Home | History | Annotate | Line # | Download | only in hash
hash_page.c revision 1.23
      1 /*	$NetBSD: hash_page.c,v 1.23 2008/09/11 12:58:00 joerg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1990, 1993, 1994
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Margo Seltzer.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #if HAVE_NBTOOL_CONFIG_H
     36 #include "nbtool_config.h"
     37 #endif
     38 
     39 #include <sys/cdefs.h>
     40 __RCSID("$NetBSD: hash_page.c,v 1.23 2008/09/11 12:58:00 joerg Exp $");
     41 
     42 /*
     43  * PACKAGE:  hashing
     44  *
     45  * DESCRIPTION:
     46  *	Page manipulation for hashing package.
     47  *
     48  * ROUTINES:
     49  *
     50  * External
     51  *	__get_page
     52  *	__add_ovflpage
     53  * Internal
     54  *	overflow_page
     55  *	open_temp
     56  */
     57 
     58 #include "namespace.h"
     59 
     60 #include <sys/types.h>
     61 
     62 #include <errno.h>
     63 #include <fcntl.h>
     64 #include <signal.h>
     65 #include <stdio.h>
     66 #include <stdlib.h>
     67 #include <string.h>
     68 #include <unistd.h>
     69 #include <paths.h>
     70 #include <assert.h>
     71 
     72 #include <db.h>
     73 #include "hash.h"
     74 #include "page.h"
     75 #include "extern.h"
     76 
     77 static uint32_t	*fetch_bitmap(HTAB *, int);
     78 static uint32_t	 first_free(uint32_t);
     79 static int	 open_temp(HTAB *);
     80 static uint16_t	 overflow_page(HTAB *);
     81 static void	 putpair(char *, const DBT *, const DBT *);
     82 static void	 squeeze_key(uint16_t *, const DBT *, const DBT *);
     83 static int	 ugly_split(HTAB *, uint32_t, BUFHEAD *, BUFHEAD *, int, int);
     84 
     85 #define	PAGE_INIT(P) { \
     86 	((uint16_t *)(void *)(P))[0] = 0; \
     87 	temp = 3 * sizeof(uint16_t); \
     88 	_DIAGASSERT(hashp->BSIZE >= temp); \
     89 	((uint16_t *)(void *)(P))[1] = (uint16_t)(hashp->BSIZE - temp); \
     90 	((uint16_t *)(void *)(P))[2] = hashp->BSIZE; \
     91 }
     92 
     93 /*
     94  * This is called AFTER we have verified that there is room on the page for
     95  * the pair (PAIRFITS has returned true) so we go right ahead and start moving
     96  * stuff on.
     97  */
     98 static void
     99 putpair(char *p, const DBT *key, const DBT *val)
    100 {
    101 	uint16_t *bp, n, off;
    102 	size_t temp;
    103 
    104 	bp = (uint16_t *)(void *)p;
    105 
    106 	/* Enter the key first. */
    107 	n = bp[0];
    108 
    109 	temp = OFFSET(bp);
    110 	_DIAGASSERT(temp >= key->size);
    111 	off = (uint16_t)(temp - key->size);
    112 	memmove(p + off, key->data, key->size);
    113 	bp[++n] = off;
    114 
    115 	/* Now the data. */
    116 	_DIAGASSERT(off >= val->size);
    117 	off -= (uint16_t)val->size;
    118 	memmove(p + off, val->data, val->size);
    119 	bp[++n] = off;
    120 
    121 	/* Adjust page info. */
    122 	bp[0] = n;
    123 	temp = (n + 3) * sizeof(uint16_t);
    124 	_DIAGASSERT(off >= temp);
    125 	bp[n + 1] = (uint16_t)(off - temp);
    126 	bp[n + 2] = off;
    127 }
    128 
    129 /*
    130  * Returns:
    131  *	 0 OK
    132  *	-1 error
    133  */
    134 int
    135 __delpair(HTAB *hashp, BUFHEAD *bufp, int ndx)
    136 {
    137 	uint16_t *bp, newoff;
    138 	int n;
    139 	uint16_t pairlen;
    140 	size_t temp;
    141 
    142 	bp = (uint16_t *)(void *)bufp->page;
    143 	n = bp[0];
    144 
    145 	if (bp[ndx + 1] < REAL_KEY)
    146 		return (__big_delete(hashp, bufp));
    147 	if (ndx != 1)
    148 		newoff = bp[ndx - 1];
    149 	else
    150 		newoff = hashp->BSIZE;
    151 	pairlen = newoff - bp[ndx + 1];
    152 
    153 	if (ndx != (n - 1)) {
    154 		/* Hard Case -- need to shuffle keys */
    155 		int i;
    156 		char *src = bufp->page + (int)OFFSET(bp);
    157 		char *dst = src + (int)pairlen;
