hash_page.c revision 1.15 1 /* $NetBSD: hash_page.c,v 1.15 1999/07/29 08:58:46 mycroft Exp $ */
2
3 /*-
4 * Copyright (c) 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Margo Seltzer.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 #if defined(LIBC_SCCS) && !defined(lint)
41 #if 0
42 static char sccsid[] = "@(#)hash_page.c 8.7 (Berkeley) 8/16/94";
43 #else
44 __RCSID("$NetBSD: hash_page.c,v 1.15 1999/07/29 08:58:46 mycroft Exp $");
45 #endif
46 #endif /* LIBC_SCCS and not lint */
47
48 /*
49 * PACKAGE: hashing
50 *
51 * DESCRIPTION:
52 * Page manipulation for hashing package.
53 *
54 * ROUTINES:
55 *
56 * External
57 * __get_page
58 * __add_ovflpage
59 * Internal
60 * overflow_page
61 * open_temp
62 */
63
64 #include "namespace.h"
65
66 #include <sys/types.h>
67
68 #include <errno.h>
69 #include <fcntl.h>
70 #include <signal.h>
71 #include <stdio.h>
72 #include <stdlib.h>
73 #include <string.h>
74 #include <unistd.h>
75 #ifdef DEBUG
76 #include <assert.h>
77 #endif
78
79 #include <db.h>
80 #include "hash.h"
81 #include "page.h"
82 #include "extern.h"
83
84 static u_int32_t *fetch_bitmap __P((HTAB *, int));
85 static u_int32_t first_free __P((u_int32_t));
86 static int open_temp __P((HTAB *));
87 static u_int16_t overflow_page __P((HTAB *));
88 static void putpair __P((char *, const DBT *, const DBT *));
89 static void squeeze_key __P((u_int16_t *, const DBT *, const DBT *));
90 static int ugly_split
91 __P((HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int));
92
93 #define PAGE_INIT(P) { \
94 ((u_int16_t *)(void *)(P))[0] = 0; \
95 ((u_int16_t *)(void *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
96 ((u_int16_t *)(void *)(P))[2] = hashp->BSIZE; \
97 }
98
99 /*
100 * This is called AFTER we have verified that there is room on the page for
101 * the pair (PAIRFITS has returned true) so we go right ahead and start moving
102 * stuff on.
103 */
104 static void
105 putpair(p, key, val)
106 char *p;
107 const DBT *key, *val;
108 {
109 register u_int16_t *bp, n, off;
110
111 bp = (u_int16_t *)(void *)p;
112
113 /* Enter the key first. */
114 n = bp[0];
115
116 off = OFFSET(bp) - key->size;
117 memmove(p + off, key->data, key->size);
118 bp[++n] = off;
119
120 /* Now the data. */
121 off -= val->size;
122 memmove(p + off, val->data, val->size);
123 bp[++n] = off;
124
125 /* Adjust page info. */
126 bp[0] = n;
127 bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
128 bp[n + 2] = off;
129 }
130
131 /*
132 * Returns:
133 * 0 OK
134 * -1 error
135 */
136 extern int
137 __delpair(hashp, bufp, ndx)
138 HTAB *hashp;
139 BUFHEAD *bufp;
140 register int ndx;
141 {
142 register u_int16_t *bp, newoff;
143 register int n;
144 u_int16_t pairlen;
145
146 bp = (u_int16_t *)(void *)bufp->page;
147 n = bp[0];
148
149 if (bp[ndx + 1] < REAL_KEY)
150 return (__big_delete(hashp, bufp));
151 if (ndx != 1)
152 newoff = bp[ndx - 1];
153 else
154 newoff = hashp->BSIZE;
155 pairlen = newoff - bp[ndx + 1];
156
157 if (ndx != (n - 1)) {
158 /* Hard Case -- need to shuffle keys */
159 register int i;
160 register char *src = bufp->page + (int)OFFSET(bp);
161 register char *dst = src + (int)pairlen;
162 memmove(dst, src, (size_t)(bp[ndx + 1] - OFFSET(bp)));
