hash_page.c revision 1.2 1 /*-
2 * Copyright (c) 1990, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Margo Seltzer.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #if defined(LIBC_SCCS) && !defined(lint)
38 /*static char sccsid[] = "from: @(#)hash_page.c 8.1 (Berkeley) 6/6/93";*/
39 static char rcsid[] = "$Id: hash_page.c,v 1.2 1993/08/01 18:43:25 mycroft Exp $";
40 #endif /* LIBC_SCCS and not lint */
41
42 /*
43 * PACKAGE: hashing
44 *
45 * DESCRIPTION:
46 * Page manipulation for hashing package.
47 *
48 * ROUTINES:
49 *
50 * External
51 * __get_page
52 * __add_ovflpage
53 * Internal
54 * overflow_page
55 * open_temp
56 */
57
58 #include <sys/types.h>
59
60 #include <errno.h>
61 #include <fcntl.h>
62 #include <signal.h>
63 #include <stdio.h>
64 #include <stdlib.h>
65 #include <string.h>
66 #include <unistd.h>
67 #ifdef DEBUG
68 #include <assert.h>
69 #endif
70
71 #include <db.h>
72 #include "hash.h"
73 #include "page.h"
74 #include "extern.h"
75
76 static u_long *fetch_bitmap __P((HTAB *, int));
77 static u_long first_free __P((u_long));
78 static int open_temp __P((HTAB *));
79 static u_short overflow_page __P((HTAB *));
80 static void putpair __P((char *, const DBT *, const DBT *));
81 static void squeeze_key __P((u_short *, const DBT *, const DBT *));
82 static int ugly_split
83 __P((HTAB *, u_int, BUFHEAD *, BUFHEAD *, int, int));
84
85 #define PAGE_INIT(P) { \
86 ((u_short *)(P))[0] = 0; \
87 ((u_short *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_short); \
88 ((u_short *)(P))[2] = hashp->BSIZE; \
89 }
90
91 /*
92 * This is called AFTER we have verified that there is room on the page for
93 * the pair (PAIRFITS has returned true) so we go right ahead and start moving
94 * stuff on.
95 */
96 static void
97 putpair(p, key, val)
98 char *p;
99 const DBT *key, *val;
100 {
101 register u_short *bp, n, off;
102
103 bp = (u_short *)p;
104
105 /* Enter the key first. */
106 n = bp[0];
107
108 off = OFFSET(bp) - key->size;
109 memmove(p + off, key->data, key->size);
110 bp[++n] = off;
111
112 /* Now the data. */
113 off -= val->size;
114 memmove(p + off, val->data, val->size);
115 bp[++n] = off;
116
117 /* Adjust page info. */
118 bp[0] = n;
119 bp[n + 1] = off - ((n + 3) * sizeof(u_short));
120 bp[n + 2] = off;
121 }
122
123 /*
124 * Returns:
125 * 0 OK
126 * -1 error
127 */
128 extern int
129 __delpair(hashp, bufp, ndx)
130 HTAB *hashp;
131 BUFHEAD *bufp;
132 register int ndx;
133 {
134 register u_short *bp, newoff;
135 register int n;
136 u_short pairlen;
137
138 bp = (u_short *)bufp->page;
139 n = bp[0];
140
141 if (bp[ndx + 1] < REAL_KEY)
142 return (__big_delete(hashp, bufp));
143 if (ndx != 1)
144 newoff = bp[ndx - 1];
145 else
146 newoff = hashp->BSIZE;
147 pairlen = newoff - bp[ndx + 1];
148
149 if (ndx != (n - 1)) {
150 /* Hard Case -- need to shuffle keys */
151 register int i;
152 register char *src = bufp->page + (int)OFFSET(bp);
153 register char *dst = src + (int)pairlen;
154 memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
155
156 /* Now adjust the pointers */
157 for (i = ndx + 2; i <= n; i += 2) {
