Home | History | Annotate | Line # | Download | only in hash
hash_page.c revision 1.10
      1 /*	$NetBSD: hash_page.c,v 1.10 1998/06/30 21:30:52 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1990, 1993, 1994
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Margo Seltzer.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the University of
     21  *	California, Berkeley and its contributors.
     22  * 4. Neither the name of the University nor the names of its contributors
     23  *    may be used to endorse or promote products derived from this software
     24  *    without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  * SUCH DAMAGE.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #if defined(LIBC_SCCS) && !defined(lint)
     41 #if 0
     42 static char sccsid[] = "@(#)hash_page.c	8.7 (Berkeley) 8/16/94";
     43 #else
     44 __RCSID("$NetBSD: hash_page.c,v 1.10 1998/06/30 21:30:52 thorpej Exp $");
     45 #endif
     46 #endif /* LIBC_SCCS and not lint */
     47 
     48 /*
     49  * PACKAGE:  hashing
     50  *
     51  * DESCRIPTION:
     52  *	Page manipulation for hashing package.
     53  *
     54  * ROUTINES:
     55  *
     56  * External
     57  *	__get_page
     58  *	__add_ovflpage
     59  * Internal
     60  *	overflow_page
     61  *	open_temp
     62  */
     63 
     64 #include <sys/types.h>
     65 
     66 #include <errno.h>
     67 #include <fcntl.h>
     68 #include <signal.h>
     69 #include <stdio.h>
     70 #include <stdlib.h>
     71 #include <string.h>
     72 #include <unistd.h>
     73 #ifdef DEBUG
     74 #include <assert.h>
     75 #endif
     76 
     77 #include <db.h>
     78 #include "hash.h"
     79 #include "page.h"
     80 #include "extern.h"
     81 
     82 static u_int32_t	*fetch_bitmap __P((HTAB *, int));
     83 static u_int32_t	 first_free __P((u_int32_t));
     84 static int	 open_temp __P((HTAB *));
     85 static u_int16_t	 overflow_page __P((HTAB *));
     86 static void	 putpair __P((char *, const DBT *, const DBT *));
     87 static void	 squeeze_key __P((u_int16_t *, const DBT *, const DBT *));
     88 static int	 ugly_split
     89 		    __P((HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int));
     90 
     91 #define	PAGE_INIT(P) { \
     92 	((u_int16_t *)(P))[0] = 0; \
     93 	((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
     94 	((u_int16_t *)(P))[2] = hashp->BSIZE; \
     95 }
     96 
     97 /*
     98  * This is called AFTER we have verified that there is room on the page for
     99  * the pair (PAIRFITS has returned true) so we go right ahead and start moving
    100  * stuff on.
    101  */
    102 static void
    103 putpair(p, key, val)
    104 	char *p;
    105 	const DBT *key, *val;
    106 {
    107 	register u_int16_t *bp, n, off;
    108 
    109 	bp = (u_int16_t *)p;
    110 
    111 	/* Enter the key first. */
    112 	n = bp[0];
    113 
    114 	off = OFFSET(bp) - key->size;
    115 	memmove(p + off, key->data, key->size);
    116 	bp[++n] = off;
    117 
    118 	/* Now the data. */
    119 	off -= val->size;
    120 	memmove(p + off, val->data, val->size);
    121 	bp[++n] = off;
    122 
    123 	/* Adjust page info. */
    124 	bp[0] = n;
    125 	bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
    126 	bp[n + 2] = off;
    127 }
    128 
    129 /*
    130  * Returns:
    131  *	 0 OK
    132  *	-1 error
    133  */
    134 extern int
    135 __delpair(hashp, bufp, ndx)
    136 	HTAB *hashp;
    137 	BUFHEAD *bufp;
    138 	register int ndx;
    139 {
    140 	register u_int16_t *bp, newoff;
    141 	register int n;
    142 	u_int16_t pairlen;
    143 
    144 	bp = (u_int16_t *)bufp->page;
    145 	n = bp[0];
    146 
    147 	if (bp[ndx + 1] < REAL_KEY)
    148 		return (__big_delete(hashp, bufp));
    149 	if (ndx != 1)
    150 		newoff = bp[ndx - 1];
    151 	else
    152 		newoff = hashp->BSIZE;