163
164 /* Now adjust the pointers */
165 for (i = ndx + 2; i <= n; i += 2) {
166 if (bp[i + 1] == OVFLPAGE) {
167 bp[i - 2] = bp[i];
168 bp[i - 1] = bp[i + 1];
169 } else {
170 bp[i - 2] = bp[i] + pairlen;
171 bp[i - 1] = bp[i + 1] + pairlen;
172 }
173 }
174 }
175 /* Finally adjust the page data */
176 bp[n] = OFFSET(bp) + pairlen;
177 bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
178 bp[0] = n - 2;
179 hashp->NKEYS--;
180
181 bufp->flags |= BUF_MOD;
182 return (0);
183 }
184 /*
185 * Returns:
186 * 0 ==> OK
187 * -1 ==> Error
188 */
189 extern int
190 __split_page(hashp, obucket, nbucket)
191 HTAB *hashp;
192 u_int32_t obucket, nbucket;
193 {
194 register BUFHEAD *new_bufp, *old_bufp;
195 register u_int16_t *ino;
196 register char *np;
197 DBT key, val;
198 int n, ndx, retval;
199 u_int16_t copyto, diff, off, moved;
200 char *op;
201
202 copyto = (u_int16_t)hashp->BSIZE;
203 off = (u_int16_t)hashp->BSIZE;
204 old_bufp = __get_buf(hashp, obucket, NULL, 0);
205 if (old_bufp == NULL)
206 return (-1);
207 new_bufp = __get_buf(hashp, nbucket, NULL, 0);
208 if (new_bufp == NULL)
209 return (-1);
210
211 old_bufp->flags |= (BUF_MOD | BUF_PIN);
212 new_bufp->flags |= (BUF_MOD | BUF_PIN);
213
214 ino = (u_int16_t *)(void *)(op = old_bufp->page);
215 np = new_bufp->page;
216
217 moved = 0;
218
219 for (n = 1, ndx = 1; n < ino[0]; n += 2) {
220 if (ino[n + 1] < REAL_KEY) {
221 retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
222 (int)copyto, (int)moved);
223 old_bufp->flags &= ~BUF_PIN;
224 new_bufp->flags &= ~BUF_PIN;
225 return (retval);
226
227 }
228 key.data = (u_char *)op + ino[n];
229 key.size = off - ino[n];
230
231 if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
232 /* Don't switch page */
233 diff = copyto - off;
234 if (diff) {
235 copyto = ino[n + 1] + diff;
236 memmove(op + copyto, op + ino[n + 1],
237 (size_t)(off - ino[n + 1]));
238 ino[ndx] = copyto + ino[n] - ino[n + 1];
239 ino[ndx + 1] = copyto;
240 } else
241 copyto = ino[n + 1];
242 ndx += 2;
243 } else {
244 /* Switch page */
245 val.data = (u_char *)op + ino[n + 1];
246 val.size = ino[n] - ino[n + 1];
247 putpair(np, &key, &val);
248 moved += 2;
249 }
250
251 off = ino[n + 1];
252 }
253
254 /* Now clean up the page */
255 ino[0] -= moved;
256 FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
257 OFFSET(ino) = copyto;
258
259 #ifdef DEBUG3
260 (void)fprintf(stderr, "split %d/%d\n",
261 ((u_int16_t *)np)[0] / 2,
262 ((u_int16_t *)op)[0] / 2);
263 #endif
264 /* unpin both pages */
265 old_bufp->flags &= ~BUF_PIN;
266 new_bufp->flags &= ~BUF_PIN;
267 return (0);
268 }
269
270 /*
271 * Called when we encounter an overflow or big key/data page during split
272 * handling. This is special cased since we have to begin checking whether
273 * the key/data pairs fit on their respective pages and because we may need
274 * overflow pages for both the old and new pages.
275 *
276 * The first page might be a page with regular key/data pairs in which case
277 * we have a regular overflow condition and just need to go on to the next
278 * page or it might be a big key/data pair in which case we need to fix the
279 * big key/data pair.
