hash_page.c revision 1.9 1 1.9 christos /* $NetBSD: hash_page.c,v 1.9 1997/07/13 18:52:06 christos Exp $ */
2 1.7 cgd
3 1.1 cgd /*-
4 1.6 cgd * Copyright (c) 1990, 1993, 1994
5 1.1 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Margo Seltzer.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.1 cgd * 3. All advertising materials mentioning features or use of this software
19 1.1 cgd * must display the following acknowledgement:
20 1.1 cgd * This product includes software developed by the University of
21 1.1 cgd * California, Berkeley and its contributors.
22 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
23 1.1 cgd * may be used to endorse or promote products derived from this software
24 1.1 cgd * without specific prior written permission.
25 1.1 cgd *
26 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 1.1 cgd * SUCH DAMAGE.
37 1.1 cgd */
38 1.1 cgd
39 1.9 christos #include <sys/cdefs.h>
40 1.1 cgd #if defined(LIBC_SCCS) && !defined(lint)
41 1.7 cgd #if 0
42 1.8 cgd static char sccsid[] = "@(#)hash_page.c 8.7 (Berkeley) 8/16/94";
43 1.7 cgd #else
44 1.9 christos __RCSID("$NetBSD: hash_page.c,v 1.9 1997/07/13 18:52:06 christos Exp $");
45 1.7 cgd #endif
46 1.1 cgd #endif /* LIBC_SCCS and not lint */
47 1.1 cgd
48 1.1 cgd /*
49 1.1 cgd * PACKAGE: hashing
50 1.1 cgd *
51 1.1 cgd * DESCRIPTION:
52 1.1 cgd * Page manipulation for hashing package.
53 1.1 cgd *
54 1.1 cgd * ROUTINES:
55 1.1 cgd *
56 1.1 cgd * External
57 1.1 cgd * __get_page
58 1.1 cgd * __add_ovflpage
59 1.1 cgd * Internal
60 1.1 cgd * overflow_page
61 1.1 cgd * open_temp
62 1.1 cgd */
63 1.1 cgd
64 1.1 cgd #include <sys/types.h>
65 1.1 cgd
66 1.1 cgd #include <errno.h>
67 1.1 cgd #include <fcntl.h>
68 1.1 cgd #include <signal.h>
69 1.1 cgd #include <stdio.h>
70 1.1 cgd #include <stdlib.h>
71 1.1 cgd #include <string.h>
72 1.1 cgd #include <unistd.h>
73 1.1 cgd #ifdef DEBUG
74 1.1 cgd #include <assert.h>
75 1.1 cgd #endif
76 1.1 cgd
77 1.1 cgd #include <db.h>
78 1.1 cgd #include "hash.h"
79 1.1 cgd #include "page.h"
80 1.1 cgd #include "extern.h"
81 1.1 cgd
82 1.6 cgd static u_int32_t *fetch_bitmap __P((HTAB *, int));
83 1.6 cgd static u_int32_t first_free __P((u_int32_t));
84 1.1 cgd static int open_temp __P((HTAB *));
85 1.6 cgd static u_int16_t overflow_page __P((HTAB *));
86 1.1 cgd static void putpair __P((char *, const DBT *, const DBT *));
87 1.6 cgd static void squeeze_key __P((u_int16_t *, const DBT *, const DBT *));
88 1.1 cgd static int ugly_split
89 1.6 cgd __P((HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int));
90 1.1 cgd
91 1.1 cgd #define PAGE_INIT(P) { \
92 1.6 cgd ((u_int16_t *)(P))[0] = 0; \
93 1.6 cgd ((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
94 1.6 cgd ((u_int16_t *)(P))[2] = hashp->BSIZE; \
95 1.1 cgd }
96 1.1 cgd
97 1.1 cgd /*
98 1.1 cgd * This is called AFTER we have verified that there is room on the page for
99 1.1 cgd * the pair (PAIRFITS has returned true) so we go right ahead and start moving
100 1.1 cgd * stuff on.
101 1.1 cgd */
102 1.1 cgd static void
103 1.1 cgd putpair(p, key, val)
104 1.1 cgd char *p;
105 1.1 cgd const DBT *key, *val;
106 1.1 cgd {
107 1.6 cgd register u_int16_t *bp, n, off;
108 1.1 cgd
109 1.6 cgd bp = (u_int16_t *)p;
110 1.1 cgd
111 1.1 cgd /* Enter the key first. */
112 1.1 cgd n = bp[0];
113 1.1 cgd
114 1.1 cgd off = OFFSET(bp) - key->size;
115 1.1 cgd memmove(p + off, key->data, key->size);
116 1.1 cgd bp[++n] = off;
117 1.1 cgd
118 1.1 cgd /* Now the data. */
119 1.1 cgd off -= val->size;
120 1.1 cgd memmove(p + off, val->data, val->size);
121 1.1 cgd bp[++n] = off;
122 1.1 cgd
123 1.1 cgd /* Adjust page info. */
124 1.1 cgd bp[0] = n;
125 1.6 cgd bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
126 1.1 cgd bp[n + 2] = off;
127 1.1 cgd }
128 1.1 cgd
129 1.1 cgd /*
130 1.1 cgd * Returns:
131 1.1 cgd * 0 OK
132 1.1 cgd * -1 error
133 1.1 cgd */
134 1.1 cgd extern int
135 1.1 cgd __delpair(hashp, bufp, ndx)
136 1.1 cgd HTAB *hashp;
137 1.1 cgd BUFHEAD *bufp;
138 1.1 cgd register int ndx;
139 1.1 cgd {
140 1.6 cgd register u_int16_t *bp, newoff;
141 1.1 cgd register int n;
142 1.6 cgd u_int16_t pairlen;
143 1.1 cgd
144 1.6 cgd bp = (u_int16_t *)bufp->page;
145 1.1 cgd n = bp[0];
146 1.1 cgd
147 1.1 cgd if (bp[ndx + 1] < REAL_KEY)
