hash_page.c revision 1.21 1 /* $NetBSD: hash_page.c,v 1.21 2008/08/26 21:18:38 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Margo Seltzer.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 #if defined(LIBC_SCCS) && !defined(lint)
37 #if 0
38 static char sccsid[] = "@(#)hash_page.c 8.7 (Berkeley) 8/16/94";
39 #else
40 __RCSID("$NetBSD: hash_page.c,v 1.21 2008/08/26 21:18:38 joerg Exp $");
41 #endif
42 #endif /* LIBC_SCCS and not lint */
43
44 /*
45 * PACKAGE: hashing
46 *
47 * DESCRIPTION:
48 * Page manipulation for hashing package.
49 *
50 * ROUTINES:
51 *
52 * External
53 * __get_page
54 * __add_ovflpage
55 * Internal
56 * overflow_page
57 * open_temp
58 */
59
60 #include "namespace.h"
61
62 #include <sys/types.h>
63
64 #include <errno.h>
65 #include <fcntl.h>
66 #include <signal.h>
67 #include <stdio.h>
68 #include <stdlib.h>
69 #include <string.h>
70 #include <unistd.h>
71 #include <paths.h>
72 #include <assert.h>
73
74 #include <db.h>
75 #include "hash.h"
76 #include "page.h"
77 #include "extern.h"
78
79 static uint32_t *fetch_bitmap(HTAB *, int);
80 static uint32_t first_free(uint32_t);
81 static int open_temp(HTAB *);
82 static uint16_t overflow_page(HTAB *);
83 static void putpair(char *, const DBT *, const DBT *);
84 static void squeeze_key(uint16_t *, const DBT *, const DBT *);
85 static int ugly_split(HTAB *, uint32_t, BUFHEAD *, BUFHEAD *, int, int);
86
87 #define PAGE_INIT(P) { \
88 ((uint16_t *)(void *)(P))[0] = 0; \
89 temp = 3 * sizeof(uint16_t); \
90 _DIAGASSERT(hashp->BSIZE >= temp); \
91 ((uint16_t *)(void *)(P))[1] = (uint16_t)(hashp->BSIZE - temp); \
92 ((uint16_t *)(void *)(P))[2] = hashp->BSIZE; \
93 }
94
95 /*
96 * This is called AFTER we have verified that there is room on the page for
97 * the pair (PAIRFITS has returned true) so we go right ahead and start moving
98 * stuff on.
99 */
100 static void
101 putpair(char *p, const DBT *key, const DBT *val)
102 {
103 uint16_t *bp, n, off;
104 size_t temp;
105
106 bp = (uint16_t *)(void *)p;
107
108 /* Enter the key first. */
109 n = bp[0];
110
111 temp = OFFSET(bp);
112 _DIAGASSERT(temp >= key->size);
113 off = (uint16_t)(temp - key->size);
114 memmove(p + off, key->data, key->size);
115 bp[++n] = off;
116
117 /* Now the data. */
118 _DIAGASSERT(off >= val->size);
119 off -= (uint16_t)val->size;
120 memmove(p + off, val->data, val->size);
121 bp[++n] = off;
122
123 /* Adjust page info. */
124 bp[0] = n;
125 temp = (n + 3) * sizeof(uint16_t);
126 _DIAGASSERT(off >= temp);
127 bp[n + 1] = (uint16_t)(off - temp);
128 bp[n + 2] = off;
129 }
130
131 /*
132 * Returns:
133 * 0 OK
134 * -1 error
135 */
136 int
137 __delpair(HTAB *hashp, BUFHEAD *bufp, int ndx)
138 {
139 uint16_t *bp, newoff;
140 int n;
141 uint16_t pairlen;
142 size_t temp;
143
144 bp = (uint16_t *)(void *)bufp->page;
145 n = bp[0];
146
147 if (bp[ndx + 1] < REAL_KEY)
148 return (__big_delete(hashp, bufp));
149 if (ndx != 1)
150 newoff = bp[ndx - 1];
151 else
152 newoff = hashp->BSIZE;
153 pairlen = newoff - bp[ndx + 1];
154
155 if (ndx != (n - 1)) {
156 /* Hard Case -- need to shuffle keys */
157 int i;