280 *
281 * Returns:
282 * 0 ==> success
283 * -1 ==> failure
284 */
285 static int
286 ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
287 HTAB *hashp;
288 u_int32_t obucket; /* Same as __split_page. */
289 BUFHEAD *old_bufp, *new_bufp;
290 int copyto; /* First byte on page which contains key/data values. */
291 int moved; /* Number of pairs moved to new page. */
292 {
293 register BUFHEAD *bufp; /* Buffer header for ino */
294 register u_int16_t *ino; /* Page keys come off of */
295 register u_int16_t *np; /* New page */
296 register u_int16_t *op; /* Page keys go on to if they aren't moving */
297
298 BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */
299 DBT key, val;
300 SPLIT_RETURN ret;
301 u_int16_t n, off, ov_addr, scopyto;
302 char *cino; /* Character value of ino */
303
304 bufp = old_bufp;
305 ino = (u_int16_t *)(void *)old_bufp->page;
306 np = (u_int16_t *)(void *)new_bufp->page;
307 op = (u_int16_t *)(void *)old_bufp->page;
308 last_bfp = NULL;
309 scopyto = (u_int16_t)copyto; /* ANSI */
310
311 n = ino[0] - 1;
312 while (n < ino[0]) {
313 if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
314 if (__big_split(hashp, old_bufp,
315 new_bufp, bufp, (int)bufp->addr, obucket, &ret))
316 return (-1);
317 old_bufp = ret.oldp;
318 if (!old_bufp)
319 return (-1);
320 op = (u_int16_t *)(void *)old_bufp->page;
321 new_bufp = ret.newp;
322 if (!new_bufp)
323 return (-1);
324 np = (u_int16_t *)(void *)new_bufp->page;
325 bufp = ret.nextp;
326 if (!bufp)
327 return (0);
328 cino = (char *)bufp->page;
329 ino = (u_int16_t *)(void *)cino;
330 last_bfp = ret.nextp;
331 } else if (ino[n + 1] == OVFLPAGE) {
332 ov_addr = ino[n];
333 /*
334 * Fix up the old page -- the extra 2 are the fields
335 * which contained the overflow information.
336 */
337 ino[0] -= (moved + 2);
338 FREESPACE(ino) =
339 scopyto - sizeof(u_int16_t) * (ino[0] + 3);
340 OFFSET(ino) = scopyto;
341
342 bufp = __get_buf(hashp, (u_int32_t)ov_addr, bufp, 0);
343 if (!bufp)
344 return (-1);
345
346 ino = (u_int16_t *)(void *)bufp->page;
347 n = 1;
348 scopyto = hashp->BSIZE;
349 moved = 0;
350
351 if (last_bfp)
352 __free_ovflpage(hashp, last_bfp);
353 last_bfp = bufp;
354 }
355 /* Move regular sized pairs of there are any */
356 off = hashp->BSIZE;
357 for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
358 cino = (char *)(void *)ino;
359 key.data = (u_char *)cino + ino[n];
360 key.size = off - ino[n];
361 val.data = (u_char *)cino + ino[n + 1];
362 val.size = ino[n] - ino[n + 1];
363 off = ino[n + 1];
364
365 if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
366 /* Keep on old page */
367 if (PAIRFITS(op, (&key), (&val)))
368 putpair((char *)(void *)op, &key, &val);
369 else {
370 old_bufp =
371 __add_ovflpage(hashp, old_bufp);
372 if (!old_bufp)
373 return (-1);
374 op = (u_int16_t *)(void *)old_bufp->page;
375 putpair((char *)(void *)op, &key, &val);
376 }
377 old_bufp->flags |= BUF_MOD;
378 } else {
379 /* Move to new page */
380 if (PAIRFITS(np, (&key), (&val)))
381 putpair((char *)(void *)np, &key, &val);
382 else {
383 new_bufp =
384 __add_ovflpage(hashp, new_bufp);
385 if (!new_bufp)
386 return (-1);
387 np = (u_int16_t *)(void *)new_bufp->page;
388 putpair((char *)(void *)np, &key, &val);
