hash_page.c revision 1.18 1 /* $NetBSD: hash_page.c,v 1.18 2006/03/26 02:00:37 rtr Exp $ */
2
3 /*-
4 * Copyright (c) 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Margo Seltzer.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 #if defined(LIBC_SCCS) && !defined(lint)
37 #if 0
38 static char sccsid[] = "@(#)hash_page.c 8.7 (Berkeley) 8/16/94";
39 #else
40 __RCSID("$NetBSD: hash_page.c,v 1.18 2006/03/26 02:00:37 rtr Exp $");
41 #endif
42 #endif /* LIBC_SCCS and not lint */
43
44 /*
45 * PACKAGE: hashing
46 *
47 * DESCRIPTION:
48 * Page manipulation for hashing package.
49 *
50 * ROUTINES:
51 *
52 * External
53 * __get_page
54 * __add_ovflpage
55 * Internal
56 * overflow_page
57 * open_temp
58 */
59
60 #include "namespace.h"
61
62 #include <sys/types.h>
63
64 #include <errno.h>
65 #include <fcntl.h>
66 #include <signal.h>
67 #include <stdio.h>
68 #include <stdlib.h>
69 #include <string.h>
70 #include <unistd.h>
71 #include <paths.h>
72 #ifdef DEBUG
73 #include <assert.h>
74 #endif
75
76 #include <db.h>
77 #include "hash.h"
78 #include "page.h"
79 #include "extern.h"
80
81 static u_int32_t *fetch_bitmap __P((HTAB *, int));
82 static u_int32_t first_free __P((u_int32_t));
83 static int open_temp __P((HTAB *));
84 static u_int16_t overflow_page __P((HTAB *));
85 static void putpair __P((char *, const DBT *, const DBT *));
86 static void squeeze_key __P((u_int16_t *, const DBT *, const DBT *));
87 static int ugly_split
88 __P((HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int));
89
90 #define PAGE_INIT(P) { \
91 ((u_int16_t *)(void *)(P))[0] = 0; \
92 ((u_int16_t *)(void *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
93 ((u_int16_t *)(void *)(P))[2] = hashp->BSIZE; \
94 }
95
96 /*
97 * This is called AFTER we have verified that there is room on the page for
98 * the pair (PAIRFITS has returned true) so we go right ahead and start moving
99 * stuff on.
100 */
101 static void
102 putpair(p, key, val)
103 char *p;
104 const DBT *key, *val;
105 {
106 register u_int16_t *bp, n, off;
107
108 bp = (u_int16_t *)(void *)p;
109
110 /* Enter the key first. */
111 n = bp[0];
112
113 off = OFFSET(bp) - key->size;
114 memmove(p + off, key->data, key->size);
115 bp[++n] = off;
116
117 /* Now the data. */
118 off -= val->size;
119 memmove(p + off, val->data, val->size);
120 bp[++n] = off;
121
122 /* Adjust page info. */
123 bp[0] = n;
124 bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
125 bp[n + 2] = off;
126 }
127
128 /*
129 * Returns:
130 * 0 OK
131 * -1 error
132 */
133 extern int
134 __delpair(hashp, bufp, ndx)
135 HTAB *hashp;
136 BUFHEAD *bufp;
137 register int ndx;
138 {
139 register u_int16_t *bp, newoff;
140 register int n;
141 u_int16_t pairlen;
142
143 bp = (u_int16_t *)(void *)bufp->page;
144 n = bp[0];
145
146 if (bp[ndx + 1] < REAL_KEY)
147 return (__big_delete(hashp, bufp));
148 if (ndx != 1)
149 newoff = bp[ndx - 1];
150 else
151 newoff = hashp->BSIZE;
152 pairlen = newoff - bp[ndx + 1];
153
154 if (ndx != (n - 1)) {
155 /* Hard Case -- need to shuffle keys */
156 register int i;
157 register char *src = bufp->page + (int)OFFSET(bp);
158 register char *dst = src + (int)pairlen;
159 memmove(dst, src, (size_t)(bp[ndx + 1] - OFFSET(bp)));