148 1.1 cgd return (__big_delete(hashp, bufp));
149 1.1 cgd if (ndx != 1)
150 1.1 cgd newoff = bp[ndx - 1];
151 1.1 cgd else
152 1.1 cgd newoff = hashp->BSIZE;
153 1.1 cgd pairlen = newoff - bp[ndx + 1];
154 1.1 cgd
155 1.1 cgd if (ndx != (n - 1)) {
156 1.1 cgd /* Hard Case -- need to shuffle keys */
157 1.1 cgd register int i;
158 1.1 cgd register char *src = bufp->page + (int)OFFSET(bp);
159 1.1 cgd register char *dst = src + (int)pairlen;
160 1.1 cgd memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
161 1.1 cgd
162 1.1 cgd /* Now adjust the pointers */
163 1.1 cgd for (i = ndx + 2; i <= n; i += 2) {
164 1.1 cgd if (bp[i + 1] == OVFLPAGE) {
165 1.1 cgd bp[i - 2] = bp[i];
166 1.1 cgd bp[i - 1] = bp[i + 1];
167 1.1 cgd } else {
168 1.1 cgd bp[i - 2] = bp[i] + pairlen;
169 1.1 cgd bp[i - 1] = bp[i + 1] + pairlen;
170 1.1 cgd }
171 1.1 cgd }
172 1.1 cgd }
173 1.1 cgd /* Finally adjust the page data */
174 1.1 cgd bp[n] = OFFSET(bp) + pairlen;
175 1.6 cgd bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
176 1.1 cgd bp[0] = n - 2;
177 1.1 cgd hashp->NKEYS--;
178 1.1 cgd
179 1.1 cgd bufp->flags |= BUF_MOD;
180 1.1 cgd return (0);
181 1.1 cgd }
182 1.1 cgd /*
183 1.1 cgd * Returns:
184 1.1 cgd * 0 ==> OK
185 1.1 cgd * -1 ==> Error
186 1.1 cgd */
187 1.1 cgd extern int
188 1.1 cgd __split_page(hashp, obucket, nbucket)
189 1.1 cgd HTAB *hashp;
190 1.6 cgd u_int32_t obucket, nbucket;
191 1.1 cgd {
192 1.1 cgd register BUFHEAD *new_bufp, *old_bufp;
193 1.6 cgd register u_int16_t *ino;
194 1.1 cgd register char *np;
195 1.1 cgd DBT key, val;
196 1.1 cgd int n, ndx, retval;
197 1.6 cgd u_int16_t copyto, diff, off, moved;
198 1.1 cgd char *op;
199 1.1 cgd
200 1.6 cgd copyto = (u_int16_t)hashp->BSIZE;
201 1.6 cgd off = (u_int16_t)hashp->BSIZE;
202 1.1 cgd old_bufp = __get_buf(hashp, obucket, NULL, 0);
203 1.1 cgd if (old_bufp == NULL)
204 1.1 cgd return (-1);
205 1.1 cgd new_bufp = __get_buf(hashp, nbucket, NULL, 0);
206 1.1 cgd if (new_bufp == NULL)
207 1.1 cgd return (-1);
208 1.1 cgd
209 1.1 cgd old_bufp->flags |= (BUF_MOD | BUF_PIN);
210 1.1 cgd new_bufp->flags |= (BUF_MOD | BUF_PIN);
211 1.1 cgd
212 1.6 cgd ino = (u_int16_t *)(op = old_bufp->page);
213 1.1 cgd np = new_bufp->page;
214 1.1 cgd
215 1.1 cgd moved = 0;
216 1.1 cgd
217 1.1 cgd for (n = 1, ndx = 1; n < ino[0]; n += 2) {
218 1.1 cgd if (ino[n + 1] < REAL_KEY) {
219 1.1 cgd retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
220 1.1 cgd (int)copyto, (int)moved);
221 1.1 cgd old_bufp->flags &= ~BUF_PIN;
222 1.1 cgd new_bufp->flags &= ~BUF_PIN;
223 1.1 cgd return (retval);
224 1.1 cgd
225 1.1 cgd }
226 1.1 cgd key.data = (u_char *)op + ino[n];
227 1.1 cgd key.size = off - ino[n];
228 1.1 cgd
229 1.1 cgd if (__call_hash(hashp, key.data, key.size) == obucket) {
230 1.1 cgd /* Don't switch page */
231 1.1 cgd diff = copyto - off;
232 1.1 cgd if (diff) {
233 1.1 cgd copyto = ino[n + 1] + diff;
234 1.1 cgd memmove(op + copyto, op + ino[n + 1],
235 1.1 cgd off - ino[n + 1]);
236 1.1 cgd ino[ndx] = copyto + ino[n] - ino[n + 1];
237 1.1 cgd ino[ndx + 1] = copyto;
238 1.1 cgd } else
239 1.1 cgd copyto = ino[n + 1];
240 1.1 cgd ndx += 2;
241 1.1 cgd } else {
242 1.1 cgd /* Switch page */
243 1.1 cgd val.data = (u_char *)op + ino[n + 1];
244 1.1 cgd val.size = ino[n] - ino[n + 1];
245 1.1 cgd putpair(np, &key, &val);
246 1.1 cgd moved += 2;
247 1.1 cgd }
248 1.1 cgd
249 1.1 cgd off = ino[n + 1];
250 1.1 cgd }
251 1.1 cgd
252 1.1 cgd /* Now clean up the page */
253 1.1 cgd ino[0] -= moved;
254 1.6 cgd FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
255 1.1 cgd OFFSET(ino) = copyto;
256 1.1 cgd
257 1.1 cgd #ifdef DEBUG3
258 1.1 cgd (void)fprintf(stderr, "split %d/%d\n",
259 1.6 cgd ((u_int16_t *)np)[0] / 2,
260 1.6 cgd ((u_int16_t *)op)[0] / 2);
261 1.1 cgd #endif
262 1.1 cgd /* unpin both pages */
263 1.1 cgd old_bufp->flags &= ~BUF_PIN;
264 1.1 cgd new_bufp->flags &= ~BUF_PIN;
265 1.1 cgd return (0);
266 1.1 cgd }
267 1.1 cgd
268 1.1 cgd /*
269 1.1 cgd * Called when we encounter an overflow or big key/data page during split
270 1.1 cgd * handling. This is special cased since we have to begin checking whether
271 1.1 cgd * the key/data pairs fit on their respective pages and because we may need
272 1.1 cgd * overflow pages for both the old and new pages.