158 if (bp[i + 1] == OVFLPAGE) {
159 bp[i - 2] = bp[i];
160 bp[i - 1] = bp[i + 1];
161 } else {
162 bp[i - 2] = bp[i] + pairlen;
163 bp[i - 1] = bp[i + 1] + pairlen;
164 }
165 }
166 }
167 /* Finally adjust the page data */
168 bp[n] = OFFSET(bp) + pairlen;
169 bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_short);
170 bp[0] = n - 2;
171 hashp->NKEYS--;
172
173 bufp->flags |= BUF_MOD;
174 return (0);
175 }
176 /*
177 * Returns:
178 * 0 ==> OK
179 * -1 ==> Error
180 */
181 extern int
182 __split_page(hashp, obucket, nbucket)
183 HTAB *hashp;
184 u_int obucket, nbucket;
185 {
186 register BUFHEAD *new_bufp, *old_bufp;
187 register u_short *ino;
188 register char *np;
189 DBT key, val;
190 int n, ndx, retval;
191 u_short copyto, diff, off, moved;
192 char *op;
193
194 copyto = (u_short)hashp->BSIZE;
195 off = (u_short)hashp->BSIZE;
196 old_bufp = __get_buf(hashp, obucket, NULL, 0);
197 if (old_bufp == NULL)
198 return (-1);
199 new_bufp = __get_buf(hashp, nbucket, NULL, 0);
200 if (new_bufp == NULL)
201 return (-1);
202
203 old_bufp->flags |= (BUF_MOD | BUF_PIN);
204 new_bufp->flags |= (BUF_MOD | BUF_PIN);
205
206 ino = (u_short *)(op = old_bufp->page);
207 np = new_bufp->page;
208
209 moved = 0;
210
211 for (n = 1, ndx = 1; n < ino[0]; n += 2) {
212 if (ino[n + 1] < REAL_KEY) {
213 retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
214 (int)copyto, (int)moved);
215 old_bufp->flags &= ~BUF_PIN;
216 new_bufp->flags &= ~BUF_PIN;
217 return (retval);
218
219 }
220 key.data = (u_char *)op + ino[n];
221 key.size = off - ino[n];
222
223 if (__call_hash(hashp, key.data, key.size) == obucket) {
224 /* Don't switch page */
225 diff = copyto - off;
226 if (diff) {
227 copyto = ino[n + 1] + diff;
228 memmove(op + copyto, op + ino[n + 1],
229 off - ino[n + 1]);
230 ino[ndx] = copyto + ino[n] - ino[n + 1];
231 ino[ndx + 1] = copyto;
232 } else
233 copyto = ino[n + 1];
234 ndx += 2;
235 } else {
236 /* Switch page */
237 val.data = (u_char *)op + ino[n + 1];
238 val.size = ino[n] - ino[n + 1];
239 putpair(np, &key, &val);
240 moved += 2;
241 }
242
243 off = ino[n + 1];
244 }
245
246 /* Now clean up the page */
247 ino[0] -= moved;
248 FREESPACE(ino) = copyto - sizeof(u_short) * (ino[0] + 3);
249 OFFSET(ino) = copyto;
250
251 #ifdef DEBUG3
252 (void)fprintf(stderr, "split %d/%d\n",
253 ((u_short *)np)[0] / 2,
254 ((u_short *)op)[0] / 2);
255 #endif
256 /* unpin both pages */
257 old_bufp->flags &= ~BUF_PIN;
258 new_bufp->flags &= ~BUF_PIN;
259 return (0);
260 }
261
262 /*
263 * Called when we encounter an overflow or big key/data page during split
264 * handling. This is special cased since we have to begin checking whether
265 * the key/data pairs fit on their respective pages and because we may need
266 * overflow pages for both the old and new pages.
267 *
268 * The first page might be a page with regular key/data pairs in which case
269 * we have a regular overflow condition and just need to go on to the next
270 * page or it might be a big key/data pair in which case we need to fix the
271 * big key/data pair.
