hash_page.c revision 1.16 1 /* $NetBSD: hash_page.c,v 1.16 2003/08/07 16:42:43 agc Exp $ */
2
3 /*-
4 * Copyright (c) 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Margo Seltzer.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 #if defined(LIBC_SCCS) && !defined(lint)
37 #if 0
38 static char sccsid[] = "@(#)hash_page.c 8.7 (Berkeley) 8/16/94";
39 #else
40 __RCSID("$NetBSD: hash_page.c,v 1.16 2003/08/07 16:42:43 agc Exp $");
41 #endif
42 #endif /* LIBC_SCCS and not lint */
43
44 /*
45 * PACKAGE: hashing
46 *
47 * DESCRIPTION:
48 * Page manipulation for hashing package.
49 *
50 * ROUTINES:
51 *
52 * External
53 * __get_page
54 * __add_ovflpage
55 * Internal
56 * overflow_page
57 * open_temp
58 */
59
60 #include "namespace.h"
61
62 #include <sys/types.h>
63
64 #include <errno.h>
65 #include <fcntl.h>
66 #include <signal.h>
67 #include <stdio.h>
68 #include <stdlib.h>
69 #include <string.h>
70 #include <unistd.h>
71 #ifdef DEBUG
72 #include <assert.h>
73 #endif
74
75 #include <db.h>
76 #include "hash.h"
77 #include "page.h"
78 #include "extern.h"
79
80 static u_int32_t *fetch_bitmap __P((HTAB *, int));
81 static u_int32_t first_free __P((u_int32_t));
82 static int open_temp __P((HTAB *));
83 static u_int16_t overflow_page __P((HTAB *));
84 static void putpair __P((char *, const DBT *, const DBT *));
85 static void squeeze_key __P((u_int16_t *, const DBT *, const DBT *));
86 static int ugly_split
87 __P((HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int));
88
89 #define PAGE_INIT(P) { \
90 ((u_int16_t *)(void *)(P))[0] = 0; \
91 ((u_int16_t *)(void *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
92 ((u_int16_t *)(void *)(P))[2] = hashp->BSIZE; \
93 }
94
95 /*
96 * This is called AFTER we have verified that there is room on the page for
97 * the pair (PAIRFITS has returned true) so we go right ahead and start moving
98 * stuff on.
99 */
100 static void
101 putpair(p, key, val)
102 char *p;
103 const DBT *key, *val;
104 {
105 register u_int16_t *bp, n, off;
106
107 bp = (u_int16_t *)(void *)p;
108
109 /* Enter the key first. */
110 n = bp[0];
111
112 off = OFFSET(bp) - key->size;
113 memmove(p + off, key->data, key->size);
114 bp[++n] = off;
115
116 /* Now the data. */
117 off -= val->size;
118 memmove(p + off, val->data, val->size);
119 bp[++n] = off;
120
121 /* Adjust page info. */
122 bp[0] = n;
123 bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
124 bp[n + 2] = off;
125 }
126
127 /*
128 * Returns:
129 * 0 OK
130 * -1 error
131 */
132 extern int
133 __delpair(hashp, bufp, ndx)
134 HTAB *hashp;
135 BUFHEAD *bufp;
136 register int ndx;
137 {
138 register u_int16_t *bp, newoff;
139 register int n;
140 u_int16_t pairlen;
141
142 bp = (u_int16_t *)(void *)bufp->page;
143 n = bp[0];
144
145 if (bp[ndx + 1] < REAL_KEY)
146 return (__big_delete(hashp, bufp));
147 if (ndx != 1)
148 newoff = bp[ndx - 1];
149 else
150 newoff = hashp->BSIZE;
151 pairlen = newoff - bp[ndx + 1];
152
153 if (ndx != (n - 1)) {
154 /* Hard Case -- need to shuffle keys */
155 register int i;
156 register char *src = bufp->page + (int)OFFSET(bp);
157 register char *dst = src + (int)pairlen;
158 memmove(dst, src, (size_t)(bp[ndx + 1] - OFFSET(bp)));