273 1.1 cgd *
274 1.1 cgd * The first page might be a page with regular key/data pairs in which case
275 1.1 cgd * we have a regular overflow condition and just need to go on to the next
276 1.1 cgd * page or it might be a big key/data pair in which case we need to fix the
277 1.1 cgd * big key/data pair.
278 1.1 cgd *
279 1.1 cgd * Returns:
280 1.1 cgd * 0 ==> success
281 1.1 cgd * -1 ==> failure
282 1.1 cgd */
283 1.1 cgd static int
284 1.1 cgd ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
285 1.1 cgd HTAB *hashp;
286 1.6 cgd u_int32_t obucket; /* Same as __split_page. */
287 1.1 cgd BUFHEAD *old_bufp, *new_bufp;
288 1.1 cgd int copyto; /* First byte on page which contains key/data values. */
289 1.1 cgd int moved; /* Number of pairs moved to new page. */
290 1.1 cgd {
291 1.1 cgd register BUFHEAD *bufp; /* Buffer header for ino */
292 1.6 cgd register u_int16_t *ino; /* Page keys come off of */
293 1.6 cgd register u_int16_t *np; /* New page */
294 1.6 cgd register u_int16_t *op; /* Page keys go on to if they aren't moving */
295 1.1 cgd
296 1.1 cgd BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */
297 1.1 cgd DBT key, val;
298 1.1 cgd SPLIT_RETURN ret;
299 1.6 cgd u_int16_t n, off, ov_addr, scopyto;
300 1.1 cgd char *cino; /* Character value of ino */
301 1.1 cgd
302 1.1 cgd bufp = old_bufp;
303 1.6 cgd ino = (u_int16_t *)old_bufp->page;
304 1.6 cgd np = (u_int16_t *)new_bufp->page;
305 1.6 cgd op = (u_int16_t *)old_bufp->page;
306 1.1 cgd last_bfp = NULL;
307 1.6 cgd scopyto = (u_int16_t)copyto; /* ANSI */
308 1.1 cgd
309 1.1 cgd n = ino[0] - 1;
310 1.1 cgd while (n < ino[0]) {
311 1.1 cgd if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
312 1.1 cgd if (__big_split(hashp, old_bufp,
313 1.4 cgd new_bufp, bufp, bufp->addr, obucket, &ret))
314 1.1 cgd return (-1);
315 1.1 cgd old_bufp = ret.oldp;
316 1.1 cgd if (!old_bufp)
317 1.1 cgd return (-1);
318 1.6 cgd op = (u_int16_t *)old_bufp->page;
319 1.1 cgd new_bufp = ret.newp;
320 1.1 cgd if (!new_bufp)
321 1.1 cgd return (-1);
322 1.6 cgd np = (u_int16_t *)new_bufp->page;
323 1.1 cgd bufp = ret.nextp;
324 1.1 cgd if (!bufp)
325 1.1 cgd return (0);
326 1.1 cgd cino = (char *)bufp->page;
327 1.6 cgd ino = (u_int16_t *)cino;
328 1.1 cgd last_bfp = ret.nextp;
329 1.1 cgd } else if (ino[n + 1] == OVFLPAGE) {
330 1.1 cgd ov_addr = ino[n];
331 1.1 cgd /*
332 1.1 cgd * Fix up the old page -- the extra 2 are the fields
333 1.1 cgd * which contained the overflow information.