272 *
273 * Returns:
274 * 0 ==> success
275 * -1 ==> failure
276 */
277 static int
278 ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
279 HTAB *hashp;
280 u_int obucket; /* Same as __split_page. */
281 BUFHEAD *old_bufp, *new_bufp;
282 int copyto; /* First byte on page which contains key/data values. */
283 int moved; /* Number of pairs moved to new page. */
284 {
285 register BUFHEAD *bufp; /* Buffer header for ino */
286 register u_short *ino; /* Page keys come off of */
287 register u_short *np; /* New page */
288 register u_short *op; /* Page keys go on to if they aren't moving */
289
290 BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */
291 DBT key, val;
292 SPLIT_RETURN ret;
293 u_short n, off, ov_addr, scopyto;
294 char *cino; /* Character value of ino */
295
296 bufp = old_bufp;
297 ino = (u_short *)old_bufp->page;
298 np = (u_short *)new_bufp->page;
299 op = (u_short *)old_bufp->page;
300 last_bfp = NULL;
301 scopyto = (u_short)copyto; /* ANSI */
302
303 n = ino[0] - 1;
304 while (n < ino[0]) {
305 if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
306 /*
307 * Ov_addr gets set before reaching this point; there's
308 * always an overflow page before a big key/data page.
309 */
310 if (__big_split(hashp, old_bufp,
311 new_bufp, bufp, ov_addr, obucket, &ret))
312 return (-1);
313 old_bufp = ret.oldp;
314 if (!old_bufp)
315 return (-1);
316 op = (u_short *)old_bufp->page;
317 new_bufp = ret.newp;
318 if (!new_bufp)
319 return (-1);
320 np = (u_short *)new_bufp->page;
321 bufp = ret.nextp;
322 if (!bufp)
323 return (0);
324 cino = (char *)bufp->page;
325 ino = (u_short *)cino;
326 last_bfp = ret.nextp;
327 } else if (ino[n + 1] == OVFLPAGE) {
328 ov_addr = ino[n];
329 /*
330 * Fix up the old page -- the extra 2 are the fields
331 * which contained the overflow information.
332 */
333 ino[0] -= (moved + 2);
334 FREESPACE(ino) =
335 scopyto - sizeof(u_short) * (ino[0] + 3);
336 OFFSET(ino) = scopyto;
337
338 bufp = __get_buf(hashp, ov_addr, bufp, 0);
339 if (!bufp)
340 return (-1);
341
342 ino = (u_short *)bufp->page;
343 n = 1;
344 scopyto = hashp->BSIZE;
345 moved = 0;
346
347 if (last_bfp)
348 __free_ovflpage(hashp, last_bfp);
349 last_bfp = bufp;
350 }
351 /* Move regular sized pairs of there are any */
352 off = hashp->BSIZE;
353 for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
354 cino = (char *)ino;
355 key.data = (u_char *)cino + ino[n];
356 key.size = off - ino[n];
357 val.data = (u_char *)cino + ino[n + 1];
358 val.size = ino[n] - ino[n + 1];
359 off = ino[n + 1];
360
361 if (__call_hash(hashp, key.data, key.size) == obucket) {
362 /* Keep on old page */
363 if (PAIRFITS(op, (&key), (&val)))
364 putpair((char *)op, &key, &val);
365 else {
366 old_bufp =
367 __add_ovflpage(hashp, old_bufp);
368 if (!old_bufp)
369 return (-1);
370 op = (u_short *)old_bufp->page;
371 putpair((char *)op, &key, &val);
372 }
373 old_bufp->flags |= BUF_MOD;
374 } else {
375 /* Move to new page */
376 if (PAIRFITS(np, (&key), (&val)))