159
160 /* Now adjust the pointers */
161 for (i = ndx + 2; i <= n; i += 2) {
162 if (bp[i + 1] == OVFLPAGE) {
163 bp[i - 2] = bp[i];
164 bp[i - 1] = bp[i + 1];
165 } else {
166 bp[i - 2] = bp[i] + pairlen;
167 bp[i - 1] = bp[i + 1] + pairlen;
168 }
169 }
170 }
171 /* Finally adjust the page data */
172 bp[n] = OFFSET(bp) + pairlen;
173 bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
174 bp[0] = n - 2;
175 hashp->NKEYS--;
176
177 bufp->flags |= BUF_MOD;
178 return (0);
179 }
180 /*
181 * Returns:
182 * 0 ==> OK
183 * -1 ==> Error
184 */
185 extern int
186 __split_page(hashp, obucket, nbucket)
187 HTAB *hashp;
188 u_int32_t obucket, nbucket;
189 {
190 register BUFHEAD *new_bufp, *old_bufp;
191 register u_int16_t *ino;
192 register char *np;
193 DBT key, val;
194 int n, ndx, retval;
195 u_int16_t copyto, diff, off, moved;
196 char *op;
197
198 copyto = (u_int16_t)hashp->BSIZE;
199 off = (u_int16_t)hashp->BSIZE;
200 old_bufp = __get_buf(hashp, obucket, NULL, 0);
201 if (old_bufp == NULL)
202 return (-1);
203 new_bufp = __get_buf(hashp, nbucket, NULL, 0);
204 if (new_bufp == NULL)
205 return (-1);
206
207 old_bufp->flags |= (BUF_MOD | BUF_PIN);
208 new_bufp->flags |= (BUF_MOD | BUF_PIN);
209
210 ino = (u_int16_t *)(void *)(op = old_bufp->page);
211 np = new_bufp->page;
212
213 moved = 0;
214
215 for (n = 1, ndx = 1; n < ino[0]; n += 2) {
216 if (ino[n + 1] < REAL_KEY) {
217 retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
218 (int)copyto, (int)moved);
219 old_bufp->flags &= ~BUF_PIN;
220 new_bufp->flags &= ~BUF_PIN;
221 return (retval);
222
223 }
224 key.data = (u_char *)op + ino[n];
225 key.size = off - ino[n];
226
227 if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
228 /* Don't switch page */
229 diff = copyto - off;
230 if (diff) {
231 copyto = ino[n + 1] + diff;
232 memmove(op + copyto, op + ino[n + 1],
233 (size_t)(off - ino[n + 1]));
234 ino[ndx] = copyto + ino[n] - ino[n + 1];
235 ino[ndx + 1] = copyto;
236 } else
237 copyto = ino[n + 1];
238 ndx += 2;
239 } else {
240 /* Switch page */
241 val.data = (u_char *)op + ino[n + 1];
242 val.size = ino[n] - ino[n + 1];
243 putpair(np, &key, &val);
244 moved += 2;
245 }
246
247 off = ino[n + 1];
248 }
249
250 /* Now clean up the page */
251 ino[0] -= moved;
252 FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
253 OFFSET(ino) = copyto;
254
255 #ifdef DEBUG3
256 (void)fprintf(stderr, "split %d/%d\n",
257 ((u_int16_t *)np)[0] / 2,
258 ((u_int16_t *)op)[0] / 2);
259 #endif
260 /* unpin both pages */
261 old_bufp->flags &= ~BUF_PIN;
262 new_bufp->flags &= ~BUF_PIN;
263 return (0);
264 }
265
266 /*
267 * Called when we encounter an overflow or big key/data page during split
268 * handling. This is special cased since we have to begin checking whether
269 * the key/data pairs fit on their respective pages and because we may need
270 * overflow pages for both the old and new pages.
271 *
272 * The first page might be a page with regular key/data pairs in which case
273 * we have a regular overflow condition and just need to go on to the next
274 * page or it might be a big key/data pair in which case we need to fix the
275 * big key/data pair.