160
161 /* Now adjust the pointers */
162 for (i = ndx + 2; i <= n; i += 2) {
163 if (bp[i + 1] == OVFLPAGE) {
164 bp[i - 2] = bp[i];
165 bp[i - 1] = bp[i + 1];
166 } else {
167 bp[i - 2] = bp[i] + pairlen;
168 bp[i - 1] = bp[i + 1] + pairlen;
169 }
170 }
171 }
172 /* Finally adjust the page data */
173 bp[n] = OFFSET(bp) + pairlen;
174 bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
175 bp[0] = n - 2;
176 hashp->NKEYS--;
177
178 bufp->flags |= BUF_MOD;
179 return (0);
180 }
181 /*
182 * Returns:
183 * 0 ==> OK
184 * -1 ==> Error
185 */
186 extern int
187 __split_page(hashp, obucket, nbucket)
188 HTAB *hashp;
189 u_int32_t obucket, nbucket;
190 {
191 register BUFHEAD *new_bufp, *old_bufp;
192 register u_int16_t *ino;
193 register char *np;
194 DBT key, val;
195 int n, ndx, retval;
196 u_int16_t copyto, diff, off, moved;
197 char *op;
198
199 copyto = (u_int16_t)hashp->BSIZE;
200 off = (u_int16_t)hashp->BSIZE;
201 old_bufp = __get_buf(hashp, obucket, NULL, 0);
202 if (old_bufp == NULL)
203 return (-1);
204 new_bufp = __get_buf(hashp, nbucket, NULL, 0);
205 if (new_bufp == NULL)
206 return (-1);
207
208 old_bufp->flags |= (BUF_MOD | BUF_PIN);
209 new_bufp->flags |= (BUF_MOD | BUF_PIN);
210
211 ino = (u_int16_t *)(void *)(op = old_bufp->page);
212 np = new_bufp->page;
213
214 moved = 0;
215
216 for (n = 1, ndx = 1; n < ino[0]; n += 2) {
217 if (ino[n + 1] < REAL_KEY) {
218 retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
219 (int)copyto, (int)moved);
220 old_bufp->flags &= ~BUF_PIN;
221 new_bufp->flags &= ~BUF_PIN;
222 return (retval);
223
224 }
225 key.data = (u_char *)op + ino[n];
226 key.size = off - ino[n];
227
228 if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
229 /* Don't switch page */
230 diff = copyto - off;
231 if (diff) {
232 copyto = ino[n + 1] + diff;
233 memmove(op + copyto, op + ino[n + 1],
234 (size_t)(off - ino[n + 1]));
235 ino[ndx] = copyto + ino[n] - ino[n + 1];
236 ino[ndx + 1] = copyto;
237 } else
238 copyto = ino[n + 1];
239 ndx += 2;
240 } else {
241 /* Switch page */
242 val.data = (u_char *)op + ino[n + 1];
243 val.size = ino[n] - ino[n + 1];
244 putpair(np, &key, &val);
245 moved += 2;
246 }
247
248 off = ino[n + 1];
249 }
250
251 /* Now clean up the page */
252 ino[0] -= moved;
253 FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
254 OFFSET(ino) = copyto;
255
256 #ifdef DEBUG3
257 (void)fprintf(stderr, "split %d/%d\n",
258 ((u_int16_t *)np)[0] / 2,
259 ((u_int16_t *)op)[0] / 2);
260 #endif
261 /* unpin both pages */
262 old_bufp->flags &= ~BUF_PIN;
263 new_bufp->flags &= ~BUF_PIN;
264 return (0);
265 }
266
267 /*
268 * Called when we encounter an overflow or big key/data page during split
269 * handling. This is special cased since we have to begin checking whether
270 * the key/data pairs fit on their respective pages and because we may need
271 * overflow pages for both the old and new pages.
272 *
273 * The first page might be a page with regular key/data pairs in which case
274 * we have a regular overflow condition and just need to go on to the next
275 * page or it might be a big key/data pair in which case we need to fix the
276 * big key/data pair.