158 char *src = bufp->page + (int)OFFSET(bp);
159 char *dst = src + (int)pairlen;
160 memmove(dst, src, (size_t)(bp[ndx + 1] - OFFSET(bp)));
161
162 /* Now adjust the pointers */
163 for (i = ndx + 2; i <= n; i += 2) {
164 if (bp[i + 1] == OVFLPAGE) {
165 bp[i - 2] = bp[i];
166 bp[i - 1] = bp[i + 1];
167 } else {
168 bp[i - 2] = bp[i] + pairlen;
169 bp[i - 1] = bp[i + 1] + pairlen;
170 }
171 }
172 }
173 /* Finally adjust the page data */
174 bp[n] = OFFSET(bp) + pairlen;
175 temp = bp[n + 1] + pairlen + 2 * sizeof(uint16_t);
176 _DIAGASSERT(temp <= 0xffff);
177 bp[n - 1] = (uint16_t)temp;
178 bp[0] = n - 2;
179 hashp->NKEYS--;
180
181 bufp->flags |= BUF_MOD;
182 return (0);
183 }
184 /*
185 * Returns:
186 * 0 ==> OK
187 * -1 ==> Error
188 */
189 int
190 __split_page(HTAB *hashp, uint32_t obucket, uint32_t nbucket)
191 {
192 BUFHEAD *new_bufp, *old_bufp;
193 uint16_t *ino;
194 char *np;
195 DBT key, val;
196 int n, ndx, retval;
197 uint16_t copyto, diff, off, moved;
198 char *op;
199 size_t temp;
200
201 copyto = (uint16_t)hashp->BSIZE;
202 off = (uint16_t)hashp->BSIZE;
203 old_bufp = __get_buf(hashp, obucket, NULL, 0);
204 if (old_bufp == NULL)
205 return (-1);
206 new_bufp = __get_buf(hashp, nbucket, NULL, 0);
207 if (new_bufp == NULL)
208 return (-1);
209
210 old_bufp->flags |= (BUF_MOD | BUF_PIN);
211 new_bufp->flags |= (BUF_MOD | BUF_PIN);
212
213 ino = (uint16_t *)(void *)(op = old_bufp->page);
214 np = new_bufp->page;
215
216 moved = 0;
217
218 for (n = 1, ndx = 1; n < ino[0]; n += 2) {
219 if (ino[n + 1] < REAL_KEY) {
220 retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
221 (int)copyto, (int)moved);
222 old_bufp->flags &= ~BUF_PIN;
223 new_bufp->flags &= ~BUF_PIN;
224 return (retval);
225
226 }
227 key.data = (uint8_t *)op + ino[n];
228 key.size = off - ino[n];
229
230 if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
231 /* Don't switch page */
232 diff = copyto - off;
233 if (diff) {
234 copyto = ino[n + 1] + diff;
235 memmove(op + copyto, op + ino[n + 1],
236 (size_t)(off - ino[n + 1]));
237 ino[ndx] = copyto + ino[n] - ino[n + 1];
238 ino[ndx + 1] = copyto;
239 } else
240 copyto = ino[n + 1];
241 ndx += 2;
242 } else {
243 /* Switch page */
244 val.data = (uint8_t *)op + ino[n + 1];
245 val.size = ino[n] - ino[n + 1];
246 putpair(np, &key, &val);
247 moved += 2;
248 }
249
250 off = ino[n + 1];
251 }
252
253 /* Now clean up the page */
254 ino[0] -= moved;
255 temp = sizeof(uint16_t) * (ino[0] + 3);
256 _DIAGASSERT(copyto >= temp);
257 FREESPACE(ino) = (uint16_t)(copyto - temp);
258 OFFSET(ino) = copyto;
259
260 #ifdef DEBUG3
261 (void)fprintf(stderr, "split %d/%d\n",
262 ((uint16_t *)np)[0] / 2,
263 ((uint16_t *)op)[0] / 2);
264 #endif
265 /* unpin both pages */
266 old_bufp->flags &= ~BUF_PIN;
267 new_bufp->flags &= ~BUF_PIN;
268 return (0);
269 }
270
271 /*
272 * Called when we encounter an overflow or big key/data page during split
273 * handling. This is special cased since we have to begin checking whether
274 * the key/data pairs fit on their respective pages and because we may need
275 * overflow pages for both the old and new pages.