334 1.1 cgd */
335 1.1 cgd ino[0] -= (moved + 2);
336 1.1 cgd FREESPACE(ino) =
337 1.6 cgd scopyto - sizeof(u_int16_t) * (ino[0] + 3);
338 1.1 cgd OFFSET(ino) = scopyto;
339 1.1 cgd
340 1.1 cgd bufp = __get_buf(hashp, ov_addr, bufp, 0);
341 1.1 cgd if (!bufp)
342 1.1 cgd return (-1);
343 1.1 cgd
344 1.6 cgd ino = (u_int16_t *)bufp->page;
345 1.1 cgd n = 1;
346 1.1 cgd scopyto = hashp->BSIZE;
347 1.1 cgd moved = 0;
348 1.1 cgd
349 1.1 cgd if (last_bfp)
350 1.1 cgd __free_ovflpage(hashp, last_bfp);
351 1.1 cgd last_bfp = bufp;
352 1.1 cgd }
353 1.1 cgd /* Move regular sized pairs of there are any */
354 1.1 cgd off = hashp->BSIZE;
355 1.1 cgd for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
356 1.1 cgd cino = (char *)ino;
357 1.1 cgd key.data = (u_char *)cino + ino[n];
358 1.1 cgd key.size = off - ino[n];
359 1.1 cgd val.data = (u_char *)cino + ino[n + 1];
360 1.1 cgd val.size = ino[n] - ino[n + 1];
361 1.1 cgd off = ino[n + 1];
362 1.1 cgd
363 1.1 cgd if (__call_hash(hashp, key.data, key.size) == obucket) {
364 1.1 cgd /* Keep on old page */
365 1.1 cgd if (PAIRFITS(op, (&key), (&val)))
366 1.1 cgd putpair((char *)op, &key, &val);
367 1.1 cgd else {
368 1.1 cgd old_bufp =
369 1.1 cgd __add_ovflpage(hashp, old_bufp);
370 1.1 cgd if (!old_bufp)
371 1.1 cgd return (-1);
372 1.6 cgd op = (u_int16_t *)old_bufp->page;
373 1.1 cgd putpair((char *)op, &key, &val);
374 1.1 cgd }
375 1.1 cgd old_bufp->flags |= BUF_MOD;
376 1.1 cgd } else {
377 1.1 cgd /* Move to new page */
378 1.1 cgd if (PAIRFITS(np, (&key), (&val)))
379 1.1 cgd putpair((char *)np, &key, &val);
380 1.1 cgd else {
381 1.1 cgd new_bufp =
382 1.1 cgd __add_ovflpage(hashp, new_bufp);
383 1.1 cgd if (!new_bufp)
384 1.1 cgd return (-1);
385 1.6 cgd np = (u_int16_t *)new_bufp->page;
386 1.1 cgd putpair((char *)np, &key, &val);
387 1.1 cgd }
388 1.1 cgd new_bufp->flags |= BUF_MOD;
389 1.1 cgd }
390 1.1 cgd }
391 1.1 cgd }
392 1.1 cgd if (last_bfp)
393 1.1 cgd __free_ovflpage(hashp, last_bfp);
394 1.1 cgd return (0);
395 1.1 cgd }
396 1.1 cgd
397 1.1 cgd /*
398 1.1 cgd * Add the given pair to the page
399 1.1 cgd *
400 1.1 cgd * Returns:
401 1.1 cgd * 0 ==> OK
402 1.1 cgd * 1 ==> failure
403 1.1 cgd */
404 1.1 cgd extern int
405 1.1 cgd __addel(hashp, bufp, key, val)
406 1.1 cgd HTAB *hashp;
407 1.1 cgd BUFHEAD *bufp;
408 1.1 cgd const DBT *key, *val;
409 1.1 cgd {
410 1.6 cgd register u_int16_t *bp, *sop;
411 1.1 cgd int do_expand;
412 1.1 cgd
413 1.6 cgd bp = (u_int16_t *)bufp->page;
414 1.1 cgd do_expand = 0;
415 1.4 cgd while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
416 1.1 cgd /* Exception case */
417 1.4 cgd if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
418 1.4 cgd /* This is the last page of a big key/data pair
419 1.4 cgd and we need to add another page */
420 1.4 cgd break;
421 1.4 cgd else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
422 1.4 cgd bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
423 1.1 cgd if (!bufp)
424 1.1 cgd return (-1);
425 1.6 cgd bp = (u_int16_t *)bufp->page;
426 1.1 cgd } else
427 1.1 cgd /* Try to squeeze key on this page */
428 1.1 cgd if (FREESPACE(bp) > PAIRSIZE(key, val)) {
429 1.1 cgd squeeze_key(bp, key, val);
430 1.1 cgd return (0);
431 1.1 cgd } else {
432 1.1 cgd bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
433 1.1 cgd if (!bufp)
434 1.1 cgd return (-1);
435 1.6 cgd bp = (u_int16_t *)bufp->page;
436 1.1 cgd }
437 1.1 cgd
438 1.1 cgd if (PAIRFITS(bp, key, val))
439 1.1 cgd putpair(bufp->page, key, val);
440 1.1 cgd else {
441 1.1 cgd do_expand = 1;
442 1.1 cgd bufp = __add_ovflpage(hashp, bufp);
443 1.1 cgd if (!bufp)
444 1.1 cgd return (-1);
445 1.6 cgd sop = (u_int16_t *)bufp->page;
446 1.1 cgd
447 1.1 cgd if (PAIRFITS(sop, key, val))
448 1.1 cgd putpair((char *)sop, key, val);
449 1.1 cgd else
450 1.1 cgd if (__big_insert(hashp, bufp, key, val))
451 1.1 cgd return (-1);
452 1.1 cgd }
453 1.1 cgd bufp->flags |= BUF_MOD;
454 1.1 cgd /*
455 1.1 cgd * If the average number of keys per bucket exceeds the fill factor,
456 1.1 cgd * expand the table.