277 *
278 * Returns:
279 * 0 ==> success
280 * -1 ==> failure
281 */
282 static int
283 ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
284 HTAB *hashp;
285 u_int32_t obucket; /* Same as __split_page. */
286 BUFHEAD *old_bufp, *new_bufp;
287 int copyto; /* First byte on page which contains key/data values. */
288 int moved; /* Number of pairs moved to new page. */
289 {
290 register BUFHEAD *bufp; /* Buffer header for ino */
291 register u_int16_t *ino; /* Page keys come off of */
292 register u_int16_t *np; /* New page */
293 register u_int16_t *op; /* Page keys go on to if they aren't moving */
294
295 BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */
296 DBT key, val;
297 SPLIT_RETURN ret;
298 u_int16_t n, off, ov_addr, scopyto;
299 char *cino; /* Character value of ino */
300
301 bufp = old_bufp;
302 ino = (u_int16_t *)(void *)old_bufp->page;
303 np = (u_int16_t *)(void *)new_bufp->page;
304 op = (u_int16_t *)(void *)old_bufp->page;
305 last_bfp = NULL;
306 scopyto = (u_int16_t)copyto; /* ANSI */
307
308 n = ino[0] - 1;
309 while (n < ino[0]) {
310 if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
311 if (__big_split(hashp, old_bufp,
312 new_bufp, bufp, (int)bufp->addr, obucket, &ret))
313 return (-1);
314 old_bufp = ret.oldp;
315 if (!old_bufp)
316 return (-1);
317 op = (u_int16_t *)(void *)old_bufp->page;
318 new_bufp = ret.newp;
319 if (!new_bufp)
320 return (-1);
321 np = (u_int16_t *)(void *)new_bufp->page;
322 bufp = ret.nextp;
323 if (!bufp)
324 return (0);
325 cino = (char *)bufp->page;
326 ino = (u_int16_t *)(void *)cino;
327 last_bfp = ret.nextp;
328 } else if (ino[n + 1] == OVFLPAGE) {
329 ov_addr = ino[n];
330 /*
331 * Fix up the old page -- the extra 2 are the fields
332 * which contained the overflow information.
333 */
334 ino[0] -= (moved + 2);
335 FREESPACE(ino) =
336 scopyto - sizeof(u_int16_t) * (ino[0] + 3);
337 OFFSET(ino) = scopyto;
338
339 bufp = __get_buf(hashp, (u_int32_t)ov_addr, bufp, 0);
340 if (!bufp)
341 return (-1);
342
343 ino = (u_int16_t *)(void *)bufp->page;
344 n = 1;
345 scopyto = hashp->BSIZE;
346 moved = 0;
347
348 if (last_bfp)
349 __free_ovflpage(hashp, last_bfp);
350 last_bfp = bufp;
351 }
352 /* Move regular sized pairs of there are any */
353 off = hashp->BSIZE;
354 for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
355 cino = (char *)(void *)ino;
356 key.data = (u_char *)cino + ino[n];
357 key.size = off - ino[n];
358 val.data = (u_char *)cino + ino[n + 1];
359 val.size = ino[n] - ino[n + 1];
360 off = ino[n + 1];
361
362 if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
363 /* Keep on old page */
364 if (PAIRFITS(op, (&key), (&val)))
365 putpair((char *)(void *)op, &key, &val);
366 else {
367 old_bufp =
368 __add_ovflpage(hashp, old_bufp);
369 if (!old_bufp)
370 return (-1);
371 op = (u_int16_t *)(void *)old_bufp->page;
372 putpair((char *)(void *)op, &key, &val);
373 }
374 old_bufp->flags |= BUF_MOD;
375 } else {
376 /* Move to new page */
377 if (PAIRFITS(np, (&key), (&val)))
378 putpair((char *)(void *)np, &key, &val);
379 else {
380 new_bufp =
381 __add_ovflpage(hashp, new_bufp);
382 if (!new_bufp)
383 return (-1);
384 np = (u_int16_t *)(void *)new_bufp->page;
385 putpair((char *)(void *)np, &key, &val);
386 }
387 new_bufp->flags |= BUF_MOD;
388 }
389 }
390 }
391 if (last_bfp)
392 __free_ovflpage(hashp, last_bfp);
393 return (0);
394 }
395
396 /*
397 * Add the given pair to the page
398 *
399 * Returns:
400 * 0 ==> OK
401 * 1 ==> failure
402 */
403 extern int
404 __addel(hashp, bufp, key, val)
405 HTAB *hashp;
406 BUFHEAD *bufp;
407 const DBT *key, *val;
408 {
409 register u_int16_t *bp, *sop;
410 int do_expand;
411
412 bp = (u_int16_t *)(void *)bufp->page;
413 do_expand = 0;
414 while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
415 /* Exception case */
416 if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
417 /* This is the last page of a big key/data pair
418 and we need to add another page */
419 break;
420 else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
421 bufp = __get_buf(hashp, (u_int32_t)bp[bp[0] - 1], bufp,
422 0);
423 if (!bufp)
424 return (-1);
425 bp = (u_int16_t *)(void *)bufp->page;
426 } else if (bp[bp[0]] != OVFLPAGE) {
427 /* Short key/data pairs, no more pages */
428 break;
429 } else {
430 /* Try to squeeze key on this page */
431 if (bp[2] >= REAL_KEY &&
432 FREESPACE(bp) >= PAIRSIZE(key, val)) {
433 squeeze_key(bp, key, val);
434 goto stats;
435 } else {
436 bufp = __get_buf(hashp,
437 (u_int32_t)bp[bp[0] - 1], bufp, 0);
438 if (!bufp)
439 return (-1);
440 bp = (u_int16_t *)(void *)bufp->page;
441 }
442 }
443
444 if (PAIRFITS(bp, key, val))
445 putpair(bufp->page, key, val);
446 else {
447 do_expand = 1;
448 bufp = __add_ovflpage(hashp, bufp);
449 if (!bufp)
450 return (-1);
451 sop = (u_int16_t *)(void *)bufp->page;
452
453 if (PAIRFITS(sop, key, val))
454 putpair((char *)(void *)sop, key, val);
455 else
456 if (__big_insert(hashp, bufp, key, val))
457 return (-1);
458 }
459 stats:
460 bufp->flags |= BUF_MOD;
461 /*
462 * If the average number of keys per bucket exceeds the fill factor,
463 * expand the table.