    153 	pairlen = newoff - bp[ndx + 1];
    154 
    155 	if (ndx != (n - 1)) {
    156 		/* Hard Case -- need to shuffle keys */
    157 		register int i;
    158 		register char *src = bufp->page + (int)OFFSET(bp);
    159 		register char *dst = src + (int)pairlen;
    160 		memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
    161 
    162 		/* Now adjust the pointers */
    163 		for (i = ndx + 2; i <= n; i += 2) {
    164 			if (bp[i + 1] == OVFLPAGE) {
    165 				bp[i - 2] = bp[i];
    166 				bp[i - 1] = bp[i + 1];
    167 			} else {
    168 				bp[i - 2] = bp[i] + pairlen;
    169 				bp[i - 1] = bp[i + 1] + pairlen;
    170 			}
    171 		}
    172 	}
    173 	/* Finally adjust the page data */
    174 	bp[n] = OFFSET(bp) + pairlen;
    175 	bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
    176 	bp[0] = n - 2;
    177 	hashp->NKEYS--;
    178 
    179 	bufp->flags |= BUF_MOD;
    180 	return (0);
    181 }
    182 /*
    183  * Returns:
    184  *	 0 ==> OK
    185  *	-1 ==> Error
    186  */
    187 extern int
    188 __split_page(hashp, obucket, nbucket)
    189 	HTAB *hashp;
    190 	u_int32_t obucket, nbucket;
    191 {
    192 	register BUFHEAD *new_bufp, *old_bufp;
    193 	register u_int16_t *ino;
    194 	register char *np;
    195 	DBT key, val;
    196 	int n, ndx, retval;
    197 	u_int16_t copyto, diff, off, moved;
    198 	char *op;
    199 
    200 	copyto = (u_int16_t)hashp->BSIZE;
    201 	off = (u_int16_t)hashp->BSIZE;
    202 	old_bufp = __get_buf(hashp, obucket, NULL, 0);
    203 	if (old_bufp == NULL)
    204 		return (-1);
    205 	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
    206 	if (new_bufp == NULL)
    207 		return (-1);
    208 
    209 	old_bufp->flags |= (BUF_MOD | BUF_PIN);
    210 	new_bufp->flags |= (BUF_MOD | BUF_PIN);
    211 
    212 	ino = (u_int16_t *)(op = old_bufp->page);
    213 	np = new_bufp->page;
    214 
    215 	moved = 0;
    216 
    217 	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
    218 		if (ino[n + 1] < REAL_KEY) {
    219 			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
    220 			    (int)copyto, (int)moved);
    221 			old_bufp->flags &= ~BUF_PIN;
    222 			new_bufp->flags &= ~BUF_PIN;
    223 			return (retval);
    224 
    225 		}
    226 		key.data = (u_char *)op + ino[n];
    227 		key.size = off - ino[n];
    228 
    229 		if (__call_hash(hashp, key.data, key.size) == obucket) {
    230 			/* Don't switch page */
    231 			diff = copyto - off;
    232 			if (diff) {
    233 				copyto = ino[n + 1] + diff;
    234 				memmove(op + copyto, op + ino[n + 1],
    235 				    off - ino[n + 1]);
    236 				ino[ndx] = copyto + ino[n] - ino[n + 1];
    237 				ino[ndx + 1] = copyto;
    238 			} else
    239 				copyto = ino[n + 1];
    240 			ndx += 2;
    241 		} else {
    242 			/* Switch page */
    243 			val.data = (u_char *)op + ino[n + 1];
    244 			val.size = ino[n] - ino[n + 1];
    245 			putpair(np, &key, &val);
    246 			moved += 2;
    247 		}
    248 
    249 		off = ino[n + 1];
    250 	}
    251 
    252 	/* Now clean up the page */
    253 	ino[0] -= moved;
    254 	FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
    255 	OFFSET(ino) = copyto;
    256 
    257 #ifdef DEBUG3
    258 	(void)fprintf(stderr, "split %d/%d\n",
    259 	    ((u_int16_t *)np)[0] / 2,
    260 	    ((u_int16_t *)op)[0] / 2);
    261 #endif
    262 	/* unpin both pages */
    263 	old_bufp->flags &= ~BUF_PIN;
    264 	new_bufp->flags &= ~BUF_PIN;
    265 	return (0);
    266 }
    267 
    268 /*
    269  * Called when we encounter an overflow or big key/data page during split
    270  * handling.  This is special cased since we have to begin checking whether
    271  * the key/data pairs fit on their respective pages and because we may need
    272  * overflow pages for both the old and new pages.