389 }
390 new_bufp->flags |= BUF_MOD;
391 }
392 }
393 }
394 if (last_bfp)
395 __free_ovflpage(hashp, last_bfp);
396 return (0);
397 }
398
399 /*
400 * Add the given pair to the page
401 *
402 * Returns:
403 * 0 ==> OK
404 * 1 ==> failure
405 */
406 extern int
407 __addel(hashp, bufp, key, val)
408 HTAB *hashp;
409 BUFHEAD *bufp;
410 const DBT *key, *val;
411 {
412 register u_int16_t *bp, *sop;
413 int do_expand;
414
415 bp = (u_int16_t *)(void *)bufp->page;
416 do_expand = 0;
417 while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
418 /* Exception case */
419 if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
420 /* This is the last page of a big key/data pair
421 and we need to add another page */
422 break;
423 else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
424 bufp = __get_buf(hashp, (u_int32_t)bp[bp[0] - 1], bufp,
425 0);
426 if (!bufp)
427 return (-1);
428 bp = (u_int16_t *)(void *)bufp->page;
429 } else if (bp[bp[0]] != OVFLPAGE) {
430 /* Short key/data pairs, no more pages */
431 break;
432 } else {
433 /* Try to squeeze key on this page */
434 if (bp[2] >= REAL_KEY &&
435 FREESPACE(bp) >= PAIRSIZE(key, val)) {
436 squeeze_key(bp, key, val);
437 goto stats;
438 } else {
439 bufp = __get_buf(hashp,
440 (u_int32_t)bp[bp[0] - 1], bufp, 0);
441 if (!bufp)
442 return (-1);
443 bp = (u_int16_t *)(void *)bufp->page;
444 }
445 }
446
447 if (PAIRFITS(bp, key, val))
448 putpair(bufp->page, key, val);
449 else {
450 do_expand = 1;
451 bufp = __add_ovflpage(hashp, bufp);
452 if (!bufp)
453 return (-1);
454 sop = (u_int16_t *)(void *)bufp->page;
455
456 if (PAIRFITS(sop, key, val))
457 putpair((char *)(void *)sop, key, val);
458 else
459 if (__big_insert(hashp, bufp, key, val))
460 return (-1);
461 }
462 stats:
463 bufp->flags |= BUF_MOD;
464 /*
465 * If the average number of keys per bucket exceeds the fill factor,
466 * expand the table.
467 */
468 hashp->NKEYS++;
469 if (do_expand ||
470 (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
471 return (__expand_table(hashp));
472 return (0);
473 }
474
475 /*
476 *
477 * Returns:
478 * pointer on success
479 * NULL on error
480 */
481 extern BUFHEAD *
482 __add_ovflpage(hashp, bufp)
483 HTAB *hashp;
484 BUFHEAD *bufp;
485 {
486 register u_int16_t *sp;
487 u_int16_t ndx, ovfl_num;
488 #ifdef DEBUG1
489 int tmp1, tmp2;
490 #endif
491 sp = (u_int16_t *)(void *)bufp->page;
492
493 /* Check if we are dynamically determining the fill factor */
494 if (hashp->FFACTOR == DEF_FFACTOR) {
495 hashp->FFACTOR = (u_int32_t)sp[0] >> 1;
496 if (hashp->FFACTOR < MIN_FFACTOR)
497 hashp->FFACTOR = MIN_FFACTOR;
498 }
499 bufp->flags |= BUF_MOD;
500 ovfl_num = overflow_page(hashp);
501 #ifdef DEBUG1
502 tmp1 = bufp->addr;
503 tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
504 #endif
505 if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, (u_int32_t)ovfl_num,
506 bufp, 1)))
507 return (NULL);
508 bufp->ovfl->flags |= BUF_MOD;
509 #ifdef DEBUG1
510 (void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
511 tmp1, tmp2, bufp->ovfl->addr);
512 #endif
513 ndx = sp[0];
514 /*
515 * Since a pair is allocated on a page only if there's room to add
516 * an overflow page, we know that the OVFL information will fit on
517 * the page.