276 *
277 * The first page might be a page with regular key/data pairs in which case
278 * we have a regular overflow condition and just need to go on to the next
279 * page or it might be a big key/data pair in which case we need to fix the
280 * big key/data pair.
281 *
282 * Returns:
283 * 0 ==> success
284 * -1 ==> failure
285 */
286 static int
287 ugly_split(
288 HTAB *hashp,
289 uint32_t obucket, /* Same as __split_page. */
290 BUFHEAD *old_bufp,
291 BUFHEAD *new_bufp,
292 int copyto, /* First byte on page which contains key/data values. */
293 int moved /* Number of pairs moved to new page. */
294 )
295 {
296 BUFHEAD *bufp; /* Buffer header for ino */
297 uint16_t *ino; /* Page keys come off of */
298 uint16_t *np; /* New page */
299 uint16_t *op; /* Page keys go on to if they aren't moving */
300 size_t temp;
301
302 BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */
303 DBT key, val;
304 SPLIT_RETURN ret;
305 uint16_t n, off, ov_addr, scopyto;
306 char *cino; /* Character value of ino */
307
308 bufp = old_bufp;
309 ino = (uint16_t *)(void *)old_bufp->page;
310 np = (uint16_t *)(void *)new_bufp->page;
311 op = (uint16_t *)(void *)old_bufp->page;
312 last_bfp = NULL;
313 scopyto = (uint16_t)copyto; /* ANSI */
314
315 n = ino[0] - 1;
316 while (n < ino[0]) {
317 if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
318 if (__big_split(hashp, old_bufp,
319 new_bufp, bufp, (int)bufp->addr, obucket, &ret))
320 return (-1);
321 old_bufp = ret.oldp;
322 if (!old_bufp)
323 return (-1);
324 op = (uint16_t *)(void *)old_bufp->page;
325 new_bufp = ret.newp;
326 if (!new_bufp)
327 return (-1);
328 np = (uint16_t *)(void *)new_bufp->page;
329 bufp = ret.nextp;
330 if (!bufp)
331 return (0);
332 cino = (char *)bufp->page;
333 ino = (uint16_t *)(void *)cino;
334 last_bfp = ret.nextp;
335 } else if (ino[n + 1] == OVFLPAGE) {
336 ov_addr = ino[n];
337 /*
338 * Fix up the old page -- the extra 2 are the fields
339 * which contained the overflow information.