    273  *
    274  * The first page might be a page with regular key/data pairs in which case
    275  * we have a regular overflow condition and just need to go on to the next
    276  * page or it might be a big key/data pair in which case we need to fix the
    277  * big key/data pair.
    278  *
    279  * Returns:
    280  *	 0 ==> success
    281  *	-1 ==> failure
    282  */
    283 static int
    284 ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
    285 	HTAB *hashp;
    286 	u_int32_t obucket;	/* Same as __split_page. */
    287 	BUFHEAD *old_bufp, *new_bufp;
    288 	int copyto;	/* First byte on page which contains key/data values. */
    289 	int moved;	/* Number of pairs moved to new page. */
    290 {
    291 	register BUFHEAD *bufp;	/* Buffer header for ino */
    292 	register u_int16_t *ino;	/* Page keys come off of */
    293 	register u_int16_t *np;	/* New page */
    294 	register u_int16_t *op;	/* Page keys go on to if they aren't moving */
    295 
    296 	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
    297 	DBT key, val;
    298 	SPLIT_RETURN ret;
    299 	u_int16_t n, off, ov_addr, scopyto;
    300 	char *cino;		/* Character value of ino */
    301 
    302 	bufp = old_bufp;
    303 	ino = (u_int16_t *)old_bufp->page;
    304 	np = (u_int16_t *)new_bufp->page;
    305 	op = (u_int16_t *)old_bufp->page;
    306 	last_bfp = NULL;
    307 	scopyto = (u_int16_t)copyto;	/* ANSI */
    308 
    309 	n = ino[0] - 1;
    310 	while (n < ino[0]) {
    311 		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
    312 			if (__big_split(hashp, old_bufp,
    313 			    new_bufp, bufp, bufp->addr, obucket, &ret))
    314 				return (-1);
    315 			old_bufp = ret.oldp;
    316 			if (!old_bufp)
    317 				return (-1);
    318 			op = (u_int16_t *)old_bufp->page;
    319 			new_bufp = ret.newp;
    320 			if (!new_bufp)
    321 				return (-1);
    322 			np = (u_int16_t *)new_bufp->page;
    323 			bufp = ret.nextp;
    324 			if (!bufp)
    325 				return (0);
    326 			cino = (char *)bufp->page;
    327 			ino = (u_int16_t *)cino;
    328 			last_bfp = ret.nextp;
    329 		} else if (ino[n + 1] == OVFLPAGE) {
    330 			ov_addr = ino[n];
    331 			/*
    332 			 * Fix up the old page -- the extra 2 are the fields
    333 			 * which contained the overflow information.