276 *
277 * Returns:
278 * 0 ==> success
279 * -1 ==> failure
280 */
281 static int
282 ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
283 HTAB *hashp;
284 u_int32_t obucket; /* Same as __split_page. */
285 BUFHEAD *old_bufp, *new_bufp;
286 int copyto; /* First byte on page which contains key/data values. */
287 int moved; /* Number of pairs moved to new page. */
288 {
289 register BUFHEAD *bufp; /* Buffer header for ino */
290 register u_int16_t *ino; /* Page keys come off of */
291 register u_int16_t *np; /* New page */
292 register u_int16_t *op; /* Page keys go on to if they aren't moving */
293
294 BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */
295 DBT key, val;
296 SPLIT_RETURN ret;
297 u_int16_t n, off, ov_addr, scopyto;
298 char *cino; /* Character value of ino */
299
300 bufp = old_bufp;
301 ino = (u_int16_t *)(void *)old_bufp->page;
302 np = (u_int16_t *)(void *)new_bufp->page;
303 op = (u_int16_t *)(void *)old_bufp->page;
304 last_bfp = NULL;
305 scopyto = (u_int16_t)copyto; /* ANSI */
306
307 n = ino[0] - 1;
308 while (n < ino[0]) {
309 if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
310 if (__big_split(hashp, old_bufp,
311 new_bufp, bufp, (int)bufp->addr, obucket, &ret))
312 return (-1);
313 old_bufp = ret.oldp;
314 if (!old_bufp)
315 return (-1);
316 op = (u_int16_t *)(void *)old_bufp->page;
317 new_bufp = ret.newp;
318 if (!new_bufp)
319 return (-1);
320 np = (u_int16_t *)(void *)new_bufp->page;
321 bufp = ret.nextp;
322 if (!bufp)
323 return (0);
324 cino = (char *)bufp->page;
325 ino = (u_int16_t *)(void *)cino;
326 last_bfp = ret.nextp;
327 } else if (ino[n + 1] == OVFLPAGE) {
328 ov_addr = ino[n];
329 /*
330 * Fix up the old page -- the extra 2 are the fields
331 * which contained the overflow information.
332 */
333 ino[0] -= (moved + 2);
334 FREESPACE(ino) =
335 scopyto - sizeof(u_int16_t) * (ino[0] + 3);
336 OFFSET(ino) = scopyto;
337
338 bufp = __get_buf(hashp, (u_int32_t)ov_addr, bufp, 0);
339 if (!bufp)
340 return (-1);
341
342 ino = (u_int16_t *)(void *)bufp->page;
343 n = 1;
344 scopyto = hashp->BSIZE;
345 moved = 0;
346
347 if (last_bfp)
348 __free_ovflpage(hashp, last_bfp);
349 last_bfp = bufp;
350 }
351 /* Move regular sized pairs of there are any */
352 off = hashp->BSIZE;
353 for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
354 cino = (char *)(void *)ino;
355 key.data = (u_char *)cino + ino[n];
356 key.size = off - ino[n];
357 val.data = (u_char *)cino + ino[n + 1];
358 val.size = ino[n] - ino[n + 1];
359 off = ino[n + 1];
360
361 if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
362 /* Keep on old page */
363 if (PAIRFITS(op, (&key), (&val)))
364 putpair((char *)(void *)op, &key, &val);
365 else {
366 old_bufp =
367 __add_ovflpage(hashp, old_bufp);
368 if (!old_bufp)
369 return (-1);
370 op = (u_int16_t *)(void *)old_bufp->page;
371 putpair((char *)(void *)op, &key, &val);
372 }
373 old_bufp->flags |= BUF_MOD;
374 } else {
375 /* Move to new page */
376 if (PAIRFITS(np, (&key), (&val)))
377 putpair((char *)(void *)np, &key, &val);
378 else {
379 new_bufp =
380 __add_ovflpage(hashp, new_bufp);
381 if (!new_bufp)
382 return (-1);
383 np = (u_int16_t *)(void *)new_bufp->page;
384 putpair((char *)(void *)np, &key, &val);