340 */
341 ino[0] -= (moved + 2);
342 temp = sizeof(uint16_t) * (ino[0] + 3);
343 _DIAGASSERT(scopyto >= temp);
344 FREESPACE(ino) = (uint16_t)(scopyto - temp);
345 OFFSET(ino) = scopyto;
346
347 bufp = __get_buf(hashp, (uint32_t)ov_addr, bufp, 0);
348 if (!bufp)
349 return (-1);
350
351 ino = (uint16_t *)(void *)bufp->page;
352 n = 1;
353 scopyto = hashp->BSIZE;
354 moved = 0;
355
356 if (last_bfp)
357 __free_ovflpage(hashp, last_bfp);
358 last_bfp = bufp;
359 }
360 /* Move regular sized pairs of there are any */
361 off = hashp->BSIZE;
362 for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
363 cino = (char *)(void *)ino;
364 key.data = (uint8_t *)cino + ino[n];
365 key.size = off - ino[n];
366 val.data = (uint8_t *)cino + ino[n + 1];
367 val.size = ino[n] - ino[n + 1];
368 off = ino[n + 1];
369
370 if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
371 /* Keep on old page */
372 if (PAIRFITS(op, (&key), (&val)))
373 putpair((char *)(void *)op, &key, &val);
374 else {
375 old_bufp =
376 __add_ovflpage(hashp, old_bufp);
377 if (!old_bufp)
378 return (-1);
379 op = (uint16_t *)(void *)old_bufp->page;
380 putpair((char *)(void *)op, &key, &val);
381 }
382 old_bufp->flags |= BUF_MOD;
383 } else {
384 /* Move to new page */
385 if (PAIRFITS(np, (&key), (&val)))
386 putpair((char *)(void *)np, &key, &val);
387 else {
388 new_bufp =
389 __add_ovflpage(hashp, new_bufp);
390 if (!new_bufp)
391 return (-1);
392 np = (uint16_t *)(void *)new_bufp->page;
393 putpair((char *)(void *)np, &key, &val);
394 }
395 new_bufp->flags |= BUF_MOD;
396 }
397 }
398 }
399 if (last_bfp)
400 __free_ovflpage(hashp, last_bfp);
401 return (0);
402 }
403
404 /*
405 * Add the given pair to the page
406 *
407 * Returns:
408 * 0 ==> OK
409 * 1 ==> failure
410 */
411 int
412 __addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
413 {
414 uint16_t *bp, *sop;
415 int do_expand;
416
417 bp = (uint16_t *)(void *)bufp->page;
418 do_expand = 0;
419 while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
420 /* Exception case */
421 if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
422 /* This is the last page of a big key/data pair
423 and we need to add another page */
424 break;
425 else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
426 bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp,
427 0);
428 if (!bufp)
429 return (-1);
430 bp = (uint16_t *)(void *)bufp->page;
431 } else if (bp[bp[0]] != OVFLPAGE) {
432 /* Short key/data pairs, no more pages */
433 break;
434 } else {
435 /* Try to squeeze key on this page */
436 if (bp[2] >= REAL_KEY &&
437 FREESPACE(bp) >= PAIRSIZE(key, val)) {
438 squeeze_key(bp, key, val);
439 goto stats;
440 } else {
441 bufp = __get_buf(hashp,
442 (uint32_t)bp[bp[0] - 1], bufp, 0);
443 if (!bufp)
444 return (-1);
445 bp = (uint16_t *)(void *)bufp->page;
446 }
447 }
448
449 if (PAIRFITS(bp, key, val))
450 putpair(bufp->page, key, val);
451 else {
452 do_expand = 1;
453 bufp = __add_ovflpage(hashp, bufp);
454 if (!bufp)
455 return (-1);
456 sop = (uint16_t *)(void *)bufp->page;
457
458 if (PAIRFITS(sop, key, val))
459 putpair((char *)(void *)sop, key, val);
460 else
461 if (__big_insert(hashp, bufp, key, val))
462 return (-1);
463 }
464 stats:
465 bufp->flags |= BUF_MOD;
466 /*
467 * If the average number of keys per bucket exceeds the fill factor,
468 * expand the table.