    334 			 */
    335 			ino[0] -= (moved + 2);
    336 			FREESPACE(ino) =
    337 			    scopyto - sizeof(u_int16_t) * (ino[0] + 3);
    338 			OFFSET(ino) = scopyto;
    339 
    340 			bufp = __get_buf(hashp, ov_addr, bufp, 0);
    341 			if (!bufp)
    342 				return (-1);
    343 
    344 			ino = (u_int16_t *)bufp->page;
    345 			n = 1;
    346 			scopyto = hashp->BSIZE;
    347 			moved = 0;
    348 
    349 			if (last_bfp)
    350 				__free_ovflpage(hashp, last_bfp);
    351 			last_bfp = bufp;
    352 		}
    353 		/* Move regular sized pairs of there are any */
    354 		off = hashp->BSIZE;
    355 		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
    356 			cino = (char *)ino;
    357 			key.data = (u_char *)cino + ino[n];
    358 			key.size = off - ino[n];
    359 			val.data = (u_char *)cino + ino[n + 1];
    360 			val.size = ino[n] - ino[n + 1];
    361 			off = ino[n + 1];
    362 
    363 			if (__call_hash(hashp, key.data, key.size) == obucket) {
    364 				/* Keep on old page */
    365 				if (PAIRFITS(op, (&key), (&val)))
    366 					putpair((char *)op, &key, &val);
    367 				else {
    368 					old_bufp =
    369 					    __add_ovflpage(hashp, old_bufp);
    370 					if (!old_bufp)
    371 						return (-1);
    372 					op = (u_int16_t *)old_bufp->page;
    373 					putpair((char *)op, &key, &val);
    374 				}
    375 				old_bufp->flags |= BUF_MOD;
    376 			} else {
    377 				/* Move to new page */
    378 				if (PAIRFITS(np, (&key), (&val)))
    379 					putpair((char *)np, &key, &val);
    380 				else {
    381 					new_bufp =
    382 					    __add_ovflpage(hashp, new_bufp);
    383 					if (!new_bufp)
    384 						return (-1);
    385 					np = (u_int16_t *)new_bufp->page;
    386 					putpair((char *)np, &key, &val);
    387 				}
    388 				new_bufp->flags |= BUF_MOD;
    389 			}
    390 		}
    391 	}
    392 	if (last_bfp)
    393 		__free_ovflpage(hashp, last_bfp);
    394 	return (0);
    395 }
    396 
    397 /*
    398  * Add the given pair to the page
    399  *
    400  * Returns:
    401  *	0 ==> OK
    402  *	1 ==> failure
    403  */
    404 extern int
    405 __addel(hashp, bufp, key, val)
    406 	HTAB *hashp;
    407 	BUFHEAD *bufp;
    408 	const DBT *key, *val;
    409 {
    410 	register u_int16_t *bp, *sop;
    411 	int do_expand;
    412 
    413 	bp = (u_int16_t *)bufp->page;
    414 	do_expand = 0;
    415 	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
    416 		/* Exception case */
    417 		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
    418 			/* This is the last page of a big key/data pair
    419 			   and we need to add another page */
    420 			break;
    421 		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
    422 			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
    423 			if (!bufp)
    424 				return (-1);
    425 			bp = (u_int16_t *)bufp->page;
    426 		} else
    427 			/* Try to squeeze key on this page */
    428 			if (FREESPACE(bp) > PAIRSIZE(key, val)) {
    429 				squeeze_key(bp, key, val);
    430 				return (0);
    431 			} else {
    432 				bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
    433 				if (!bufp)
    434 					return (-1);
    435 				bp = (u_int16_t *)bufp->page;
    436 			}
    437 
    438 	if (PAIRFITS(bp, key, val))
    439 		putpair(bufp->page, key, val);
    440 	else {
    441 		do_expand = 1;
    442 		bufp = __add_ovflpage(hashp, bufp);
    443 		if (!bufp)
    444 			return (-1);
    445 		sop = (u_int16_t *)bufp->page;
    446 
    447 		if (PAIRFITS(sop, key, val))
    448 			putpair((char *)sop, key, val);
    449 		else
    450 			if (__big_insert(hashp, bufp, key, val))
    451 				return (-1);
    452 	}
    453 	bufp->flags |= BUF_MOD;
    454 	/*
    455 	 * If the average number of keys per bucket exceeds the fill factor,
    456 	 * expand the table.