518 */
519 sp[ndx + 4] = OFFSET(sp);
520 sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
521 sp[ndx + 1] = ovfl_num;
522 sp[ndx + 2] = OVFLPAGE;
523 sp[0] = ndx + 2;
524 #ifdef HASH_STATISTICS
525 hash_overflows++;
526 #endif
527 return (bufp->ovfl);
528 }
529
530 /*
531 * Returns:
532 * 0 indicates SUCCESS
533 * -1 indicates FAILURE
534 */
535 extern int
536 __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
537 HTAB *hashp;
538 char *p;
539 u_int32_t bucket;
540 int is_bucket, is_disk, is_bitmap;
541 {
542 register int fd, page, size;
543 int rsize;
544 u_int16_t *bp;
545
546 fd = hashp->fp;
547 size = hashp->BSIZE;
548
549 if ((fd == -1) || !is_disk) {
550 PAGE_INIT(p);
551 return (0);
552 }
553 if (is_bucket)
554 page = BUCKET_TO_PAGE(bucket);
555 else
556 page = OADDR_TO_PAGE(bucket);
557 if ((rsize = pread(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
558 return (-1);
559 bp = (u_int16_t *)(void *)p;
560 if (!rsize)
561 bp[0] = 0; /* We hit the EOF, so initialize a new page */
562 else
563 if (rsize != size) {
564 errno = EFTYPE;
565 return (-1);
566 }
567 if (!is_bitmap && !bp[0]) {
568 PAGE_INIT(p);
569 } else
570 if (hashp->LORDER != BYTE_ORDER) {
571 register int i, max;
572
573 if (is_bitmap) {
574 max = (u_int32_t)hashp->BSIZE >> 2; /* divide by 4 */
575 for (i = 0; i < max; i++)
576 M_32_SWAP(((int *)(void *)p)[i]);
577 } else {
578 M_16_SWAP(bp[0]);
579 max = bp[0] + 2;
580 for (i = 1; i <= max; i++)
581 M_16_SWAP(bp[i]);
582 }
583 }
584 return (0);
585 }
586
587 /*
588 * Write page p to disk
589 *
590 * Returns:
591 * 0 ==> OK
592 * -1 ==>failure
593 */
594 extern int
595 __put_page(hashp, p, bucket, is_bucket, is_bitmap)
596 HTAB *hashp;
597 char *p;
598 u_int32_t bucket;
599 int is_bucket, is_bitmap;
600 {
601 register int fd, page, size;
602 int wsize;
603
604 size = hashp->BSIZE;
605 if ((hashp->fp == -1) && open_temp(hashp))
606 return (-1);
607 fd = hashp->fp;
608
609 if (hashp->LORDER != BYTE_ORDER) {
610 register int i;
611 register int max;
612
613 if (is_bitmap) {
614 max = (u_int32_t)hashp->BSIZE >> 2; /* divide by 4 */
615 for (i = 0; i < max; i++)
616 M_32_SWAP(((int *)(void *)p)[i]);
617 } else {
618 max = ((u_int16_t *)(void *)p)[0] + 2;
619 for (i = 0; i <= max; i++)
620 M_16_SWAP(((u_int16_t *)(void *)p)[i]);
621 }
622 }
623 if (is_bucket)
624 page = BUCKET_TO_PAGE(bucket);
625 else
626 page = OADDR_TO_PAGE(bucket);
627 if ((wsize = pwrite(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
628 /* Errno is set */
629 return (-1);
630 if (wsize != size) {
631 errno = EFTYPE;
632 return (-1);
633 }
634 return (0);
635 }
636
637 #define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1)
638 /*
639 * Initialize a new bitmap page. Bitmap pages are left in memory
640 * once they are read in.
641 */
642 extern int
643 __ibitmap(hashp, pnum, nbits, ndx)
644 HTAB *hashp;
645 int pnum, nbits, ndx;
646 {
647 u_int32_t *ip;
648 int clearbytes, clearints;
649
650 if ((ip = (u_int32_t *)malloc((size_t)hashp->BSIZE)) == NULL)
651 return (1);
652 hashp->nmaps++;
653 clearints = ((u_int32_t)(nbits - 1) >> INT_BYTE_SHIFT) + 1;
654 clearbytes = clearints << INT_TO_BYTE;
655 (void)memset(ip, 0, (size_t)clearbytes);
656 (void)memset(((char *)(void *)ip) + clearbytes, 0xFF,
657 (size_t)(hashp->BSIZE - clearbytes));
658 ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
659 SETBIT(ip, 0);
660 hashp->BITMAPS[ndx] = (u_int16_t)pnum;
661 hashp->mapp[ndx] = ip;
662 return (0);
663 }
664
665 static u_int32_t
666 first_free(map)
667 u_int32_t map;
668 {
669 register u_int32_t i, mask;
670
671 mask = 0x1;
672 for (i = 0; i < BITS_PER_MAP; i++) {
673 if (!(mask & map))
674 return (i);
675 mask = mask << 1;
676 }
677 return (i);
678 }
679
680 static u_int16_t
681 overflow_page(hashp)
682 HTAB *hashp;
683 {
684 register u_int32_t *freep = NULL;
685 register int max_free, offset, splitnum;
686 u_int16_t addr;
687 int bit, first_page, free_bit, free_page, i, in_use_bits, j;
688 #ifdef DEBUG2
689 int tmp1, tmp2;
690 #endif
691 splitnum = hashp->OVFL_POINT;
692 max_free = hashp->SPARES[splitnum];
693
694 free_page = (u_int32_t)(max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