469 */
470 hashp->NKEYS++;
471 if (do_expand ||
472 (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
473 return (__expand_table(hashp));
474 return (0);
475 }
476
477 /*
478 *
479 * Returns:
480 * pointer on success
481 * NULL on error
482 */
483 BUFHEAD *
484 __add_ovflpage(HTAB *hashp, BUFHEAD *bufp)
485 {
486 uint16_t *sp;
487 uint16_t ndx, ovfl_num;
488 size_t temp;
489 #ifdef DEBUG1
490 int tmp1, tmp2;
491 #endif
492 sp = (uint16_t *)(void *)bufp->page;
493
494 /* Check if we are dynamically determining the fill factor */
495 if (hashp->FFACTOR == DEF_FFACTOR) {
496 hashp->FFACTOR = (uint32_t)sp[0] >> 1;
497 if (hashp->FFACTOR < MIN_FFACTOR)
498 hashp->FFACTOR = MIN_FFACTOR;
499 }
500 bufp->flags |= BUF_MOD;
501 ovfl_num = overflow_page(hashp);
502 #ifdef DEBUG1
503 tmp1 = bufp->addr;
504 tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
505 #endif
506 if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, (uint32_t)ovfl_num,
507 bufp, 1)))
508 return (NULL);
509 bufp->ovfl->flags |= BUF_MOD;
510 #ifdef DEBUG1
511 (void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
512 tmp1, tmp2, bufp->ovfl->addr);
513 #endif
514 ndx = sp[0];
515 /*
516 * Since a pair is allocated on a page only if there's room to add
517 * an overflow page, we know that the OVFL information will fit on
518 * the page.
519 */
520 sp[ndx + 4] = OFFSET(sp);
521 temp = FREESPACE(sp);
522 _DIAGASSERT(temp >= OVFLSIZE);
523 sp[ndx + 3] = (uint16_t)(temp - OVFLSIZE);
524 sp[ndx + 1] = ovfl_num;
525 sp[ndx + 2] = OVFLPAGE;
526 sp[0] = ndx + 2;
527 #ifdef HASH_STATISTICS
528 hash_overflows++;
529 #endif
530 return (bufp->ovfl);
531 }
532
533 /*
534 * Returns:
535 * 0 indicates SUCCESS
536 * -1 indicates FAILURE
537 */
538 int
539 __get_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_disk,
540 int is_bitmap)
541 {
542 int fd, page, size;
543 ssize_t rsize;
544 uint16_t *bp;
545 size_t temp;
546
547 fd = hashp->fp;
548 size = hashp->BSIZE;
549
550 if ((fd == -1) || !is_disk) {
551 PAGE_INIT(p);
552 return (0);
553 }
554 if (is_bucket)
555 page = BUCKET_TO_PAGE(bucket);
556 else
557 page = OADDR_TO_PAGE(bucket);
558 if ((rsize = pread(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
559 return (-1);
560 bp = (uint16_t *)(void *)p;
561 if (!rsize)
562 bp[0] = 0; /* We hit the EOF, so initialize a new page */
563 else
564 if (rsize != size) {
565 errno = EFTYPE;
566 return (-1);
567 }
568 if (!is_bitmap && !bp[0]) {
569 PAGE_INIT(p);
570 } else
571 if (hashp->LORDER != BYTE_ORDER) {
572 int i, max;
573
574 if (is_bitmap) {
575 max = (uint32_t)hashp->BSIZE >> 2; /* divide by 4 */
576 for (i = 0; i < max; i++)
577 M_32_SWAP(((int *)(void *)p)[i]);
578 } else {
579 M_16_SWAP(bp[0]);
580 max = bp[0] + 2;
581 for (i = 1; i <= max; i++)
582 M_16_SWAP(bp[i]);
583 }
584 }
585 return (0);
586 }
587
588 /*
589 * Write page p to disk
590 *
591 * Returns:
592 * 0 ==> OK
593 * -1 ==>failure
594 */
595 int
596 __put_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_bitmap)
597 {
598 int fd, page, size;
599 ssize_t wsize;
600
601 size = hashp->BSIZE;
602 if ((hashp->fp == -1) && open_temp(hashp))
603 return (-1);
604 fd = hashp->fp;
605
606 if (hashp->LORDER != BYTE_ORDER) {
607 int i;
608 int max;
609
610 if (is_bitmap) {
611 max = (uint32_t)hashp->BSIZE >> 2; /* divide by 4 */
612 for (i = 0; i < max; i++)
613 M_32_SWAP(((int *)(void *)p)[i]);
614 } else {
615 max = ((uint16_t *)(void *)p)[0] + 2;
616 for (i = 0; i <= max; i++)
617 M_16_SWAP(((uint16_t *)(void *)p)[i]);
618 }
619 }
620 if (is_bucket)
621 page = BUCKET_TO_PAGE(bucket);
622 else
623 page = OADDR_TO_PAGE(bucket);
624 if ((wsize = pwrite(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
625 /* Errno is set */
626 return (-1);
627 if (wsize != size) {
628 errno = EFTYPE;
629 return (-1);
630 }
631 return (0);
632 }
633
634 #define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1)
635 /*
636 * Initialize a new bitmap page. Bitmap pages are left in memory
637 * once they are read in.