    457 	 */
    458 	hashp->NKEYS++;
    459 	if (do_expand ||
    460 	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
    461 		return (__expand_table(hashp));
    462 	return (0);
    463 }
    464 
    465 /*
    466  *
    467  * Returns:
    468  *	pointer on success
    469  *	NULL on error
    470  */
    471 extern BUFHEAD *
    472 __add_ovflpage(hashp, bufp)
    473 	HTAB *hashp;
    474 	BUFHEAD *bufp;
    475 {
    476 	register u_int16_t *sp;
    477 	u_int16_t ndx, ovfl_num;
    478 #ifdef DEBUG1
    479 	int tmp1, tmp2;
    480 #endif
    481 	sp = (u_int16_t *)bufp->page;
    482 
    483 	/* Check if we are dynamically determining the fill factor */
    484 	if (hashp->FFACTOR == DEF_FFACTOR) {
    485 		hashp->FFACTOR = sp[0] >> 1;
    486 		if (hashp->FFACTOR < MIN_FFACTOR)
    487 			hashp->FFACTOR = MIN_FFACTOR;
    488 	}
    489 	bufp->flags |= BUF_MOD;
    490 	ovfl_num = overflow_page(hashp);
    491 #ifdef DEBUG1
    492 	tmp1 = bufp->addr;
    493 	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
    494 #endif
    495 	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
    496 		return (NULL);
    497 	bufp->ovfl->flags |= BUF_MOD;
    498 #ifdef DEBUG1
    499 	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
    500 	    tmp1, tmp2, bufp->ovfl->addr);
    501 #endif
    502 	ndx = sp[0];
    503 	/*
    504 	 * Since a pair is allocated on a page only if there's room to add
    505 	 * an overflow page, we know that the OVFL information will fit on
    506 	 * the page.
    507 	 */
    508 	sp[ndx + 4] = OFFSET(sp);
    509 	sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
    510 	sp[ndx + 1] = ovfl_num;
    511 	sp[ndx + 2] = OVFLPAGE;
    512 	sp[0] = ndx + 2;
    513 #ifdef HASH_STATISTICS
    514 	hash_overflows++;
    515 #endif
    516 	return (bufp->ovfl);
    517 }
    518 
    519 /*
    520  * Returns:
    521  *	 0 indicates SUCCESS
    522  *	-1 indicates FAILURE
    523  */
    524 extern int
    525 __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
    526 	HTAB *hashp;
    527 	char *p;
    528 	u_int32_t bucket;
    529 	int is_bucket, is_disk, is_bitmap;
    530 {
    531 	register int fd, page, size;
    532 	int rsize;
    533 	u_int16_t *bp;
    534 
    535 	fd = hashp->fp;
    536 	size = hashp->BSIZE;
    537 
    538 	if ((fd == -1) || !is_disk) {
    539 		PAGE_INIT(p);
    540 		return (0);
    541 	}
    542 	if (is_bucket)
    543 		page = BUCKET_TO_PAGE(bucket);
    544 	else
    545 		page = OADDR_TO_PAGE(bucket);
    546 	if ((rsize = pread(fd, p, size, (off_t)page << hashp->BSHIFT)) == -1)
    547 		return (-1);
    548 	bp = (u_int16_t *)p;
    549 	if (!rsize)
    550 		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
    551 	else
    552 		if (rsize != size) {
    553 			errno = EFTYPE;
    554 			return (-1);
    555 		}
    556 	if (!is_bitmap && !bp[0]) {
    557 		PAGE_INIT(p);
    558 	} else
    559 		if (hashp->LORDER != BYTE_ORDER) {
    560 			register int i, max;
    561 
    562 			if (is_bitmap) {
    563 				max = hashp->BSIZE >> 2; /* divide by 4 */
    564 				for (i = 0; i < max; i++)
    565 					M_32_SWAP(((int *)p)[i]);
    566 			} else {
    567 				M_16_SWAP(bp[0]);
    568 				max = bp[0] + 2;
    569 				for (i = 1; i <= max; i++)
    570 					M_16_SWAP(bp[i]);
    571 			}
    572 		}
    573 	return (0);
    574 }
    575 
    576 /*
    577  * Write page p to disk
    578  *
    579  * Returns:
    580  *	 0 ==> OK
    581  *	-1 ==>failure
    582  */
    583 extern int
    584 __put_page(hashp, p, bucket, is_bucket, is_bitmap)
    585 	HTAB *hashp;
    586 	char *p;
    587 	u_int32_t bucket;
    588 	int is_bucket, is_bitmap;
    589 {
    590 	register int fd, page, size;
    591 	int wsize;
    592 
    593 	size = hashp->BSIZE;
    594 	if ((hashp->fp == -1) && open_temp(hashp))
    595 		return (-1);
    596 	fd = hashp->fp;
    597 
    598 	if (hashp->LORDER != BYTE_ORDER) {
    599 		register int i;
    600 		register int max;
    601 
    602 		if (is_bitmap) {
    603 			max = hashp->BSIZE >> 2;	/* divide by 4 */
    604 			for (i = 0; i < max; i++)
    605 				M_32_SWAP(((int *)p)[i]);
    606 		} else {
    607 			max = ((u_int16_t *)p)[0] + 2;
    608 			for (i = 0; i <= max; i++)
    609 				M_16_SWAP(((u_int16_t *)p)[i]);
    610 		}
    611 	}
    612 	if (is_bucket)
    613 		page = BUCKET_TO_PAGE(bucket);
    614 	else
    615 		page = OADDR_TO_PAGE(bucket);
    616 	if ((wsize = pwrite(fd, p, size, (off_t)page << hashp->BSHIFT)) == -1)