695 free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
696
697 /* Look through all the free maps to find the first free block */
698 first_page = (u_int32_t)hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
699 for ( i = first_page; i <= free_page; i++ ) {
700 if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
701 !(freep = fetch_bitmap(hashp, i)))
702 return (0);
703 if (i == free_page)
704 in_use_bits = free_bit;
705 else
706 in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
707
708 if (i == first_page) {
709 bit = hashp->LAST_FREED &
710 ((hashp->BSIZE << BYTE_SHIFT) - 1);
711 j = bit / BITS_PER_MAP;
712 bit = bit & ~(BITS_PER_MAP - 1);
713 } else {
714 bit = 0;
715 j = 0;
716 }
717 for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
718 if (freep[j] != ALL_SET)
719 goto found;
720 }
721
722 /* No Free Page Found */
723 hashp->LAST_FREED = hashp->SPARES[splitnum];
724 hashp->SPARES[splitnum]++;
725 offset = hashp->SPARES[splitnum] -
726 (splitnum ? hashp->SPARES[splitnum - 1] : 0);
727
728 #define OVMSG "HASH: Out of overflow pages. Increase page size\n"
729 if (offset > SPLITMASK) {
730 if (++splitnum >= NCACHED) {
731 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
732 errno = EFBIG;
733 return (0);
734 }
735 hashp->OVFL_POINT = splitnum;
736 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
737 hashp->SPARES[splitnum-1]--;
738 offset = 1;
739 }
740
741 /* Check if we need to allocate a new bitmap page */
742 if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
743 free_page++;
744 if (free_page >= NCACHED) {
745 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
746 errno = EFBIG;
747 return (0);
748 }
749 /*
750 * This is tricky. The 1 indicates that you want the new page
751 * allocated with 1 clear bit. Actually, you are going to
752 * allocate 2 pages from this map. The first is going to be
753 * the map page, the second is the overflow page we were
754 * looking for. The init_bitmap routine automatically, sets
755 * the first bit of itself to indicate that the bitmap itself
756 * is in use. We would explicitly set the second bit, but
757 * don't have to if we tell init_bitmap not to leave it clear
758 * in the first place.
759 */
760 if (__ibitmap(hashp,
761 (int)OADDR_OF(splitnum, offset), 1, free_page))
762 return (0);
763 hashp->SPARES[splitnum]++;
764 #ifdef DEBUG2
765 free_bit = 2;
766 #endif
767 offset++;
768 if (offset > SPLITMASK) {
769 if (++splitnum >= NCACHED) {
770 (void)write(STDERR_FILENO, OVMSG,
771 sizeof(OVMSG) - 1);
772 errno = EFBIG;
773 return (0);
774 }
775 hashp->OVFL_POINT = splitnum;
776 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
777 hashp->SPARES[splitnum-1]--;
778 offset = 0;
779 }
780 } else {
781 /*
782 * Free_bit addresses the last used bit. Bump it to address
783 * the first available bit.
784 */
785 free_bit++;
786 SETBIT(freep, free_bit);
787 }
788
789 /* Calculate address of the new overflow page */
790 addr = OADDR_OF(splitnum, offset);
791 #ifdef DEBUG2
792 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
793 addr, free_bit, free_page);
794 #endif
795 return (addr);
796
797 found:
798 bit = bit + first_free(freep[j]);
799 SETBIT(freep, bit);
800 #ifdef DEBUG2
801 tmp1 = bit;
802 tmp2 = i;
803 #endif
804 /*
805 * Bits are addressed starting with 0, but overflow pages are addressed
806 * beginning at 1. Bit is a bit addressnumber, so we need to increment
807 * it to convert it to a page number.
808 */
809 bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
810 if (bit >= hashp->LAST_FREED)
811 hashp->LAST_FREED = bit - 1;
812
813 /* Calculate the split number for this page */
814 for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
815 offset = (i ? bit - hashp->SPARES[i - 1] : bit);
816 if (offset >= SPLITMASK) {
817 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
818 errno = EFBIG;
819 return (0); /* Out of overflow pages */
820 }
821 addr = OADDR_OF(i, offset);
822 #ifdef DEBUG2
823 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
824 addr, tmp1, tmp2);
825 #endif
826
827 /* Allocate and return the overflow page */
828 return (addr);
829 }
830
831 /*
832 * Mark this overflow page as free.