638 */
639 int
640 __ibitmap(HTAB *hashp, int pnum, int nbits, int ndx)
641 {
642 uint32_t *ip;
643 int clearbytes, clearints;
644
645 if ((ip = malloc((size_t)hashp->BSIZE)) == NULL)
646 return (1);
647 hashp->nmaps++;
648 clearints = ((uint32_t)(nbits - 1) >> INT_BYTE_SHIFT) + 1;
649 clearbytes = clearints << INT_TO_BYTE;
650 (void)memset(ip, 0, (size_t)clearbytes);
651 (void)memset(((char *)(void *)ip) + clearbytes, 0xFF,
652 (size_t)(hashp->BSIZE - clearbytes));
653 ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
654 SETBIT(ip, 0);
655 hashp->BITMAPS[ndx] = (uint16_t)pnum;
656 hashp->mapp[ndx] = ip;
657 return (0);
658 }
659
660 static uint32_t
661 first_free(uint32_t map)
662 {
663 uint32_t i, mask;
664
665 mask = 0x1;
666 for (i = 0; i < BITS_PER_MAP; i++) {
667 if (!(mask & map))
668 return (i);
669 mask = mask << 1;
670 }
671 return (i);
672 }
673
674 static uint16_t
675 overflow_page(HTAB *hashp)
676 {
677 uint32_t *freep = NULL;
678 int max_free, offset, splitnum;
679 uint16_t addr;
680 int bit, first_page, free_bit, free_page, i, in_use_bits, j;
681 #ifdef DEBUG2
682 int tmp1, tmp2;
683 #endif
684 splitnum = hashp->OVFL_POINT;
685 max_free = hashp->SPARES[splitnum];
686
687 free_page = (uint32_t)(max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
688 free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
689
690 /* Look through all the free maps to find the first free block */
691 first_page = (uint32_t)hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
692 for ( i = first_page; i <= free_page; i++ ) {
693 if (!(freep = (uint32_t *)hashp->mapp[i]) &&
694 !(freep = fetch_bitmap(hashp, i)))
695 return (0);
696 if (i == free_page)
697 in_use_bits = free_bit;
698 else
699 in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
700
701 if (i == first_page) {
702 bit = hashp->LAST_FREED &
703 ((hashp->BSIZE << BYTE_SHIFT) - 1);
704 j = bit / BITS_PER_MAP;
705 bit = bit & ~(BITS_PER_MAP - 1);
706 } else {
707 bit = 0;
708 j = 0;
709 }
710 for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
711 if (freep[j] != ALL_SET)
712 goto found;
713 }
714
715 /* No Free Page Found */
716 hashp->LAST_FREED = hashp->SPARES[splitnum];
717 hashp->SPARES[splitnum]++;
718 offset = hashp->SPARES[splitnum] -
719 (splitnum ? hashp->SPARES[splitnum - 1] : 0);
720
721 #define OVMSG "HASH: Out of overflow pages. Increase page size\n"
722 if (offset > SPLITMASK) {
723 if (++splitnum >= NCACHED) {
724 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
725 errno = EFBIG;
726 return (0);
727 }
728 hashp->OVFL_POINT = splitnum;
729 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
730 hashp->SPARES[splitnum-1]--;
731 offset = 1;
732 }
733
734 /* Check if we need to allocate a new bitmap page */
735 if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
736 free_page++;
737 if (free_page >= NCACHED) {
738 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
739 errno = EFBIG;
740 return (0);
741 }
742 /*
743 * This is tricky. The 1 indicates that you want the new page
744 * allocated with 1 clear bit. Actually, you are going to
745 * allocate 2 pages from this map. The first is going to be
746 * the map page, the second is the overflow page we were
747 * looking for. The init_bitmap routine automatically, sets
748 * the first bit of itself to indicate that the bitmap itself
749 * is in use. We would explicitly set the second bit, but
750 * don't have to if we tell init_bitmap not to leave it clear
751 * in the first place.