385 }
386 new_bufp->flags |= BUF_MOD;
387 }
388 }
389 }
390 if (last_bfp)
391 __free_ovflpage(hashp, last_bfp);
392 return (0);
393 }
394
395 /*
396 * Add the given pair to the page
397 *
398 * Returns:
399 * 0 ==> OK
400 * 1 ==> failure
401 */
402 extern int
403 __addel(hashp, bufp, key, val)
404 HTAB *hashp;
405 BUFHEAD *bufp;
406 const DBT *key, *val;
407 {
408 register u_int16_t *bp, *sop;
409 int do_expand;
410
411 bp = (u_int16_t *)(void *)bufp->page;
412 do_expand = 0;
413 while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
414 /* Exception case */
415 if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
416 /* This is the last page of a big key/data pair
417 and we need to add another page */
418 break;
419 else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
420 bufp = __get_buf(hashp, (u_int32_t)bp[bp[0] - 1], bufp,
421 0);
422 if (!bufp)
423 return (-1);
424 bp = (u_int16_t *)(void *)bufp->page;
425 } else if (bp[bp[0]] != OVFLPAGE) {
426 /* Short key/data pairs, no more pages */
427 break;
428 } else {
429 /* Try to squeeze key on this page */
430 if (bp[2] >= REAL_KEY &&
431 FREESPACE(bp) >= PAIRSIZE(key, val)) {
432 squeeze_key(bp, key, val);
433 goto stats;
434 } else {
435 bufp = __get_buf(hashp,
436 (u_int32_t)bp[bp[0] - 1], bufp, 0);
437 if (!bufp)
438 return (-1);
439 bp = (u_int16_t *)(void *)bufp->page;
440 }
441 }
442
443 if (PAIRFITS(bp, key, val))
444 putpair(bufp->page, key, val);
445 else {
446 do_expand = 1;
447 bufp = __add_ovflpage(hashp, bufp);
448 if (!bufp)
449 return (-1);
450 sop = (u_int16_t *)(void *)bufp->page;
451
452 if (PAIRFITS(sop, key, val))
453 putpair((char *)(void *)sop, key, val);
454 else
455 if (__big_insert(hashp, bufp, key, val))
456 return (-1);
457 }
458 stats:
459 bufp->flags |= BUF_MOD;
460 /*
461 * If the average number of keys per bucket exceeds the fill factor,
462 * expand the table.
463 */
464 hashp->NKEYS++;
465 if (do_expand ||
466 (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
467 return (__expand_table(hashp));
468 return (0);
469 }
470
471 /*
472 *
473 * Returns:
474 * pointer on success
475 * NULL on error
476 */
477 extern BUFHEAD *
478 __add_ovflpage(hashp, bufp)
479 HTAB *hashp;
480 BUFHEAD *bufp;
481 {
482 register u_int16_t *sp;
483 u_int16_t ndx, ovfl_num;
484 #ifdef DEBUG1
485 int tmp1, tmp2;
486 #endif
487 sp = (u_int16_t *)(void *)bufp->page;
488
489 /* Check if we are dynamically determining the fill factor */
490 if (hashp->FFACTOR == DEF_FFACTOR) {
491 hashp->FFACTOR = (u_int32_t)sp[0] >> 1;
492 if (hashp->FFACTOR < MIN_FFACTOR)
493 hashp->FFACTOR = MIN_FFACTOR;
494 }
495 bufp->flags |= BUF_MOD;
496 ovfl_num = overflow_page(hashp);
497 #ifdef DEBUG1
498 tmp1 = bufp->addr;
499 tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
500 #endif
501 if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, (u_int32_t)ovfl_num,
502 bufp, 1)))
503 return (NULL);
504 bufp->ovfl->flags |= BUF_MOD;
505 #ifdef DEBUG1
506 (void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
507 tmp1, tmp2, bufp->ovfl->addr);
508 #endif
509 ndx = sp[0];
510 /*
511 * Since a pair is allocated on a page only if there's room to add
512 * an overflow page, we know that the OVFL information will fit on
513 * the page.