377 putpair((char *)np, &key, &val);
378 else {
379 new_bufp =
380 __add_ovflpage(hashp, new_bufp);
381 if (!new_bufp)
382 return (-1);
383 np = (u_short *)new_bufp->page;
384 putpair((char *)np, &key, &val);
385 }
386 new_bufp->flags |= BUF_MOD;
387 }
388 }
389 }
390 if (last_bfp)
391 __free_ovflpage(hashp, last_bfp);
392 return (0);
393 }
394
395 /*
396 * Add the given pair to the page
397 *
398 * Returns:
399 * 0 ==> OK
400 * 1 ==> failure
401 */
402 extern int
403 __addel(hashp, bufp, key, val)
404 HTAB *hashp;
405 BUFHEAD *bufp;
406 const DBT *key, *val;
407 {
408 register u_short *bp, *sop;
409 int do_expand;
410
411 bp = (u_short *)bufp->page;
412 do_expand = 0;
413 while (bp[0] && (bp[bp[0]] < REAL_KEY))
414 /* Exception case */
415 if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
416 /* This is a big-keydata pair */
417 bufp = __add_ovflpage(hashp, bufp);
418 if (!bufp)
419 return (-1);
420 bp = (u_short *)bufp->page;
421 } else
422 /* Try to squeeze key on this page */
423 if (FREESPACE(bp) > PAIRSIZE(key, val)) {
424 squeeze_key(bp, key, val);
425 return (0);
426 } else {
427 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
428 if (!bufp)
429 return (-1);
430 bp = (u_short *)bufp->page;
431 }
432
433 if (PAIRFITS(bp, key, val))
434 putpair(bufp->page, key, val);
435 else {
436 do_expand = 1;
437 bufp = __add_ovflpage(hashp, bufp);
438 if (!bufp)
439 return (-1);
440 sop = (u_short *)bufp->page;
441
442 if (PAIRFITS(sop, key, val))
443 putpair((char *)sop, key, val);
444 else
445 if (__big_insert(hashp, bufp, key, val))
446 return (-1);
447 }
448 bufp->flags |= BUF_MOD;
449 /*
450 * If the average number of keys per bucket exceeds the fill factor,
451 * expand the table.
452 */
453 hashp->NKEYS++;
454 if (do_expand ||
455 (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
456 return (__expand_table(hashp));
457 return (0);
458 }
459
460 /*
461 *
462 * Returns:
463 * pointer on success
464 * NULL on error
465 */
466 extern BUFHEAD *
467 __add_ovflpage(hashp, bufp)
468 HTAB *hashp;
469 BUFHEAD *bufp;
470 {
471 register u_short *sp;
472 u_short ndx, ovfl_num;
473 #ifdef DEBUG1
474 int tmp1, tmp2;
475 #endif
476 sp = (u_short *)bufp->page;
477
478 /* Check if we are dynamically determining the fill factor */
479 if (hashp->FFACTOR == DEF_FFACTOR) {
480 hashp->FFACTOR = sp[0] >> 1;
481 if (hashp->FFACTOR < MIN_FFACTOR)
482 hashp->FFACTOR = MIN_FFACTOR;
483 }
484 bufp->flags |= BUF_MOD;
485 ovfl_num = overflow_page(hashp);
486 #ifdef DEBUG1
487 tmp1 = bufp->addr;
488 tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
489 #endif
490 if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
491 return (NULL);
492 bufp->ovfl->flags |= BUF_MOD;
493 #ifdef DEBUG1
494 (void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
495 tmp1, tmp2, bufp->ovfl->addr);
496 #endif
497 ndx = sp[0];
498 /*
499 * Since a pair is allocated on a page only if there's room to add
500 * an overflow page, we know that the OVFL information will fit on
501 * the page.