752 */
753 if (__ibitmap(hashp,
754 (int)OADDR_OF(splitnum, offset), 1, free_page))
755 return (0);
756 hashp->SPARES[splitnum]++;
757 #ifdef DEBUG2
758 free_bit = 2;
759 #endif
760 offset++;
761 if (offset > SPLITMASK) {
762 if (++splitnum >= NCACHED) {
763 (void)write(STDERR_FILENO, OVMSG,
764 sizeof(OVMSG) - 1);
765 errno = EFBIG;
766 return (0);
767 }
768 hashp->OVFL_POINT = splitnum;
769 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
770 hashp->SPARES[splitnum-1]--;
771 offset = 0;
772 }
773 } else {
774 /*
775 * Free_bit addresses the last used bit. Bump it to address
776 * the first available bit.
777 */
778 free_bit++;
779 SETBIT(freep, free_bit);
780 }
781
782 /* Calculate address of the new overflow page */
783 addr = OADDR_OF(splitnum, offset);
784 #ifdef DEBUG2
785 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
786 addr, free_bit, free_page);
787 #endif
788 return (addr);
789
790 found:
791 bit = bit + first_free(freep[j]);
792 SETBIT(freep, bit);
793 #ifdef DEBUG2
794 tmp1 = bit;
795 tmp2 = i;
796 #endif
797 /*
798 * Bits are addressed starting with 0, but overflow pages are addressed
799 * beginning at 1. Bit is a bit addressnumber, so we need to increment
800 * it to convert it to a page number.
801 */
802 bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
803 if (bit >= hashp->LAST_FREED)
804 hashp->LAST_FREED = bit - 1;
805
806 /* Calculate the split number for this page */
807 for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
808 offset = (i ? bit - hashp->SPARES[i - 1] : bit);
809 if (offset >= SPLITMASK) {
810 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
811 errno = EFBIG;
812 return (0); /* Out of overflow pages */
813 }
814 addr = OADDR_OF(i, offset);
815 #ifdef DEBUG2
816 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
817 addr, tmp1, tmp2);
818 #endif
819
820 /* Allocate and return the overflow page */
821 return (addr);
822 }
823
824 /*
825 * Mark this overflow page as free.
826 */
827 void
828 __free_ovflpage(HTAB *hashp, BUFHEAD *obufp)
829 {
830 uint16_t addr;
831 uint32_t *freep;
832 int bit_address, free_page, free_bit;
833 uint16_t ndx;
834
835 addr = obufp->addr;
836 #ifdef DEBUG1
837 (void)fprintf(stderr, "Freeing %d\n", addr);
838 #endif
839 ndx = (((uint32_t)addr) >> SPLITSHIFT);
840 bit_address =
841 (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
842 if (bit_address < hashp->LAST_FREED)
843 hashp->LAST_FREED = bit_address;
844 free_page = ((uint32_t)bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
845 free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
846
847 if (!(freep = hashp->mapp[free_page]))
848 freep = fetch_bitmap(hashp, free_page);
849 /*
850 * This had better never happen. It means we tried to read a bitmap
851 * that has already had overflow pages allocated off it, and we
852 * failed to read it from the file.