457 1.1 cgd */
458 1.1 cgd hashp->NKEYS++;
459 1.1 cgd if (do_expand ||
460 1.1 cgd (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
461 1.1 cgd return (__expand_table(hashp));
462 1.1 cgd return (0);
463 1.1 cgd }
464 1.1 cgd
465 1.1 cgd /*
466 1.1 cgd *
467 1.1 cgd * Returns:
468 1.1 cgd * pointer on success
469 1.1 cgd * NULL on error
470 1.1 cgd */
471 1.1 cgd extern BUFHEAD *
472 1.1 cgd __add_ovflpage(hashp, bufp)
473 1.1 cgd HTAB *hashp;
474 1.1 cgd BUFHEAD *bufp;
475 1.1 cgd {
476 1.6 cgd register u_int16_t *sp;
477 1.6 cgd u_int16_t ndx, ovfl_num;
478 1.1 cgd #ifdef DEBUG1
479 1.1 cgd int tmp1, tmp2;
480 1.1 cgd #endif
481 1.6 cgd sp = (u_int16_t *)bufp->page;
482 1.1 cgd
483 1.1 cgd /* Check if we are dynamically determining the fill factor */
484 1.1 cgd if (hashp->FFACTOR == DEF_FFACTOR) {
485 1.1 cgd hashp->FFACTOR = sp[0] >> 1;
486 1.1 cgd if (hashp->FFACTOR < MIN_FFACTOR)
487 1.1 cgd hashp->FFACTOR = MIN_FFACTOR;
488 1.1 cgd }
489 1.1 cgd bufp->flags |= BUF_MOD;
490 1.1 cgd ovfl_num = overflow_page(hashp);
491 1.1 cgd #ifdef DEBUG1
492 1.1 cgd tmp1 = bufp->addr;
493 1.1 cgd tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
494 1.1 cgd #endif
495 1.1 cgd if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
496 1.1 cgd return (NULL);
497 1.1 cgd bufp->ovfl->flags |= BUF_MOD;
498 1.1 cgd #ifdef DEBUG1
499 1.1 cgd (void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
500 1.1 cgd tmp1, tmp2, bufp->ovfl->addr);
501 1.1 cgd #endif
502 1.1 cgd ndx = sp[0];
503 1.1 cgd /*
504 1.1 cgd * Since a pair is allocated on a page only if there's room to add
505 1.1 cgd * an overflow page, we know that the OVFL information will fit on
506 1.1 cgd * the page.
507 1.1 cgd */
508 1.1 cgd sp[ndx + 4] = OFFSET(sp);
509 1.1 cgd sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
510 1.1 cgd sp[ndx + 1] = ovfl_num;
511 1.1 cgd sp[ndx + 2] = OVFLPAGE;
512 1.1 cgd sp[0] = ndx + 2;
513 1.1 cgd #ifdef HASH_STATISTICS
514 1.1 cgd hash_overflows++;
515 1.1 cgd #endif
516 1.1 cgd return (bufp->ovfl);
517 1.1 cgd }
518 1.1 cgd
519 1.1 cgd /*
520 1.1 cgd * Returns:
521 1.1 cgd * 0 indicates SUCCESS
522 1.1 cgd * -1 indicates FAILURE
523 1.1 cgd */
524 1.1 cgd extern int
525 1.1 cgd __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
526 1.1 cgd HTAB *hashp;
527 1.1 cgd char *p;
528 1.6 cgd u_int32_t bucket;
529 1.1 cgd int is_bucket, is_disk, is_bitmap;
530 1.1 cgd {
531 1.1 cgd register int fd, page, size;
532 1.1 cgd int rsize;
533 1.6 cgd u_int16_t *bp;
534 1.1 cgd
535 1.1 cgd fd = hashp->fp;
536 1.1 cgd size = hashp->BSIZE;
537 1.1 cgd
538 1.1 cgd if ((fd == -1) || !is_disk) {
539 1.1 cgd PAGE_INIT(p);
540 1.1 cgd return (0);
541 1.1 cgd }
542 1.1 cgd if (is_bucket)
543 1.1 cgd page = BUCKET_TO_PAGE(bucket);
544 1.1 cgd else
545 1.1 cgd page = OADDR_TO_PAGE(bucket);
546 1.1 cgd if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
547 1.1 cgd ((rsize = read(fd, p, size)) == -1))
548 1.1 cgd return (-1);
549 1.6 cgd bp = (u_int16_t *)p;
550 1.1 cgd if (!rsize)
551 1.1 cgd bp[0] = 0; /* We hit the EOF, so initialize a new page */
552 1.1 cgd else
553 1.1 cgd if (rsize != size) {
554 1.1 cgd errno = EFTYPE;
555 1.1 cgd return (-1);
556 1.1 cgd }
557 1.1 cgd if (!is_bitmap && !bp[0]) {
558 1.1 cgd PAGE_INIT(p);
559 1.1 cgd } else
560 1.1 cgd if (hashp->LORDER != BYTE_ORDER) {
561 1.1 cgd register int i, max;
562 1.1 cgd
563 1.1 cgd if (is_bitmap) {
564 1.1 cgd max = hashp->BSIZE >> 2; /* divide by 4 */
565 1.1 cgd for (i = 0; i < max; i++)
566 1.6 cgd M_32_SWAP(((int *)p)[i]);
567 1.1 cgd } else {
568 1.6 cgd M_16_SWAP(bp[0]);
569 1.1 cgd max = bp[0] + 2;
570 1.1 cgd for (i = 1; i <= max; i++)
571 1.6 cgd M_16_SWAP(bp[i]);
572 1.1 cgd }
573 1.1 cgd }
574 1.1 cgd return (0);
575 1.1 cgd }
576 1.1 cgd
577 1.1 cgd /*
578 1.1 cgd * Write page p to disk
579 1.1 cgd *
580 1.1 cgd * Returns:
581 1.1 cgd * 0 ==> OK
582 1.1 cgd * -1 ==>failure
583 1.1 cgd */
584 1.1 cgd extern int
585 1.1 cgd __put_page(hashp, p, bucket, is_bucket, is_bitmap)
586 1.1 cgd HTAB *hashp;
587 1.1 cgd char *p;
588 1.6 cgd u_int32_t bucket;
589 1.1 cgd int is_bucket, is_bitmap;
590 1.1 cgd {
591 1.1 cgd register int fd, page, size;
592 1.1 cgd int wsize;
593 1.1 cgd
594 1.1 cgd size = hashp->BSIZE;
595 1.1 cgd if ((hashp->fp == -1) && open_temp(hashp))
596 1.1 cgd return (-1);
597 1.1 cgd fd = hashp->fp;
598 1.1 cgd
599 1.1 cgd if (hashp->LORDER != BYTE_ORDER) {
600 1.1 cgd register int i;
601 1.1 cgd register int max;
602 1.1 cgd
603 1.1 cgd if (is_bitmap) {
604 1.1 cgd max = hashp->BSIZE >> 2; /* divide by 4 */
605 1.1 cgd for (i = 0; i < max; i++)
606 1.6 cgd M_32_SWAP(((int *)p)[i]);
607 1.1 cgd } else {
608 1.6 cgd max = ((u_int16_t *)p)[0] + 2;
609 1.1 cgd for (i = 0; i <= max; i++)
610 1.6 cgd M_16_SWAP(((u_int16_t *)p)[i]);
611 1.1 cgd }
612 1.1 cgd }
613 1.1 cgd if (is_bucket)
614 1.1 cgd page = BUCKET_TO_PAGE(bucket);
615 1.1 cgd else
616 1.1 cgd page = OADDR_TO_PAGE(bucket);
617 1.1 cgd if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
618 1.1 cgd ((wsize = write(fd, p, size)) == -1))
619 1.1 cgd /* Errno is set */
620 1.1 cgd return (-1);
621 1.1 cgd if (wsize != size) {
622 1.1 cgd errno = EFTYPE;
623 1.1 cgd return (-1);
624 1.1 cgd }
625 1.1 cgd return (0);
626 1.1 cgd }
627 1.1 cgd
628 1.1 cgd #define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1)
629 1.1 cgd /*
630 1.1 cgd * Initialize a new bitmap page. Bitmap pages are left in memory
631 1.1 cgd * once they are read in.