502 */
503 sp[ndx + 4] = OFFSET(sp);
504 sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
505 sp[ndx + 1] = ovfl_num;
506 sp[ndx + 2] = OVFLPAGE;
507 sp[0] = ndx + 2;
508 #ifdef HASH_STATISTICS
509 hash_overflows++;
510 #endif
511 return (bufp->ovfl);
512 }
513
514 /*
515 * Returns:
516 * 0 indicates SUCCESS
517 * -1 indicates FAILURE
518 */
519 extern int
520 __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
521 HTAB *hashp;
522 char *p;
523 u_int bucket;
524 int is_bucket, is_disk, is_bitmap;
525 {
526 register int fd, page, size;
527 int rsize;
528 u_short *bp;
529
530 fd = hashp->fp;
531 size = hashp->BSIZE;
532
533 if ((fd == -1) || !is_disk) {
534 PAGE_INIT(p);
535 return (0);
536 }
537 if (is_bucket)
538 page = BUCKET_TO_PAGE(bucket);
539 else
540 page = OADDR_TO_PAGE(bucket);
541 if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
542 ((rsize = read(fd, p, size)) == -1))
543 return (-1);
544 bp = (u_short *)p;
545 if (!rsize)
546 bp[0] = 0; /* We hit the EOF, so initialize a new page */
547 else
548 if (rsize != size) {
549 errno = EFTYPE;
550 return (-1);
551 }
552 if (!is_bitmap && !bp[0]) {
553 PAGE_INIT(p);
554 } else
555 if (hashp->LORDER != BYTE_ORDER) {
556 register int i, max;
557
558 if (is_bitmap) {
559 max = hashp->BSIZE >> 2; /* divide by 4 */
560 for (i = 0; i < max; i++)
561 BLSWAP(((long *)p)[i]);
562 } else {
563 BSSWAP(bp[0]);
564 max = bp[0] + 2;
565 for (i = 1; i <= max; i++)
566 BSSWAP(bp[i]);
567 }
568 }
569 return (0);
570 }
571
572 /*
573 * Write page p to disk
574 *
575 * Returns:
576 * 0 ==> OK
577 * -1 ==>failure
578 */
579 extern int
580 __put_page(hashp, p, bucket, is_bucket, is_bitmap)
581 HTAB *hashp;
582 char *p;
583 u_int bucket;
584 int is_bucket, is_bitmap;
585 {
586 register int fd, page, size;
587 int wsize;
588
589 size = hashp->BSIZE;
590 if ((hashp->fp == -1) && open_temp(hashp))
591 return (-1);
592 fd = hashp->fp;
593
594 if (hashp->LORDER != BYTE_ORDER) {
595 register int i;
596 register int max;
597
598 if (is_bitmap) {
599 max = hashp->BSIZE >> 2; /* divide by 4 */
600 for (i = 0; i < max; i++)
601 BLSWAP(((long *)p)[i]);
602 } else {
603 max = ((u_short *)p)[0] + 2;
604 for (i = 0; i <= max; i++)
605 BSSWAP(((u_short *)p)[i]);
606 }
607 }
608 if (is_bucket)
609 page = BUCKET_TO_PAGE(bucket);
610 else
611 page = OADDR_TO_PAGE(bucket);
612 if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
613 ((wsize = write(fd, p, size)) == -1))
614 /* Errno is set */
615 return (-1);
616 if (wsize != size) {
617 errno = EFTYPE;
618 return (-1);
619 }
620 return (0);
621 }
622
623 #define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1)
624 /*
625 * Initialize a new bitmap page. Bitmap pages are left in memory
626 * once they are read in.
627 */
628 extern int
629 __init_bitmap(hashp, pnum, nbits, ndx)
630 HTAB *hashp;
631 int pnum, nbits, ndx;
632 {
633 u_long *ip;
634 int clearbytes, clearints;
635
636 if (!(ip = malloc(hashp->BSIZE)))
637 return (1);
638 hashp->nmaps++;
639 clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
640 clearbytes = clearints << INT_TO_BYTE;
641 (void)memset((char *)ip, 0, clearbytes);
642 (void)memset(((char *)ip) + clearbytes, 0xFF,
643 hashp->BSIZE - clearbytes);
644 ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
645 SETBIT(ip, 0);
646 hashp->BITMAPS[ndx] = (u_short)pnum;
647 hashp->mapp[ndx] = ip;
648 return (0);
649 }
650
651 static u_long
652 first_free(map)
653 u_long map;
654 {
655 register u_long i, mask;
656
657 mask = 0x1;
658 for (i = 0; i < BITS_PER_MAP; i++) {
659 if (!(mask & map))
660 return (i);
661 mask = mask << 1;
662 }
663 return (i);
664 }
665
666 static u_short
667 overflow_page(hashp)
668 HTAB *hashp;
669 {
670 register u_long *freep;
671 register int max_free, offset, splitnum;
672 u_short addr;
673 int bit, first_page, free_bit, free_page, i, in_use_bits, j;
674 #ifdef DEBUG2
675 int tmp1, tmp2;
676 #endif
677 splitnum = hashp->OVFL_POINT;
678 max_free = hashp->SPARES[splitnum];
679
680 free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