514 */
515 sp[ndx + 4] = OFFSET(sp);
516 sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
517 sp[ndx + 1] = ovfl_num;
518 sp[ndx + 2] = OVFLPAGE;
519 sp[0] = ndx + 2;
520 #ifdef HASH_STATISTICS
521 hash_overflows++;
522 #endif
523 return (bufp->ovfl);
524 }
525
526 /*
527 * Returns:
528 * 0 indicates SUCCESS
529 * -1 indicates FAILURE
530 */
531 extern int
532 __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
533 HTAB *hashp;
534 char *p;
535 u_int32_t bucket;
536 int is_bucket, is_disk, is_bitmap;
537 {
538 register int fd, page, size;
539 int rsize;
540 u_int16_t *bp;
541
542 fd = hashp->fp;
543 size = hashp->BSIZE;
544
545 if ((fd == -1) || !is_disk) {
546 PAGE_INIT(p);
547 return (0);
548 }
549 if (is_bucket)
550 page = BUCKET_TO_PAGE(bucket);
551 else
552 page = OADDR_TO_PAGE(bucket);
553 if ((rsize = pread(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
554 return (-1);
555 bp = (u_int16_t *)(void *)p;
556 if (!rsize)
557 bp[0] = 0; /* We hit the EOF, so initialize a new page */
558 else
559 if (rsize != size) {
560 errno = EFTYPE;
561 return (-1);
562 }
563 if (!is_bitmap && !bp[0]) {
564 PAGE_INIT(p);
565 } else
566 if (hashp->LORDER != BYTE_ORDER) {
567 register int i, max;
568
569 if (is_bitmap) {
570 max = (u_int32_t)hashp->BSIZE >> 2; /* divide by 4 */
571 for (i = 0; i < max; i++)
572 M_32_SWAP(((int *)(void *)p)[i]);
573 } else {
574 M_16_SWAP(bp[0]);
575 max = bp[0] + 2;
576 for (i = 1; i <= max; i++)
577 M_16_SWAP(bp[i]);
578 }
579 }
580 return (0);
581 }
582
583 /*
584 * Write page p to disk
585 *
586 * Returns:
587 * 0 ==> OK
588 * -1 ==>failure
589 */
590 extern int
591 __put_page(hashp, p, bucket, is_bucket, is_bitmap)
592 HTAB *hashp;
593 char *p;
594 u_int32_t bucket;
595 int is_bucket, is_bitmap;
596 {
597 register int fd, page, size;
598 int wsize;
599
600 size = hashp->BSIZE;
601 if ((hashp->fp == -1) && open_temp(hashp))
602 return (-1);
603 fd = hashp->fp;
604
605 if (hashp->LORDER != BYTE_ORDER) {
606 register int i;
607 register int max;
608
609 if (is_bitmap) {
610 max = (u_int32_t)hashp->BSIZE >> 2; /* divide by 4 */
611 for (i = 0; i < max; i++)
612 M_32_SWAP(((int *)(void *)p)[i]);
613 } else {
614 max = ((u_int16_t *)(void *)p)[0] + 2;
615 for (i = 0; i <= max; i++)
616 M_16_SWAP(((u_int16_t *)(void *)p)[i]);
617 }
618 }
619 if (is_bucket)
620 page = BUCKET_TO_PAGE(bucket);
621 else
622 page = OADDR_TO_PAGE(bucket);
623 if ((wsize = pwrite(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
624 /* Errno is set */
625 return (-1);
626 if (wsize != size) {
627 errno = EFTYPE;
628 return (-1);
629 }
630 return (0);
631 }
632
633 #define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1)
634 /*
635 * Initialize a new bitmap page. Bitmap pages are left in memory
636 * once they are read in.
637 */
638 extern int
639 __ibitmap(hashp, pnum, nbits, ndx)
640 HTAB *hashp;
641 int pnum, nbits, ndx;
642 {
643 u_int32_t *ip;
644 int clearbytes, clearints;
645
646 if ((ip = (u_int32_t *)malloc((size_t)hashp->BSIZE)) == NULL)
647 return (1);
648 hashp->nmaps++;
649 clearints = ((u_int32_t)(nbits - 1) >> INT_BYTE_SHIFT) + 1;
650 clearbytes = clearints << INT_TO_BYTE;
651 (void)memset(ip, 0, (size_t)clearbytes);
652 (void)memset(((char *)(void *)ip) + clearbytes, 0xFF,
653 (size_t)(hashp->BSIZE - clearbytes));
654 ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
655 SETBIT(ip, 0);
656 hashp->BITMAPS[ndx] = (u_int16_t)pnum;
657 hashp->mapp[ndx] = ip;
658 return (0);
659 }
660
661 static u_int32_t
662 first_free(map)
663 u_int32_t map;
664 {
665 register u_int32_t i, mask;
666
667 mask = 0x1;
668 for (i = 0; i < BITS_PER_MAP; i++) {
669 if (!(mask & map))
670 return (i);
671 mask = mask << 1;
672 }
673 return (i);
674 }
675
676 static u_int16_t
677 overflow_page(hashp)
678 HTAB *hashp;
679 {
680 register u_int32_t *freep = NULL;
681 register int max_free, offset, splitnum;
682 u_int16_t addr;
683 int bit, first_page, free_bit, free_page, i, in_use_bits, j;
684 #ifdef DEBUG2
685 int tmp1, tmp2;
686 #endif
687 splitnum = hashp->OVFL_POINT;
688 max_free = hashp->SPARES[splitnum];
689
690 free_page = (u_int32_t)(max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