464 */
465 hashp->NKEYS++;
466 if (do_expand ||
467 (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
468 return (__expand_table(hashp));
469 return (0);
470 }
471
472 /*
473 *
474 * Returns:
475 * pointer on success
476 * NULL on error
477 */
478 extern BUFHEAD *
479 __add_ovflpage(hashp, bufp)
480 HTAB *hashp;
481 BUFHEAD *bufp;
482 {
483 register u_int16_t *sp;
484 u_int16_t ndx, ovfl_num;
485 #ifdef DEBUG1
486 int tmp1, tmp2;
487 #endif
488 sp = (u_int16_t *)(void *)bufp->page;
489
490 /* Check if we are dynamically determining the fill factor */
491 if (hashp->FFACTOR == DEF_FFACTOR) {
492 hashp->FFACTOR = (u_int32_t)sp[0] >> 1;
493 if (hashp->FFACTOR < MIN_FFACTOR)
494 hashp->FFACTOR = MIN_FFACTOR;
495 }
496 bufp->flags |= BUF_MOD;
497 ovfl_num = overflow_page(hashp);
498 #ifdef DEBUG1
499 tmp1 = bufp->addr;
500 tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
501 #endif
502 if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, (u_int32_t)ovfl_num,
503 bufp, 1)))
504 return (NULL);
505 bufp->ovfl->flags |= BUF_MOD;
506 #ifdef DEBUG1
507 (void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
508 tmp1, tmp2, bufp->ovfl->addr);
509 #endif
510 ndx = sp[0];
511 /*
512 * Since a pair is allocated on a page only if there's room to add
513 * an overflow page, we know that the OVFL information will fit on
514 * the page.
515 */
516 sp[ndx + 4] = OFFSET(sp);
517 sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
518 sp[ndx + 1] = ovfl_num;
519 sp[ndx + 2] = OVFLPAGE;
520 sp[0] = ndx + 2;
521 #ifdef HASH_STATISTICS
522 hash_overflows++;
523 #endif
524 return (bufp->ovfl);
525 }
526
527 /*
528 * Returns:
529 * 0 indicates SUCCESS
530 * -1 indicates FAILURE
531 */
532 extern int
533 __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
534 HTAB *hashp;
535 char *p;
536 u_int32_t bucket;
537 int is_bucket, is_disk, is_bitmap;
538 {
539 register int fd, page, size;
540 int rsize;
541 u_int16_t *bp;
542
543 fd = hashp->fp;
544 size = hashp->BSIZE;
545
546 if ((fd == -1) || !is_disk) {
547 PAGE_INIT(p);
548 return (0);
549 }
550 if (is_bucket)
551 page = BUCKET_TO_PAGE(bucket);
552 else
553 page = OADDR_TO_PAGE(bucket);
554 if ((rsize = pread(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
555 return (-1);
556 bp = (u_int16_t *)(void *)p;
557 if (!rsize)
558 bp[0] = 0; /* We hit the EOF, so initialize a new page */
559 else
560 if (rsize != size) {
561 errno = EFTYPE;
562 return (-1);
563 }
564 if (!is_bitmap && !bp[0]) {
565 PAGE_INIT(p);
566 } else
567 if (hashp->LORDER != BYTE_ORDER) {
568 register int i, max;
569
570 if (is_bitmap) {
571 max = (u_int32_t)hashp->BSIZE >> 2; /* divide by 4 */
572 for (i = 0; i < max; i++)
573 M_32_SWAP(((int *)(void *)p)[i]);
574 } else {
575 M_16_SWAP(bp[0]);
576 max = bp[0] + 2;
577 for (i = 1; i <= max; i++)
578 M_16_SWAP(bp[i]);
579 }
580 }
581 return (0);
582 }
583
584 /*
585 * Write page p to disk
586 *
587 * Returns:
588 * 0 ==> OK
589 * -1 ==>failure
590 */
591 extern int
592 __put_page(hashp, p, bucket, is_bucket, is_bitmap)
593 HTAB *hashp;
594 char *p;
595 u_int32_t bucket;
596 int is_bucket, is_bitmap;
597 {
598 register int fd, page, size;
599 int wsize;
600
601 size = hashp->BSIZE;
602 if ((hashp->fp == -1) && open_temp(hashp))