    617 		/* Errno is set */
    618 		return (-1);
    619 	if (wsize != size) {
    620 		errno = EFTYPE;
    621 		return (-1);
    622 	}
    623 	return (0);
    624 }
    625 
    626 #define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
    627 /*
    628  * Initialize a new bitmap page.  Bitmap pages are left in memory
    629  * once they are read in.
    630  */
    631 extern int
    632 __ibitmap(hashp, pnum, nbits, ndx)
    633 	HTAB *hashp;
    634 	int pnum, nbits, ndx;
    635 {
    636 	u_int32_t *ip;
    637 	int clearbytes, clearints;
    638 
    639 	if ((ip = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
    640 		return (1);
    641 	hashp->nmaps++;
    642 	clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
    643 	clearbytes = clearints << INT_TO_BYTE;
    644 	(void)memset((char *)ip, 0, clearbytes);
    645 	(void)memset(((char *)ip) + clearbytes, 0xFF,
    646 	    hashp->BSIZE - clearbytes);
    647 	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
    648 	SETBIT(ip, 0);
    649 	hashp->BITMAPS[ndx] = (u_int16_t)pnum;
    650 	hashp->mapp[ndx] = ip;
    651 	return (0);
    652 }
    653 
    654 static u_int32_t
    655 first_free(map)
    656 	u_int32_t map;
    657 {
    658 	register u_int32_t i, mask;
    659 
    660 	mask = 0x1;
    661 	for (i = 0; i < BITS_PER_MAP; i++) {
    662 		if (!(mask & map))
    663 			return (i);
    664 		mask = mask << 1;
    665 	}
    666 	return (i);
    667 }
    668 
    669 static u_int16_t
    670 overflow_page(hashp)
    671 	HTAB *hashp;
    672 {
    673 	register u_int32_t *freep = NULL;
    674 	register int max_free, offset, splitnum;
    675 	u_int16_t addr;
    676 	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
    677 #ifdef DEBUG2
    678 	int tmp1, tmp2;
    679 #endif
    680 	splitnum = hashp->OVFL_POINT;
    681 	max_free = hashp->SPARES[splitnum];
    682 
    683 	free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
    684 	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
    685 
    686 	/* Look through all the free maps to find the first free block */
    687 	first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
    688 	for ( i = first_page; i <= free_page; i++ ) {
    689 		if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
    690 		    !(freep = fetch_bitmap(hashp, i)))
    691 			return (0);
    692 		if (i == free_page)
    693 			in_use_bits = free_bit;
    694 		else
    695 			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
    696 
    697 		if (i == first_page) {
    698 			bit = hashp->LAST_FREED &
    699 			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
    700 			j = bit / BITS_PER_MAP;
    701 			bit = bit & ~(BITS_PER_MAP - 1);
    702 		} else {
    703 			bit = 0;
    704 			j = 0;
    705 		}
    706 		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
    707 			if (freep[j] != ALL_SET)
    708 				goto found;
    709 	}
    710 
    711 	/* No Free Page Found */
    712 	hashp->LAST_FREED = hashp->SPARES[splitnum];
    713 	hashp->SPARES[splitnum]++;
    714 	offset = hashp->SPARES[splitnum] -
    715 	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
    716 
    717 #define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
    718 	if (offset > SPLITMASK) {
    719 		if (++splitnum >= NCACHED) {
    720 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
    721 			return (0);
    722 		}
    723 		hashp->OVFL_POINT = splitnum;
    724 		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
    725 		hashp->SPARES[splitnum-1]--;
    726 		offset = 1;
    727 	}
    728 
    729 	/* Check if we need to allocate a new bitmap page */
    730 	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
    731 		free_page++;
    732 		if (free_page >= NCACHED) {
    733 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
    734 			return (0);
    735 		}
    736 		/*
    737 		 * This is tricky.  The 1 indicates that you want the new page
    738 		 * allocated with 1 clear bit.  Actually, you are going to
    739 		 * allocate 2 pages from this map.  The first is going to be
    740 		 * the map page, the second is the overflow page we were
    741 		 * looking for.  The init_bitmap routine automatically, sets
    742 		 * the first bit of itself to indicate that the bitmap itself
    743 		 * is in use.  We would explicitly set the second bit, but
    744 		 * don't have to if we tell init_bitmap not to leave it clear
    745 		 * in the first place.