681 free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
682
683 /* Look through all the free maps to find the first free block */
684 first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
685 for ( i = first_page; i <= free_page; i++ ) {
686 if (!(freep = (u_long *)hashp->mapp[i]) &&
687 !(freep = fetch_bitmap(hashp, i)))
688 return (NULL);
689 if (i == free_page)
690 in_use_bits = free_bit;
691 else
692 in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
693
694 if (i == first_page) {
695 bit = hashp->LAST_FREED &
696 ((hashp->BSIZE << BYTE_SHIFT) - 1);
697 j = bit / BITS_PER_MAP;
698 bit = bit & ~(BITS_PER_MAP - 1);
699 } else {
700 bit = 0;
701 j = 0;
702 }
703 for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
704 if (freep[j] != ALL_SET)
705 goto found;
706 }
707
708 /* No Free Page Found */
709 hashp->LAST_FREED = hashp->SPARES[splitnum];
710 hashp->SPARES[splitnum]++;
711 offset = hashp->SPARES[splitnum] -
712 (splitnum ? hashp->SPARES[splitnum - 1] : 0);
713
714 #define OVMSG "HASH: Out of overflow pages. Increase page size\n"
715 if (offset > SPLITMASK) {
716 if (++splitnum >= NCACHED) {
717 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
718 return (NULL);
719 }
720 hashp->OVFL_POINT = splitnum;
721 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
722 hashp->SPARES[splitnum-1]--;
723 offset = 1;
724 }
725
726 /* Check if we need to allocate a new bitmap page */
727 if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
728 free_page++;
729 if (free_page >= NCACHED) {
730 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
731 return (NULL);
732 }
733 /*
734 * This is tricky. The 1 indicates that you want the new page
735 * allocated with 1 clear bit. Actually, you are going to
736 * allocate 2 pages from this map. The first is going to be
737 * the map page, the second is the overflow page we were
738 * looking for. The init_bitmap routine automatically, sets
739 * the first bit of itself to indicate that the bitmap itself
740 * is in use. We would explicitly set the second bit, but
741 * don't have to if we tell init_bitmap not to leave it clear
742 * in the first place.
743 */
744 if (__init_bitmap(hashp, (int)OADDR_OF(splitnum, offset),
745 1, free_page))
746 return (NULL);
747 hashp->SPARES[splitnum]++;
748 #ifdef DEBUG2
749 free_bit = 2;
750 #endif
751 offset++;
752 if (offset > SPLITMASK) {
753 if (++splitnum >= NCACHED) {
754 (void)write(STDERR_FILENO, OVMSG,
755 sizeof(OVMSG) - 1);
756 return (NULL);
757 }
758 hashp->OVFL_POINT = splitnum;
759 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
760 hashp->SPARES[splitnum-1]--;
761 offset = 0;
762 }
763 } else {
764 /*
765 * Free_bit addresses the last used bit. Bump it to address
766 * the first available bit.
767 */
768 free_bit++;
769 SETBIT(freep, free_bit);
770 }
771
772 /* Calculate address of the new overflow page */
773 addr = OADDR_OF(splitnum, offset);
774 #ifdef DEBUG2
775 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
776 addr, free_bit, free_page);
777 #endif
778 return (addr);
779
780 found:
781 bit = bit + first_free(freep[j]);
782 SETBIT(freep, bit);
783 #ifdef DEBUG2
784 tmp1 = bit;
785 tmp2 = i;
786 #endif
787 /*
788 * Bits are addressed starting with 0, but overflow pages are addressed
789 * beginning at 1. Bit is a bit addressnumber, so we need to increment
790 * it to convert it to a page number.
791 */
792 bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
793 if (bit >= hashp->LAST_FREED)
794 hashp->LAST_FREED = bit - 1;
795
796 /* Calculate the split number for this page */
797 for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
798 offset = (i ? bit - hashp->SPARES[i - 1] : bit);
799 if (offset >= SPLITMASK)
800 return (NULL); /* Out of overflow pages */
801 addr = OADDR_OF(i, offset);
802 #ifdef DEBUG2
803 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
804 addr, tmp1, tmp2);
805 #endif
806
807 /* Allocate and return the overflow page */
808 return (addr);
809 }
810
811 /*
812 * Mark this overflow page as free.