691 free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
692
693 /* Look through all the free maps to find the first free block */
694 first_page = (u_int32_t)hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
695 for ( i = first_page; i <= free_page; i++ ) {
696 if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
697 !(freep = fetch_bitmap(hashp, i)))
698 return (0);
699 if (i == free_page)
700 in_use_bits = free_bit;
701 else
702 in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
703
704 if (i == first_page) {
705 bit = hashp->LAST_FREED &
706 ((hashp->BSIZE << BYTE_SHIFT) - 1);
707 j = bit / BITS_PER_MAP;
708 bit = bit & ~(BITS_PER_MAP - 1);
709 } else {
710 bit = 0;
711 j = 0;
712 }
713 for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
714 if (freep[j] != ALL_SET)
715 goto found;
716 }
717
718 /* No Free Page Found */
719 hashp->LAST_FREED = hashp->SPARES[splitnum];
720 hashp->SPARES[splitnum]++;
721 offset = hashp->SPARES[splitnum] -
722 (splitnum ? hashp->SPARES[splitnum - 1] : 0);
723
724 #define OVMSG "HASH: Out of overflow pages. Increase page size\n"
725 if (offset > SPLITMASK) {
726 if (++splitnum >= NCACHED) {
727 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
728 errno = EFBIG;
729 return (0);
730 }
731 hashp->OVFL_POINT = splitnum;
732 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
733 hashp->SPARES[splitnum-1]--;
734 offset = 1;
735 }
736
737 /* Check if we need to allocate a new bitmap page */
738 if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
739 free_page++;
740 if (free_page >= NCACHED) {
741 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
742 errno = EFBIG;
743 return (0);
744 }
745 /*
746 * This is tricky. The 1 indicates that you want the new page
747 * allocated with 1 clear bit. Actually, you are going to
748 * allocate 2 pages from this map. The first is going to be
749 * the map page, the second is the overflow page we were
750 * looking for. The init_bitmap routine automatically, sets
751 * the first bit of itself to indicate that the bitmap itself
752 * is in use. We would explicitly set the second bit, but
753 * don't have to if we tell init_bitmap not to leave it clear
754 * in the first place.
755 */
756 if (__ibitmap(hashp,
757 (int)OADDR_OF(splitnum, offset), 1, free_page))
758 return (0);
759 hashp->SPARES[splitnum]++;
760 #ifdef DEBUG2
761 free_bit = 2;
762 #endif
763 offset++;
764 if (offset > SPLITMASK) {
765 if (++splitnum >= NCACHED) {
766 (void)write(STDERR_FILENO, OVMSG,
767 sizeof(OVMSG) - 1);
768 errno = EFBIG;
769 return (0);
770 }
771 hashp->OVFL_POINT = splitnum;
772 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
773 hashp->SPARES[splitnum-1]--;
774 offset = 0;
775 }
776 } else {
777 /*
778 * Free_bit addresses the last used bit. Bump it to address
779 * the first available bit.
780 */
781 free_bit++;
782 SETBIT(freep, free_bit);
783 }
784
785 /* Calculate address of the new overflow page */
786 addr = OADDR_OF(splitnum, offset);
787 #ifdef DEBUG2
788 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
789 addr, free_bit, free_page);
790 #endif
791 return (addr);
792
793 found:
794 bit = bit + first_free(freep[j]);
795 SETBIT(freep, bit);
796 #ifdef DEBUG2
797 tmp1 = bit;
798 tmp2 = i;
799 #endif
800 /*
801 * Bits are addressed starting with 0, but overflow pages are addressed
802 * beginning at 1. Bit is a bit addressnumber, so we need to increment
803 * it to convert it to a page number.
804 */
805 bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
806 if (bit >= hashp->LAST_FREED)
807 hashp->LAST_FREED = bit - 1;
808
809 /* Calculate the split number for this page */
810 for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
811 offset = (i ? bit - hashp->SPARES[i - 1] : bit);
812 if (offset >= SPLITMASK) {
813 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
814 errno = EFBIG;
815 return (0); /* Out of overflow pages */
816 }
817 addr = OADDR_OF(i, offset);
818 #ifdef DEBUG2
819 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
820 addr, tmp1, tmp2);
821 #endif
822
823 /* Allocate and return the overflow page */
824 return (addr);
825 }
826
827 /*
828 * Mark this overflow page as free.
