a bit addressnumber, so we need to increment
794 1.1 cgd * it to convert it to a page number.
795 1.1 cgd */
796 1.1 cgd bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
797 1.1 cgd if (bit >= hashp->LAST_FREED)
798 1.1 cgd hashp->LAST_FREED = bit - 1;
799 1.1 cgd
800 1.1 cgd /* Calculate the split number for this page */
801 1.1 cgd for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
802 1.1 cgd offset = (i ? bit - hashp->SPARES[i - 1] : bit);
803 1.1 cgd if (offset >= SPLITMASK)
804 1.1 cgd return (NULL); /* Out of overflow pages */
805 1.1 cgd addr = OADDR_OF(i, offset);
806 1.1 cgd #ifdef DEBUG2
807 1.1 cgd (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
808 1.1 cgd addr, tmp1, tmp2);
809 1.1 cgd #endif
810 1.1 cgd
811 1.1 cgd /* Allocate and return the overflow page */
812 1.1 cgd return (addr);
813 1.1 cgd }
814 1.1 cgd
815 1.1 cgd /*
816 1.1 cgd * Mark this overflow page as free.
817 1.1 cgd */
818 1.1 cgd extern void
819 1.1 cgd __free_ovflpage(hashp, obufp)
820 1.1 cgd HTAB *hashp;
821 1.1 cgd BUFHEAD *obufp;
822 1.1 cgd {
823 1.6 cgd register u_int16_t addr;
824 1.6 cgd u_int32_t *freep;
825 1.1 cgd int bit_address, free_page, free_bit;
826 1.6 cgd u_int16_t ndx;
827 1.1 cgd
828 1.1 cgd addr = obufp->addr;
829 1.1 cgd #ifdef DEBUG1
830 1.1 cgd (void)fprintf(stderr, "Freeing %d\n", addr);
831 1.1 cgd #endif
832 1.6 cgd ndx = (((u_int16_t)addr) >> SPLITSHIFT);
833 1.1 cgd bit_address =
834 1.1 cgd (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
835 1.1 cgd if (bit_address < hashp->LAST_FREED)
836 1.1 cgd hashp->LAST_FREED = bit_address;
837 1.1 cgd free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
838 1.1 cgd free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
839 1.1 cgd
840 1.1 cgd if (!(freep = hashp->mapp[free_page]))
841 1.1 cgd freep = fetch_bitmap(hashp, free_page);
842 1.1 cgd #ifdef DEBUG
843 1.1 cgd /*
844 1.1 cgd * This had better never happen. It means we tried to read a bitmap
845 1.1 cgd * that has already had overflow pages allocated off it, and we
846 1.1 cgd * failed to read it from the file.
847 1.1 cgd */
848 1.1 cgd if (!freep)
849 1.1 cgd assert(0);
850 1.1 cgd #endif
851 1.1 cgd CLRBIT(freep, free_bit);
852 1.1 cgd #ifdef DEBUG2
853 1.1 cgd (void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
854 1.1 cgd obufp->addr, free_bit, free_page);
855 1.1 cgd #endif
856 1.1 cgd __reclaim_buf(hashp, obufp);
857 1.1 cgd }
858 1.1 cgd
859 1.1 cgd /*
860 1.1 cgd * Returns:
861 1.1 cgd * 0 success
862 1.1 cgd * -1 failure
863 1.1 cgd */
864 1.1 cgd static int
865 1.1 cgd open_temp(hashp)
866 1.1 cgd HTAB *hashp;
867 1.1 cgd {
868 1.1 cgd sigset_t set, oset;
869 1.1 cgd static char namestr[] = "_hashXXXXXX";
870 1.1 cgd
871 1.1 cgd /* Block signals; make sure file goes away at process exit. */
872 1.1 cgd (void)sigfillset(&set);
873 1.1 cgd (void)sigprocmask(SIG_BLOCK, &set, &oset);
874 1.1 cgd if ((hashp->fp = mkstemp(namestr)) != -1) {
875 1.1 cgd (void)unlink(namestr);
876 1.1 cgd (void)fcntl(hashp->fp, F_SETFD, 1);
877 1.1 cgd }
878 1.1 cgd (void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
879 1.1 cgd return (hashp->fp != -1 ? 0 : -1);
880 1.1 cgd }
881 1.1 cgd
882 1.1 cgd /*
883 1.1 cgd * We have to know that the key will fit, but the last entry on the page is
884 1.1 cgd * an overflow pair, so we need to shift things.
885 1.1 cgd */
886 1.1 cgd static void
887 1.1 cgd squeeze_key(sp, key, val)
888 1.6 cgd u_int16_t *sp;
889 1.1 cgd const DBT *key, *val;
890 1.1 cgd {
891 1.1 cgd register char *p;
892 1.6 cgd u_int16_t free_space, n, off, pageno;
893 1.1 cgd
894 1.1 cgd p = (char *)sp;
895 1.1 cgd n = sp[0];
896 1.1 cgd free_space = FREESPACE(sp);
897 1.1 cgd off = OFFSET(sp);
898 1.1 cgd
899 1.1 cgd pageno = sp[n - 1];
900 1.1 cgd off -= key->size;
901 1.1 cgd sp[n - 1] = off;
902 1.1 cgd memmove(p + off, key->data, key->size);
903 1.1 cgd off -= val->size;
904 1.1 cgd sp[n] = off;
905 1.1 cgd memmove(p + off, val->data, val->size);
906 1.1 cgd sp[0] = n + 2;
907 1.1 cgd sp[n + 1] = pageno;
908 1.1 cgd sp[n + 2] = OVFLPAGE;
909 1.1 cgd FREESPACE(sp) = free_space - PAIRSIZE(key, val);
910 1.1 cgd OFFSET(sp) = off;
911 1.1 cgd }
912 1.1 cgd
913 1.6 cgd static u_int32_t *
914 1.1 cgd fetch_bitmap(hashp, ndx)
915 1.1 cgd HTAB *hashp;
916 1.1 cgd int ndx;
917 1.1 cgd {
918 1.6 cgd if (ndx >= hashp->nmaps)
919 1.1 cgd return (NULL);
920 1.6 cgd if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
921 1.6 cgd return (NULL);
922 1.6 cgd if (__get_page(hashp,
923 1.6 cgd (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
924 1.6 cgd free(hashp->mapp[ndx]);
925 1.6 cgd return (NULL);
926 1.6 cgd }
927 1.1 cgd return (hashp->mapp[ndx]);
928 1.1 cgd }
929 1.1 cgd
930 1.1 cgd #ifdef DEBUG4
931 1.1 cgd int
932 1.1 cgd print_chain(addr)
933 1.1 cgd int addr;
934 1.1 cgd {
935 1.1 cgd BUFHEAD *bufp;
936 1.1 cgd short *bp, oaddr;
937 1.1 cgd
938 1.1 cgd (void)fprintf(stderr, "%d ", addr);
939 1.1 cgd bufp = __get_buf(hashp, addr, NULL, 0);
940 1.1 cgd bp = (short *)bufp->page;
941 1.1 cgd while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
942 1.1 cgd ((bp[0] > 2) && bp[2] < REAL_KEY))) {
943 1.1 cgd oaddr = bp[bp[0] - 1];
944 1.1 cgd (void)fprintf(stderr, "%d ", (int)oaddr);
945 1.1 cgd bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
946 1.1 cgd bp = (short *)bufp->page;
947 1.1 cgd }
948 1.1 cgd (void)fprintf(stderr, "\n");
949 1.1 cgd }
950 1.1 cgd #endif
951