    746 		 */
    747 		if (__ibitmap(hashp,
    748 		    (int)OADDR_OF(splitnum, offset), 1, free_page))
    749 			return (0);
    750 		hashp->SPARES[splitnum]++;
    751 #ifdef DEBUG2
    752 		free_bit = 2;
    753 #endif
    754 		offset++;
    755 		if (offset > SPLITMASK) {
    756 			if (++splitnum >= NCACHED) {
    757 				(void)write(STDERR_FILENO, OVMSG,
    758 				    sizeof(OVMSG) - 1);
    759 				return (0);
    760 			}
    761 			hashp->OVFL_POINT = splitnum;
    762 			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
    763 			hashp->SPARES[splitnum-1]--;
    764 			offset = 0;
    765 		}
    766 	} else {
    767 		/*
    768 		 * Free_bit addresses the last used bit.  Bump it to address
    769 		 * the first available bit.
    770 		 */
    771 		free_bit++;
    772 		SETBIT(freep, free_bit);
    773 	}
    774 
    775 	/* Calculate address of the new overflow page */
    776 	addr = OADDR_OF(splitnum, offset);
    777 #ifdef DEBUG2
    778 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
    779 	    addr, free_bit, free_page);
    780 #endif
    781 	return (addr);
    782 
    783 found:
    784 	bit = bit + first_free(freep[j]);
    785 	SETBIT(freep, bit);
    786 #ifdef DEBUG2
    787 	tmp1 = bit;
    788 	tmp2 = i;
    789 #endif
    790 	/*
    791 	 * Bits are addressed starting with 0, but overflow pages are addressed
    792 	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
    793 	 * it to convert it to a page number.
    794 	 */
    795 	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
    796 	if (bit >= hashp->LAST_FREED)
    797 		hashp->LAST_FREED = bit - 1;
    798 
    799 	/* Calculate the split number for this page */
    800 	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
    801 	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
    802 	if (offset >= SPLITMASK)
    803 		return (0);	/* Out of overflow pages */
    804 	addr = OADDR_OF(i, offset);
    805 #ifdef DEBUG2
    806 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
    807 	    addr, tmp1, tmp2);
    808 #endif
    809 
    810 	/* Allocate and return the overflow page */
    811 	return (addr);
    812 }
    813 
    814 /*
    815  * Mark this overflow page as free.
    816  */
    817 extern void
    818 __free_ovflpage(hashp, obufp)
    819 	HTAB *hashp;
    820 	BUFHEAD *obufp;
    821 {
    822 	register u_int16_t addr;
    823 	u_int32_t *freep;
    824 	int bit_address, free_page, free_bit;
    825 	u_int16_t ndx;
    826 
    827 	addr = obufp->addr;
    828 #ifdef DEBUG1
    829 	(void)fprintf(stderr, "Freeing %d\n", addr);
    830 #endif
    831 	ndx = (((u_int16_t)addr) >> SPLITSHIFT);
    832 	bit_address =
    833 	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
    834 	 if (bit_address < hashp->LAST_FREED)
    835 		hashp->LAST_FREED = bit_address;
    836 	free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
    837 	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
    838 
    839 	if (!(freep = hashp->mapp[free_page]))
    840 		freep = fetch_bitmap(hashp, free_page);
    841 #ifdef DEBUG
    842 	/*
    843 	 * This had better never happen.  It means we tried to read a bitmap
    844 	 * that has already had overflow pages allocated off it, and we
    845 	 * failed to read it from the file.