603 return (-1);
604 fd = hashp->fp;
605
606 if (hashp->LORDER != BYTE_ORDER) {
607 register int i;
608 register int max;
609
610 if (is_bitmap) {
611 max = (u_int32_t)hashp->BSIZE >> 2; /* divide by 4 */
612 for (i = 0; i < max; i++)
613 M_32_SWAP(((int *)(void *)p)[i]);
614 } else {
615 max = ((u_int16_t *)(void *)p)[0] + 2;
616 for (i = 0; i <= max; i++)
617 M_16_SWAP(((u_int16_t *)(void *)p)[i]);
618 }
619 }
620 if (is_bucket)
621 page = BUCKET_TO_PAGE(bucket);
622 else
623 page = OADDR_TO_PAGE(bucket);
624 if ((wsize = pwrite(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
625 /* Errno is set */
626 return (-1);
627 if (wsize != size) {
628 errno = EFTYPE;
629 return (-1);
630 }
631 return (0);
632 }
633
634 #define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1)
635 /*
636 * Initialize a new bitmap page. Bitmap pages are left in memory
637 * once they are read in.
638 */
639 extern int
640 __ibitmap(hashp, pnum, nbits, ndx)
641 HTAB *hashp;
642 int pnum, nbits, ndx;
643 {
644 u_int32_t *ip;
645 int clearbytes, clearints;
646
647 if ((ip = (u_int32_t *)malloc((size_t)hashp->BSIZE)) == NULL)
648 return (1);
649 hashp->nmaps++;
650 clearints = ((u_int32_t)(nbits - 1) >> INT_BYTE_SHIFT) + 1;
651 clearbytes = clearints << INT_TO_BYTE;
652 (void)memset(ip, 0, (size_t)clearbytes);
653 (void)memset(((char *)(void *)ip) + clearbytes, 0xFF,
654 (size_t)(hashp->BSIZE - clearbytes));
655 ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
656 SETBIT(ip, 0);
657 hashp->BITMAPS[ndx] = (u_int16_t)pnum;
658 hashp->mapp[ndx] = ip;
659 return (0);
660 }
661
662 static u_int32_t
663 first_free(map)
664 u_int32_t map;
665 {
666 register u_int32_t i, mask;
667
668 mask = 0x1;
669 for (i = 0; i < BITS_PER_MAP; i++) {
670 if (!(mask & map))
671 return (i);
672 mask = mask << 1;
673 }
674 return (i);
675 }
676
677 static u_int16_t
678 overflow_page(hashp)
679 HTAB *hashp;
680 {
681 register u_int32_t *freep = NULL;
682 register int max_free, offset, splitnum;
683 u_int16_t addr;
684 int bit, first_page, free_bit, free_page, i, in_use_bits, j;
685 #ifdef DEBUG2
686 int tmp1, tmp2;
687 #endif
688 splitnum = hashp->OVFL_POINT;
689 max_free = hashp->SPARES[splitnum];
690
691 free_page = (u_int32_t)(max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
692 free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
693
694 /* Look through all the free maps to find the first free block */
695 first_page = (u_int32_t)hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
696 for ( i = first_page; i <= free_page; i++ ) {
697 if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
698 !(freep = fetch_bitmap(hashp, i)))
699 return (0);
700 if (i == free_page)
701 in_use_bits = free_bit;
702 else
703 in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
704
705 if (i == first_page) {
706 bit = hashp->LAST_FREED &
707 ((hashp->BSIZE << BYTE_SHIFT) - 1);
708 j = bit / BITS_PER_MAP;
709 bit = bit & ~(BITS_PER_MAP - 1);
710 } else {
711 bit = 0;
712 j = 0;
713 }
714 for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
715 if (freep[j] != ALL_SET)
716 goto found;
717 }
718
719 /* No Free Page Found */
720 hashp->LAST_FREED = hashp->SPARES[splitnum];
721 hashp->SPARES[splitnum]++;