813 */
814 extern void
815 __free_ovflpage(hashp, obufp)
816 HTAB *hashp;
817 BUFHEAD *obufp;
818 {
819 register u_short addr;
820 u_long *freep;
821 int bit_address, free_page, free_bit;
822 u_short ndx;
823
824 addr = obufp->addr;
825 #ifdef DEBUG1
826 (void)fprintf(stderr, "Freeing %d\n", addr);
827 #endif
828 ndx = (((u_short)addr) >> SPLITSHIFT);
829 bit_address =
830 (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
831 if (bit_address < hashp->LAST_FREED)
832 hashp->LAST_FREED = bit_address;
833 free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
834 free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
835
836 if (!(freep = hashp->mapp[free_page]))
837 freep = fetch_bitmap(hashp, free_page);
838 #ifdef DEBUG
839 /*
840 * This had better never happen. It means we tried to read a bitmap
841 * that has already had overflow pages allocated off it, and we
842 * failed to read it from the file.
843 */
844 if (!freep)
845 assert(0);
846 #endif
847 CLRBIT(freep, free_bit);
848 #ifdef DEBUG2
849 (void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
850 obufp->addr, free_bit, free_page);
851 #endif
852 __reclaim_buf(hashp, obufp);
853 }
854
855 /*
856 * Returns:
857 * 0 success
858 * -1 failure
859 */
860 static int
861 open_temp(hashp)
862 HTAB *hashp;
863 {
864 sigset_t set, oset;
865 static char namestr[] = "_hashXXXXXX";
866
867 /* Block signals; make sure file goes away at process exit. */
868 (void)sigfillset(&set);
869 (void)sigprocmask(SIG_BLOCK, &set, &oset);
870 if ((hashp->fp = mkstemp(namestr)) != -1) {
871 (void)unlink(namestr);
872 (void)fcntl(hashp->fp, F_SETFD, 1);
873 }
874 (void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
875 return (hashp->fp != -1 ? 0 : -1);
876 }
877
878 /*
879 * We have to know that the key will fit, but the last entry on the page is
880 * an overflow pair, so we need to shift things.
881 */
882 static void
883 squeeze_key(sp, key, val)
884 u_short *sp;
885 const DBT *key, *val;
886 {
887 register char *p;
888 u_short free_space, n, off, pageno;
889
890 p = (char *)sp;
891 n = sp[0];
892 free_space = FREESPACE(sp);
893 off = OFFSET(sp);
894
895 pageno = sp[n - 1];
896 off -= key->size;
897 sp[n - 1] = off;
898 memmove(p + off, key->data, key->size);
899 off -= val->size;
900 sp[n] = off;
901 memmove(p + off, val->data, val->size);
902 sp[0] = n + 2;
903 sp[n + 1] = pageno;
904 sp[n + 2] = OVFLPAGE;
905 FREESPACE(sp) = free_space - PAIRSIZE(key, val);
906 OFFSET(sp) = off;
907 }
908
909 static u_long *
910 fetch_bitmap(hashp, ndx)
911 HTAB *hashp;
912 int ndx;
913 {
914 if (ndx >= hashp->nmaps ||
915 !(hashp->mapp[ndx] = malloc(hashp->BSIZE)) ||
916 __get_page(hashp, (char *)hashp->mapp[ndx],
917 hashp->BITMAPS[ndx], 0, 1, 1))
918 return (NULL);
919 return (hashp->mapp[ndx]);
920 }
921
922 #ifdef DEBUG4
923 int
924 print_chain(addr)
925 int addr;
926 {
927 BUFHEAD *bufp;
928 short *bp, oaddr;
929
930 (void)fprintf(stderr, "%d ", addr);
931 bufp = __get_buf(hashp, addr, NULL, 0);
932 bp = (short *)bufp->page;
933 while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
934 ((bp[0] > 2) && bp[2] < REAL_KEY))) {
935 oaddr = bp[bp[0] - 1];
936 (void)fprintf(stderr, "%d ", (int)oaddr);
937 bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
938 bp = (short *)bufp->page;
939 }
940 (void)fprintf(stderr, "\n");
941 }
942 #endif
943