632 1.1 cgd */
633 1.1 cgd extern int
634 1.6 cgd __ibitmap(hashp, pnum, nbits, ndx)
635 1.1 cgd HTAB *hashp;
636 1.1 cgd int pnum, nbits, ndx;
637 1.1 cgd {
638 1.6 cgd u_int32_t *ip;
639 1.1 cgd int clearbytes, clearints;
640 1.1 cgd
641 1.6 cgd if ((ip = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
642 1.1 cgd return (1);
643 1.1 cgd hashp->nmaps++;
644 1.1 cgd clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
645 1.1 cgd clearbytes = clearints << INT_TO_BYTE;
646 1.1 cgd (void)memset((char *)ip, 0, clearbytes);
647 1.1 cgd (void)memset(((char *)ip) + clearbytes, 0xFF,
648 1.1 cgd hashp->BSIZE - clearbytes);
649 1.1 cgd ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
650 1.1 cgd SETBIT(ip, 0);
651 1.6 cgd hashp->BITMAPS[ndx] = (u_int16_t)pnum;
652 1.1 cgd hashp->mapp[ndx] = ip;
653 1.1 cgd return (0);
654 1.1 cgd }
655 1.1 cgd
656 1.6 cgd static u_int32_t
657 1.1 cgd first_free(map)
658 1.6 cgd u_int32_t map;
659 1.1 cgd {
660 1.6 cgd register u_int32_t i, mask;
661 1.1 cgd
662 1.1 cgd mask = 0x1;
663 1.1 cgd for (i = 0; i < BITS_PER_MAP; i++) {
664 1.1 cgd if (!(mask & map))
665 1.1 cgd return (i);
666 1.1 cgd mask = mask << 1;
667 1.1 cgd }
668 1.1 cgd return (i);
669 1.1 cgd }
670 1.1 cgd
671 1.6 cgd static u_int16_t
672 1.1 cgd overflow_page(hashp)
673 1.1 cgd HTAB *hashp;
674 1.1 cgd {
675 1.9 christos register u_int32_t *freep = NULL;
676 1.1 cgd register int max_free, offset, splitnum;
677 1.6 cgd u_int16_t addr;
678 1.1 cgd int bit, first_page, free_bit, free_page, i, in_use_bits, j;
679 1.1 cgd #ifdef DEBUG2
680 1.1 cgd int tmp1, tmp2;
681 1.1 cgd #endif
682 1.1 cgd splitnum = hashp->OVFL_POINT;
683 1.1 cgd max_free = hashp->SPARES[splitnum];
684 1.1 cgd
685 1.1 cgd free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
686 1.1 cgd free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
687 1.1 cgd
688 1.1 cgd /* Look through all the free maps to find the first free block */
689 1.1 cgd first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
690 1.1 cgd for ( i = first_page; i <= free_page; i++ ) {
691 1.6 cgd if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
692 1.1 cgd !(freep = fetch_bitmap(hashp, i)))
693 1.8 cgd return (0);
694 1.1 cgd if (i == free_page)
695 1.1 cgd in_use_bits = free_bit;
696 1.1 cgd else
697 1.1 cgd in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
698 1.1 cgd
699 1.1 cgd if (i == first_page) {
700 1.1 cgd bit = hashp->LAST_FREED &
701 1.1 cgd ((hashp->BSIZE << BYTE_SHIFT) - 1);
702 1.1 cgd j = bit / BITS_PER_MAP;
703 1.1 cgd bit = bit & ~(BITS_PER_MAP - 1);
704 1.1 cgd } else {
705 1.1 cgd bit = 0;
706 1.1 cgd j = 0;
707 1.1 cgd }
708 1.1 cgd for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
709 1.1 cgd if (freep[j] != ALL_SET)
710 1.1 cgd goto found;
711 1.1 cgd }
712 1.1 cgd
713 1.1 cgd /* No Free Page Found */
714 1.1 cgd hashp->LAST_FREED = hashp->SPARES[splitnum];
715 1.1 cgd hashp->SPARES[splitnum]++;
716 1.1 cgd offset = hashp->SPARES[splitnum] -
717 1.1 cgd (splitnum ? hashp->SPARES[splitnum - 1] : 0);
718 1.1 cgd
719 1.1 cgd #define OVMSG "HASH: Out of overflow pages. Increase page size\n"
720 1.1 cgd if (offset > SPLITMASK) {
721 1.1 cgd if (++splitnum >= NCACHED) {
722 1.1 cgd (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
723 1.8 cgd return (0);
724 1.1 cgd }
725 1.1 cgd hashp->OVFL_POINT = splitnum;
726 1.1 cgd hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
727 1.1 cgd hashp->SPARES[splitnum-1]--;
728 1.1 cgd offset = 1;
729 1.1 cgd }
730 1.1 cgd
731 1.1 cgd /* Check if we need to allocate a new bitmap page */
732 1.1 cgd if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
733 1.1 cgd free_page++;
734 1.1 cgd if (free_page >= NCACHED) {
735 1.1 cgd (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
736 1.8 cgd return (0);
737 1.1 cgd }
738 1.1 cgd /*
739 1.1 cgd * This is tricky. The 1 indicates that you want the new page
740 1.1 cgd * allocated with 1 clear bit. Actually, you are going to
741 1.1 cgd * allocate 2 pages from this map. The first is going to be
742 1.1 cgd * the map page, the second is the overflow page we were
743 1.1 cgd * looking for. The init_bitmap routine automatically, sets
744 1.1 cgd * the first bit of itself to indicate that the bitmap itself
745 1.1 cgd * is in use. We would explicitly set the second bit, but
746 1.1 cgd * don't have to if we tell init_bitmap not to leave it clear
747 1.1 cgd * in the first place.