722 offset = hashp->SPARES[splitnum] -
723 (splitnum ? hashp->SPARES[splitnum - 1] : 0);
724
725 #define OVMSG "HASH: Out of overflow pages. Increase page size\n"
726 if (offset > SPLITMASK) {
727 if (++splitnum >= NCACHED) {
728 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
729 errno = EFBIG;
730 return (0);
731 }
732 hashp->OVFL_POINT = splitnum;
733 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
734 hashp->SPARES[splitnum-1]--;
735 offset = 1;
736 }
737
738 /* Check if we need to allocate a new bitmap page */
739 if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
740 free_page++;
741 if (free_page >= NCACHED) {
742 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
743 errno = EFBIG;
744 return (0);
745 }
746 /*
747 * This is tricky. The 1 indicates that you want the new page
748 * allocated with 1 clear bit. Actually, you are going to
749 * allocate 2 pages from this map. The first is going to be
750 * the map page, the second is the overflow page we were
751 * looking for. The init_bitmap routine automatically, sets
752 * the first bit of itself to indicate that the bitmap itself
753 * is in use. We would explicitly set the second bit, but
754 * don't have to if we tell init_bitmap not to leave it clear
755 * in the first place.
756 */
757 if (__ibitmap(hashp,
758 (int)OADDR_OF(splitnum, offset), 1, free_page))
759 return (0);
760 hashp->SPARES[splitnum]++;
761 #ifdef DEBUG2
762 free_bit = 2;
763 #endif
764 offset++;
765 if (offset > SPLITMASK) {
766 if (++splitnum >= NCACHED) {
767 (void)write(STDERR_FILENO, OVMSG,
768 sizeof(OVMSG) - 1);
769 errno = EFBIG;
770 return (0);
771 }
772 hashp->OVFL_POINT = splitnum;
773 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
774 hashp->SPARES[splitnum-1]--;
775 offset = 0;
776 }
777 } else {
778 /*
779 * Free_bit addresses the last used bit. Bump it to address
780 * the first available bit.
781 */
782 free_bit++;
783 SETBIT(freep, free_bit);
784 }
785
786 /* Calculate address of the new overflow page */
787 addr = OADDR_OF(splitnum, offset);
788 #ifdef DEBUG2
789 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
790 addr, free_bit, free_page);
791 #endif
792 return (addr);
793
794 found:
795 bit = bit + first_free(freep[j]);
796 SETBIT(freep, bit);
797 #ifdef DEBUG2
798 tmp1 = bit;
799 tmp2 = i;
800 #endif
801 /*
802 * Bits are addressed starting with 0, but overflow pages are addressed
803 * beginning at 1. Bit is a bit addressnumber, so we need to increment
804 * it to convert it to a page number.
805 */
806 bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
807 if (bit >= hashp->LAST_FREED)
808 hashp->LAST_FREED = bit - 1;
809
810 /* Calculate the split number for this page */
811 for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
812 offset = (i ? bit - hashp->SPARES[i - 1] : bit);
813 if (offset >= SPLITMASK) {
814 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
815 errno = EFBIG;
816 return (0); /* Out of overflow pages */
817 }
818 addr = OADDR_OF(i, offset);
819 #ifdef DEBUG2
820 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
821 addr, tmp1, tmp2);
822 #endif
823
824 /* Allocate and return the overflow page */
825 return (addr);
826 }
827
828 /*
829 * Mark this overflow page as free.