    846 	 */
    847 	if (!freep)
    848 		assert(0);
    849 #endif
    850 	CLRBIT(freep, free_bit);
    851 #ifdef DEBUG2
    852 	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
    853 	    obufp->addr, free_bit, free_page);
    854 #endif
    855 	__reclaim_buf(hashp, obufp);
    856 }
    857 
    858 /*
    859  * Returns:
    860  *	 0 success
    861  *	-1 failure
    862  */
    863 static int
    864 open_temp(hashp)
    865 	HTAB *hashp;
    866 {
    867 	sigset_t set, oset;
    868 	static char namestr[] = "_hashXXXXXX";
    869 
    870 	/* Block signals; make sure file goes away at process exit. */
    871 	(void)sigfillset(&set);
    872 	(void)sigprocmask(SIG_BLOCK, &set, &oset);
    873 	if ((hashp->fp = mkstemp(namestr)) != -1) {
    874 		(void)unlink(namestr);
    875 		(void)fcntl(hashp->fp, F_SETFD, 1);
    876 	}
    877 	(void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
    878 	return (hashp->fp != -1 ? 0 : -1);
    879 }
    880 
    881 /*
    882  * We have to know that the key will fit, but the last entry on the page is
    883  * an overflow pair, so we need to shift things.
    884  */
    885 static void
    886 squeeze_key(sp, key, val)
    887 	u_int16_t *sp;
    888 	const DBT *key, *val;
    889 {
    890 	register char *p;
    891 	u_int16_t free_space, n, off, pageno;
    892 
    893 	p = (char *)sp;
    894 	n = sp[0];
    895 	free_space = FREESPACE(sp);
    896 	off = OFFSET(sp);
    897 
    898 	pageno = sp[n - 1];
    899 	off -= key->size;
    900 	sp[n - 1] = off;
    901 	memmove(p + off, key->data, key->size);
    902 	off -= val->size;
    903 	sp[n] = off;
    904 	memmove(p + off, val->data, val->size);
    905 	sp[0] = n + 2;
    906 	sp[n + 1] = pageno;
    907 	sp[n + 2] = OVFLPAGE;
    908 	FREESPACE(sp) = free_space - PAIRSIZE(key, val);
    909 	OFFSET(sp) = off;
    910 }
    911 
    912 static u_int32_t *
    913 fetch_bitmap(hashp, ndx)
    914 	HTAB *hashp;
    915 	int ndx;
    916 {
    917 	if (ndx >= hashp->nmaps)
    918 		return (NULL);
    919 	if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
    920 		return (NULL);
    921 	if (__get_page(hashp,
    922 	    (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
    923 		free(hashp->mapp[ndx]);
    924 		return (NULL);
    925 	}
    926 	return (hashp->mapp[ndx]);
    927 }
    928 
    929 #ifdef DEBUG4
    930 int
    931 print_chain(addr)
    932 	int addr;
    933 {
    934 	BUFHEAD *bufp;
    935 	short *bp, oaddr;
    936 
    937 	(void)fprintf(stderr, "%d ", addr);
    938 	bufp = __get_buf(hashp, addr, NULL, 0);
    939 	bp = (short *)bufp->page;
    940 	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
    941 		((bp[0] > 2) && bp[2] < REAL_KEY))) {
    942 		oaddr = bp[bp[0] - 1];
    943 		(void)fprintf(stderr, "%d ", (int)oaddr);
    944 		bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
    945 		bp = (short *)bufp->page;
    946 	}
    947 	(void)fprintf(stderr, "\n");
    948 }
    949 #endif
    950