748 1.1 cgd */
749 1.8 cgd if (__ibitmap(hashp,
750 1.8 cgd (int)OADDR_OF(splitnum, offset), 1, free_page))
751 1.8 cgd return (0);
752 1.1 cgd hashp->SPARES[splitnum]++;
753 1.1 cgd #ifdef DEBUG2
754 1.1 cgd free_bit = 2;
755 1.1 cgd #endif
756 1.1 cgd offset++;
757 1.1 cgd if (offset > SPLITMASK) {
758 1.1 cgd if (++splitnum >= NCACHED) {
759 1.1 cgd (void)write(STDERR_FILENO, OVMSG,
760 1.1 cgd sizeof(OVMSG) - 1);
761 1.8 cgd return (0);
762 1.1 cgd }
763 1.1 cgd hashp->OVFL_POINT = splitnum;
764 1.1 cgd hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
765 1.1 cgd hashp->SPARES[splitnum-1]--;
766 1.1 cgd offset = 0;
767 1.1 cgd }
768 1.1 cgd } else {
769 1.1 cgd /*
770 1.1 cgd * Free_bit addresses the last used bit. Bump it to address
771 1.1 cgd * the first available bit.
772 1.1 cgd */
773 1.1 cgd free_bit++;
774 1.1 cgd SETBIT(freep, free_bit);
775 1.1 cgd }
776 1.1 cgd
777 1.1 cgd /* Calculate address of the new overflow page */
778 1.1 cgd addr = OADDR_OF(splitnum, offset);
779 1.1 cgd #ifdef DEBUG2
780 1.1 cgd (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
781 1.1 cgd addr, free_bit, free_page);
782 1.1 cgd #endif
783 1.1 cgd return (addr);
784 1.1 cgd
785 1.1 cgd found:
786 1.1 cgd bit = bit + first_free(freep[j]);
787 1.1 cgd SETBIT(freep, bit);
788 1.1 cgd #ifdef DEBUG2
789 1.1 cgd tmp1 = bit;
790 1.1 cgd tmp2 = i;
791 1.1 cgd #endif
792 1.1 cgd /*
793 1.1 cgd * Bits are addressed starting with 0, but overflow pages are addressed
794 1.1 cgd * beginning at 1. Bit is a bit addressnumber, so we need to increment
795 1.1 cgd * it to convert it to a page number.
796 1.1 cgd */
797 1.1 cgd bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
798 1.1 cgd if (bit >= hashp->LAST_FREED)
799 1.1 cgd hashp->LAST_FREED = bit - 1;
800 1.1 cgd
801 1.1 cgd /* Calculate the split number for this page */
802 1.1 cgd for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
803 1.1 cgd offset = (i ? bit - hashp->SPARES[i - 1] : bit);
804 1.1 cgd if (offset >= SPLITMASK)
805 1.8 cgd return (0); /* Out of overflow pages */
806 1.1 cgd addr = OADDR_OF(i, offset);
807 1.1 cgd #ifdef DEBUG2
808 1.1 cgd (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
809 1.1 cgd addr, tmp1, tmp2);
810 1.1 cgd #endif
811 1.1 cgd
812 1.1 cgd /* Allocate and return the overflow page */
813 1.1 cgd return (addr);
814 1.1 cgd }
815 1.1 cgd
816 1.1 cgd /*
817 1.1 cgd * Mark this overflow page as free.