829 */
830 extern void
831 __free_ovflpage(hashp, obufp)
832 HTAB *hashp;
833 BUFHEAD *obufp;
834 {
835 register u_int16_t addr;
836 u_int32_t *freep;
837 int bit_address, free_page, free_bit;
838 u_int16_t ndx;
839
840 addr = obufp->addr;
841 #ifdef DEBUG1
842 (void)fprintf(stderr, "Freeing %d\n", addr);
843 #endif
844 ndx = (((u_int32_t)addr) >> SPLITSHIFT);
845 bit_address =
846 (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
847 if (bit_address < hashp->LAST_FREED)
848 hashp->LAST_FREED = bit_address;
849 free_page = ((u_int32_t)bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
850 free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
851
852 if (!(freep = hashp->mapp[free_page]))
853 freep = fetch_bitmap(hashp, free_page);
854 #ifdef DEBUG
855 /*
856 * This had better never happen. It means we tried to read a bitmap
857 * that has already had overflow pages allocated off it, and we
858 * failed to read it from the file.
859 */
860 if (!freep)
861 assert(0);
862 #endif
863 CLRBIT(freep, free_bit);
864 #ifdef DEBUG2
865 (void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
866 obufp->addr, free_bit, free_page);
867 #endif
868 __reclaim_buf(hashp, obufp);
869 }
870
871 /*
872 * Returns:
873 * 0 success
874 * -1 failure
875 */
876 static int
877 open_temp(hashp)
878 HTAB *hashp;
879 {
880 sigset_t set, oset;
881 char namestr[] = "_hashXXXXXX";
882
883 /* Block signals; make sure file goes away at process exit. */
884 (void)sigfillset(&set);
885 (void)sigprocmask(SIG_BLOCK, &set, &oset);
886 if ((hashp->fp = mkstemp(namestr)) != -1) {
887 (void)unlink(namestr);
888 (void)fcntl(hashp->fp, F_SETFD, 1);
889 }
890 (void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
891 return (hashp->fp != -1 ? 0 : -1);
892 }
893
894 /*
895 * We have to know that the key will fit, but the last entry on the page is
896 * an overflow pair, so we need to shift things.
897 */
898 static void
899 squeeze_key(sp, key, val)
900 u_int16_t *sp;
901 const DBT *key, *val;
902 {
903 register char *p;
904 u_int16_t free_space, n, off, pageno;
905
906 p = (char *)(void *)sp;
907 n = sp[0];
908 free_space = FREESPACE(sp);
909 off = OFFSET(sp);
910
911 pageno = sp[n - 1];
912 off -= key->size;
913 sp[n - 1] = off;
914 memmove(p + off, key->data, key->size);
915 off -= val->size;
916 sp[n] = off;
917 memmove(p + off, val->data, val->size);
918 sp[0] = n + 2;
919 sp[n + 1] = pageno;
920 sp[n + 2] = OVFLPAGE;
921 FREESPACE(sp) = free_space - PAIRSIZE(key, val);
922 OFFSET(sp) = off;
923 }
924
925 static u_int32_t *
926 fetch_bitmap(hashp, ndx)
927 HTAB *hashp;
928 int ndx;
929 {
930 if (ndx >= hashp->nmaps)
931 return (NULL);
932 if ((hashp->mapp[ndx] = (u_int32_t *)malloc((size_t)hashp->BSIZE)) == NULL)
933 return (NULL);
934 if (__get_page(hashp,
935 (char *)(void *)hashp->mapp[ndx], (u_int32_t)hashp->BITMAPS[ndx], 0, 1, 1)) {
936 free(hashp->mapp[ndx]);
937 return (NULL);
938 }
939 return (hashp->mapp[ndx]);
940 }
941
942 #ifdef DEBUG4
943 int
944 print_chain(addr)
945 int addr;
946 {
947 BUFHEAD *bufp;
948 short *bp, oaddr;
949
950 (void)fprintf(stderr, "%d ", addr);
951 bufp = __get_buf(hashp, addr, NULL, 0);
952 bp = (short *)bufp->page;
953 while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
954 ((bp[0] > 2) && bp[2] < REAL_KEY))) {
955 oaddr = bp[bp[0] - 1];
956 (void)fprintf(stderr, "%d ", (int)oaddr);
957 bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
958 bp = (short *)bufp->page;
959 }
960 (void)fprintf(stderr, "\n");
961 }
962 #endif
963