853 */
854 _DIAGASSERT(freep != NULL);
855 CLRBIT(freep, free_bit);
856 #ifdef DEBUG2
857 (void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
858 obufp->addr, free_bit, free_page);
859 #endif
860 __reclaim_buf(hashp, obufp);
861 }
862
863 /*
864 * Returns:
865 * 0 success
866 * -1 failure
867 */
868 static int
869 open_temp(HTAB *hashp)
870 {
871 sigset_t set, oset;
872 char *envtmp;
873 char namestr[PATH_MAX];
874
875 if (issetugid())
876 envtmp = NULL;
877 else
878 envtmp = getenv("TMPDIR");
879
880 if (-1 == snprintf(namestr, sizeof(namestr), "%s/_hashXXXXXX",
881 envtmp ? envtmp : _PATH_TMP))
882 return -1;
883
884 /* Block signals; make sure file goes away at process exit. */
885 (void)sigfillset(&set);
886 (void)sigprocmask(SIG_BLOCK, &set, &oset);
887 if ((hashp->fp = mkstemp(namestr)) != -1) {
888 (void)unlink(namestr);
889 (void)fcntl(hashp->fp, F_SETFD, FD_CLOEXEC);
890 }
891 (void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
892 return (hashp->fp != -1 ? 0 : -1);
893 }
894
895 /*
896 * We have to know that the key will fit, but the last entry on the page is
897 * an overflow pair, so we need to shift things.
898 */
899 static void
900 squeeze_key(uint16_t *sp, const DBT *key, const DBT *val)
901 {
902 char *p;
903 uint16_t free_space, n, off, pageno;
904 size_t temp;
905
906 p = (char *)(void *)sp;
907 n = sp[0];
908 free_space = FREESPACE(sp);
909 off = OFFSET(sp);
910
911 pageno = sp[n - 1];
912 _DIAGASSERT(off >= key->size);
913 off -= (uint16_t)key->size;
914 sp[n - 1] = off;
915 memmove(p + off, key->data, key->size);
916 _DIAGASSERT(off >= val->size);
917 off -= (uint16_t)val->size;
918 sp[n] = off;
919 memmove(p + off, val->data, val->size);
920 sp[0] = n + 2;
921 sp[n + 1] = pageno;
922 sp[n + 2] = OVFLPAGE;
923 temp = PAIRSIZE(key, val);
924 _DIAGASSERT(free_space >= temp);
925 FREESPACE(sp) = (uint16_t)(free_space - temp);
926 OFFSET(sp) = off;
927 }
928
929 static uint32_t *
930 fetch_bitmap(HTAB *hashp, int ndx)
931 {
932 if (ndx >= hashp->nmaps)
933 return (NULL);
934 if ((hashp->mapp[ndx] = malloc((size_t)hashp->BSIZE)) == NULL)
935 return (NULL);
936 if (__get_page(hashp,
937 (char *)(void *)hashp->mapp[ndx], (uint32_t)hashp->BITMAPS[ndx], 0, 1, 1)) {
938 free(hashp->mapp[ndx]);
939 return (NULL);
940 }
941 return (hashp->mapp[ndx]);
942 }
943
944 #ifdef DEBUG4
945 void print_chain(HTAB *, uint32_t);
946 void
947 print_chain(HTAB *hashp, uint32_t addr)
948 {
949 BUFHEAD *bufp;
950 uint16_t *bp, oaddr;
951
952 (void)fprintf(stderr, "%d ", addr);
953 bufp = __get_buf(hashp, addr, NULL, 0);
954 bp = (uint16_t *)bufp->page;
955 while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
956 ((bp[0] > 2) && bp[2] < REAL_KEY))) {
957 oaddr = bp[bp[0] - 1];
958 (void)fprintf(stderr, "%d ", (int)oaddr);
959 bufp = __get_buf(hashp, (uint32_t)oaddr, bufp, 0);
960 bp = (uint16_t *)bufp->page;
961 }
962 (void)fprintf(stderr, "\n");
963 }
964 #endif
965