818 1.1 cgd */
819 1.1 cgd extern void
820 1.1 cgd __free_ovflpage(hashp, obufp)
821 1.1 cgd HTAB *hashp;
822 1.1 cgd BUFHEAD *obufp;
823 1.1 cgd {
824 1.6 cgd register u_int16_t addr;
825 1.6 cgd u_int32_t *freep;
826 1.1 cgd int bit_address, free_page, free_bit;
827 1.6 cgd u_int16_t ndx;
828 1.1 cgd
829 1.1 cgd addr = obufp->addr;
830 1.1 cgd #ifdef DEBUG1
831 1.1 cgd (void)fprintf(stderr, "Freeing %d\n", addr);
832 1.1 cgd #endif
833 1.6 cgd ndx = (((u_int16_t)addr) >> SPLITSHIFT);
834 1.1 cgd bit_address =
835 1.1 cgd (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
836 1.1 cgd if (bit_address < hashp->LAST_FREED)
837 1.1 cgd hashp->LAST_FREED = bit_address;
838 1.1 cgd free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
839 1.1 cgd free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
840 1.1 cgd
841 1.1 cgd if (!(freep = hashp->mapp[free_page]))
842 1.1 cgd freep = fetch_bitmap(hashp, free_page);
843 1.1 cgd #ifdef DEBUG
844 1.1 cgd /*
845 1.1 cgd * This had better never happen. It means we tried to read a bitmap
846 1.1 cgd * that has already had overflow pages allocated off it, and we
847 1.1 cgd * failed to read it from the file.
848 1.1 cgd */
849 1.1 cgd if (!freep)
850 1.1 cgd assert(0);
851 1.1 cgd #endif
852 1.1 cgd CLRBIT(freep, free_bit);
853 1.1 cgd #ifdef DEBUG2
854 1.1 cgd (void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
855 1.1 cgd obufp->addr, free_bit, free_page);
856 1.1 cgd #endif
857 1.1 cgd __reclaim_buf(hashp, obufp);
858 1.1 cgd }
859 1.1 cgd
860 1.1 cgd /*
861 1.1 cgd * Returns:
862 1.1 cgd * 0 success
863 1.1 cgd * -1 failure
864 1.1 cgd */
865 1.1 cgd static int
866 1.1 cgd open_temp(hashp)
867 1.1 cgd HTAB *hashp;
868 1.1 cgd {
869 1.1 cgd sigset_t set, oset;
870 1.1 cgd static char namestr[] = "_hashXXXXXX";
871 1.1 cgd
872 1.1 cgd /* Block signals; make sure file goes away at process exit. */
873 1.1 cgd (void)sigfillset(&set);
874 1.1 cgd (void)sigprocmask(SIG_BLOCK, &set, &oset);
875 1.1 cgd if ((hashp->fp = mkstemp(namestr)) != -1) {
876 1.1 cgd (void)unlink(namestr);
877 1.1 cgd (void)fcntl(hashp->fp, F_SETFD, 1);
878 1.1 cgd }
879 1.1 cgd (void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
880 1.1 cgd return (hashp->fp != -1 ? 0 : -1);
881 1.1 cgd }
882 1.1 cgd
883 1.1 cgd /*
884 1.1 cgd * We have to know that the key will fit, but the last entry on the page is
885 1.1 cgd * an overflow pair, so we need to shift things.
886 1.1 cgd */
887 1.1 cgd static void
888 1.1 cgd squeeze_key(sp, key, val)
889 1.6 cgd u_int16_t *sp;
890 1.1 cgd const DBT *key, *val;
891 1.1 cgd {
892 1.1 cgd register char *p;
893 1.6 cgd u_int16_t free_space, n, off, pageno;
894 1.1 cgd
895 1.1 cgd p = (char *)sp;
896 1.1 cgd n = sp[0];
897 1.1 cgd free_space = FREESPACE(sp);
898 1.1 cgd off = OFFSET(sp);
899 1.1 cgd
900 1.1 cgd pageno = sp[n - 1];
901 1.1 cgd off -= key->size;
902 1.1 cgd sp[n - 1] = off;
903 1.1 cgd memmove(p + off, key->data, key->size);
904 1.1 cgd off -= val->size;
905 1.1 cgd sp[n] = off;
906 1.1 cgd memmove(p + off, val->data, val->size);
907 1.1 cgd sp[0] = n + 2;
908 1.1 cgd sp[n + 1] = pageno;
909 1.1 cgd sp[n + 2] = OVFLPAGE;
910 1.1 cgd FREESPACE(sp) = free_space - PAIRSIZE(key, val);
911 1.1 cgd OFFSET(sp) = off;
912 1.1 cgd }
913 1.1 cgd
914 1.6 cgd static u_int32_t *
915 1.1 cgd fetch_bitmap(hashp, ndx)
916 1.1 cgd HTAB *hashp;
917 1.1 cgd int ndx;
918 1.1 cgd {
919 1.6 cgd if (ndx >= hashp->nmaps)
920 1.1 cgd return (NULL);
921 1.6 cgd if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
922 1.6 cgd return (NULL);
923 1.6 cgd if (__get_page(hashp,
924 1.6 cgd (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
925 1.6 cgd free(hashp->mapp[ndx]);
926 1.6 cgd return (NULL);
927 1.6 cgd }
928 1.1 cgd return (hashp->mapp[ndx]);
929 1.1 cgd }
930 1.1 cgd
931 1.1 cgd #ifdef DEBUG4
932 1.1 cgd int
933 1.1 cgd print_chain(addr)
934 1.1 cgd int addr;
935 1.1 cgd {
936 1.1 cgd BUFHEAD *bufp;
937 1.1 cgd short *bp, oaddr;
938 1.1 cgd
939 1.1 cgd (void)fprintf(stderr, "%d ", addr);
940 1.1 cgd bufp = __get_buf(hashp, addr, NULL, 0);
941 1.1 cgd bp = (short *)bufp->page;
942 1.1 cgd while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
943 1.1 cgd ((bp[0] > 2) && bp[2] < REAL_KEY))) {
944 1.1 cgd oaddr = bp[bp[0] - 1];
945 1.1 cgd (void)fprintf(stderr, "%d ", (int)oaddr);
946 1.1 cgd bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
947 1.1 cgd bp = (short *)bufp->page;
948 1.1 cgd }
949 1.1 cgd (void)fprintf(stderr, "\n");
950 1.1 cgd }
951 1.1 cgd #endif
952