830 */
831 extern void
832 __free_ovflpage(hashp, obufp)
833 HTAB *hashp;
834 BUFHEAD *obufp;
835 {
836 register u_int16_t addr;
837 u_int32_t *freep;
838 int bit_address, free_page, free_bit;
839 u_int16_t ndx;
840
841 addr = obufp->addr;
842 #ifdef DEBUG1
843 (void)fprintf(stderr, "Freeing %d\n", addr);
844 #endif
845 ndx = (((u_int32_t)addr) >> SPLITSHIFT);
846 bit_address =
847 (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
848 if (bit_address < hashp->LAST_FREED)
849 hashp->LAST_FREED = bit_address;
850 free_page = ((u_int32_t)bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
851 free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
852
853 if (!(freep = hashp->mapp[free_page]))
854 freep = fetch_bitmap(hashp, free_page);
855 #ifdef DEBUG
856 /*
857 * This had better never happen. It means we tried to read a bitmap
858 * that has already had overflow pages allocated off it, and we
859 * failed to read it from the file.
860 */
861 assert(freep != NULL);
862 #endif
863 CLRBIT(freep, free_bit);
864 #ifdef DEBUG2
865 (void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
866 obufp->addr, free_bit, free_page);
867 #endif
868 __reclaim_buf(hashp, obufp);
869 }
870
871 /*
872 * Returns:
873 * 0 success
874 * -1 failure
875 */
876 static int
877 open_temp(hashp)
878 HTAB *hashp;
879 {
880 sigset_t set, oset;
881 char *envtmp;
882 char namestr[PATH_MAX];
883
884 if (issetugid())
885 envtmp = NULL;
886 else
887 envtmp = getenv("TMPDIR");
888
889 if (-1 == snprintf(namestr, sizeof(namestr), "%s/_hashXXXXXX",
890 envtmp ? envtmp : _PATH_TMP))
891 return -1;
892
893 /* Block signals; make sure file goes away at process exit. */
894 (void)sigfillset(&set);
895 (void)sigprocmask(SIG_BLOCK, &set, &oset);
896 if ((hashp->fp = mkstemp(namestr)) != -1) {
897 (void)unlink(namestr);
898 (void)fcntl(hashp->fp, F_SETFD, 1);
899 }
900 (void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
901 return (hashp->fp != -1 ? 0 : -1);
902 }
903
904 /*
905 * We have to know that the key will fit, but the last entry on the page is
906 * an overflow pair, so we need to shift things.
907 */
908 static void
909 squeeze_key(sp, key, val)
910 u_int16_t *sp;
911 const DBT *key, *val;
912 {
913 register char *p;
914 u_int16_t free_space, n, off, pageno;
915
916 p = (char *)(void *)sp;
917 n = sp[0];
918 free_space = FREESPACE(sp);
919 off = OFFSET(sp);
920
921 pageno = sp[n - 1];
922 off -= key->size;
923 sp[n - 1] = off;
924 memmove(p + off, key->data, key->size);
925 off -= val->size;
926 sp[n] = off;
927 memmove(p + off, val->data, val->size);
928 sp[0] = n + 2;
929 sp[n + 1] = pageno;
930 sp[n + 2] = OVFLPAGE;
931 FREESPACE(sp) = free_space - PAIRSIZE(key, val);
932 OFFSET(sp) = off;
933 }
934
935 static u_int32_t *
936 fetch_bitmap(hashp, ndx)
937 HTAB *hashp;
938 int ndx;
939 {
940 if (ndx >= hashp->nmaps)
941 return (NULL);
942 if ((hashp->mapp[ndx] = (u_int32_t *)malloc((size_t)hashp->BSIZE)) == NULL)
943 return (NULL);
944 if (__get_page(hashp,
945 (char *)(void *)hashp->mapp[ndx], (u_int32_t)hashp->BITMAPS[ndx], 0, 1, 1)) {
946 free(hashp->mapp[ndx]);
947 return (NULL);
948 }
949 return (hashp->mapp[ndx]);
950 }
951
952 #ifdef DEBUG4
953 int
954 print_chain(addr)
955 int addr;
956 {
957 BUFHEAD *bufp;
958 short *bp, oaddr;
959
960 (void)fprintf(stderr, "%d ", addr);
961 bufp = __get_buf(hashp, addr, NULL, 0);
962 bp = (short *)bufp->page;
963 while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
964 ((bp[0] > 2) && bp[2] < REAL_KEY))) {
965 oaddr = bp[bp[0] - 1];
966 (void)fprintf(stderr, "%d ", (int)oaddr);
967 bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
968 bp = (short *)bufp->page;
969 }
970 (void)fprintf(stderr, "\n");
971 }
972 #endif
973