833 */
834 extern void
835 __free_ovflpage(hashp, obufp)
836 HTAB *hashp;
837 BUFHEAD *obufp;
838 {
839 register u_int16_t addr;
840 u_int32_t *freep;
841 int bit_address, free_page, free_bit;
842 u_int16_t ndx;
843
844 addr = obufp->addr;
845 #ifdef DEBUG1
846 (void)fprintf(stderr, "Freeing %d\n", addr);
847 #endif
848 ndx = (((u_int32_t)addr) >> SPLITSHIFT);
849 bit_address =
850 (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
851 if (bit_address < hashp->LAST_FREED)
852 hashp->LAST_FREED = bit_address;
853 free_page = ((u_int32_t)bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
854 free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
855
856 if (!(freep = hashp->mapp[free_page]))
857 freep = fetch_bitmap(hashp, free_page);
858 #ifdef DEBUG
859 /*
860 * This had better never happen. It means we tried to read a bitmap
861 * that has already had overflow pages allocated off it, and we
862 * failed to read it from the file.
863 */
864 if (!freep)
865 assert(0);
866 #endif
867 CLRBIT(freep, free_bit);
868 #ifdef DEBUG2
869 (void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
870 obufp->addr, free_bit, free_page);
871 #endif
872 __reclaim_buf(hashp, obufp);
873 }
874
875 /*
876 * Returns:
877 * 0 success
878 * -1 failure
879 */
880 static int
881 open_temp(hashp)
882 HTAB *hashp;
883 {
884 sigset_t set, oset;
885 char namestr[] = "_hashXXXXXX";
886
887 /* Block signals; make sure file goes away at process exit. */
888 (void)sigfillset(&set);
889 (void)sigprocmask(SIG_BLOCK, &set, &oset);
890 if ((hashp->fp = mkstemp(namestr)) != -1) {
891 (void)unlink(namestr);
892 (void)fcntl(hashp->fp, F_SETFD, 1);
893 }
894 (void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
895 return (hashp->fp != -1 ? 0 : -1);
896 }
897
898 /*
899 * We have to know that the key will fit, but the last entry on the page is
900 * an overflow pair, so we need to shift things.
901 */
902 static void
903 squeeze_key(sp, key, val)
904 u_int16_t *sp;
905 const DBT *key, *val;
906 {
907 register char *p;
908 u_int16_t free_space, n, off, pageno;
909
910 p = (char *)(void *)sp;
911 n = sp[0];
912 free_space = FREESPACE(sp);
913 off = OFFSET(sp);
914
915 pageno = sp[n - 1];
916 off -= key->size;
917 sp[n - 1] = off;
918 memmove(p + off, key->data, key->size);
919 off -= val->size;
920 sp[n] = off;
921 memmove(p + off, val->data, val->size);
922 sp[0] = n + 2;
923 sp[n + 1] = pageno;
924 sp[n + 2] = OVFLPAGE;
925 FREESPACE(sp) = free_space - PAIRSIZE(key, val);
926 OFFSET(sp) = off;
927 }
928
929 static u_int32_t *
930 fetch_bitmap(hashp, ndx)
931 HTAB *hashp;
932 int ndx;
933 {
934 if (ndx >= hashp->nmaps)
935 return (NULL);
936 if ((hashp->mapp[ndx] = (u_int32_t *)malloc((size_t)hashp->BSIZE)) == NULL)
937 return (NULL);
938 if (__get_page(hashp,
939 (char *)(void *)hashp->mapp[ndx], (u_int32_t)hashp->BITMAPS[ndx], 0, 1, 1)) {
940 free(hashp->mapp[ndx]);
941 return (NULL);
942 }
943 return (hashp->mapp[ndx]);
944 }
945
946 #ifdef DEBUG4
947 int
948 print_chain(addr)
949 int addr;
950 {
951 BUFHEAD *bufp;
952 short *bp, oaddr;
953
954 (void)fprintf(stderr, "%d ", addr);
955 bufp = __get_buf(hashp, addr, NULL, 0);
956 bp = (short *)bufp->page;
957 while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
958 ((bp[0] > 2) && bp[2] < REAL_KEY))) {
959 oaddr = bp[bp[0] - 1];
960 (void)fprintf(stderr, "%d ", (int)oaddr);
961 bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
962 bp = (short *)bufp->page;
963 }
964 (void)fprintf(stderr, "\n");
965 }
966 #endif
967