    158 		memmove(dst, src, (size_t)(bp[ndx + 1] - OFFSET(bp)));
    159 
    160 		/* Now adjust the pointers */
    161 		for (i = ndx + 2; i <= n; i += 2) {
    162 			if (bp[i + 1] == OVFLPAGE) {
    163 				bp[i - 2] = bp[i];
    164 				bp[i - 1] = bp[i + 1];
    165 			} else {
    166 				bp[i - 2] = bp[i] + pairlen;
    167 				bp[i - 1] = bp[i + 1] + pairlen;
    168 			}
    169 		}
    170 	}
    171 	/* Finally adjust the page data */
    172 	bp[n] = OFFSET(bp) + pairlen;
    173 	temp = bp[n + 1] + pairlen + 2 * sizeof(uint16_t);
    174 	_DIAGASSERT(temp <= 0xffff);
    175 	bp[n - 1] = (uint16_t)temp;
    176 	bp[0] = n - 2;
    177 	hashp->NKEYS--;
    178 
    179 	bufp->flags |= BUF_MOD;
    180 	return (0);
    181 }
    182 /*
    183  * Returns:
    184  *	 0 ==> OK
    185  *	-1 ==> Error
    186  */
    187 int
    188 __split_page(HTAB *hashp, uint32_t obucket, uint32_t nbucket)
    189 {
    190 	BUFHEAD *new_bufp, *old_bufp;
    191 	uint16_t *ino;
    192 	char *np;
    193 	DBT key, val;
    194 	int n, ndx, retval;
    195 	uint16_t copyto, diff, off, moved;
    196 	char *op;
    197 	size_t temp;
    198 
    199 	copyto = (uint16_t)hashp->BSIZE;
    200 	off = (uint16_t)hashp->BSIZE;
    201 	old_bufp = __get_buf(hashp, obucket, NULL, 0);
    202 	if (old_bufp == NULL)
    203 		return (-1);
    204 	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
    205 	if (new_bufp == NULL)
    206 		return (-1);
    207 
    208 	old_bufp->flags |= (BUF_MOD | BUF_PIN);
    209 	new_bufp->flags |= (BUF_MOD | BUF_PIN);
    210 
    211 	ino = (uint16_t *)(void *)(op = old_bufp->page);
    212 	np = new_bufp->page;
    213 
    214 	moved = 0;
    215 
    216 	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
    217 		if (ino[n + 1] < REAL_KEY) {
    218 			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
    219 			    (int)copyto, (int)moved);
    220 			old_bufp->flags &= ~BUF_PIN;
    221 			new_bufp->flags &= ~BUF_PIN;
    222 			return (retval);
    223 
    224 		}
    225 		key.data = (uint8_t *)op + ino[n];
    226 		key.size = off - ino[n];
    227 
    228 		if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
    229 			/* Don't switch page */
    230 			diff = copyto - off;
    231 			if (diff) {
    232 				copyto = ino[n + 1] + diff;
    233 				memmove(op + copyto, op + ino[n + 1],
    234 				    (size_t)(off - ino[n + 1]));
    235 				ino[ndx] = copyto + ino[n] - ino[n + 1];
    236 				ino[ndx + 1] = copyto;
    237 			} else
    238 				copyto = ino[n + 1];
    239 			ndx += 2;
    240 		} else {
    241 			/* Switch page */
    242 			val.data = (uint8_t *)op + ino[n + 1];
    243 			val.size = ino[n] - ino[n + 1];
    244 			putpair(np, &key, &val);
    245 			moved += 2;
    246 		}
    247 
    248 		off = ino[n + 1];
    249 	}
    250 
    251 	/* Now clean up the page */
    252 	ino[0] -= moved;
    253 	temp = sizeof(uint16_t) * (ino[0] + 3);
    254 	_DIAGASSERT(copyto >= temp);
    255 	FREESPACE(ino) = (uint16_t)(copyto - temp);
    256 	OFFSET(ino) = copyto;
    257 
    258 #ifdef DEBUG3
    259 	(void)fprintf(stderr, "split %d/%d\n",
    260 	    ((uint16_t *)np)[0] / 2,
    261 	    ((uint16_t *)op)[0] / 2);
    262 #endif
    263 	/* unpin both pages */
    264 	old_bufp->flags &= ~BUF_PIN;
    265 	new_bufp->flags &= ~BUF_PIN;
    266 	return (0);
    267 }
    268 
    269 /*
    270  * Called when we encounter an overflow or big key/data page during split
    271  * handling.  This is special cased since we have to begin checking whether
    272  * the key/data pairs fit on their respective pages and because we may need
    273  * overflow pages for both the old and new pages.
    274  *
    275  * The first page might be a page with regular key/data pairs in which case
    276  * we have a regular overflow condition and just need to go on to the next
    277  * page or it might be a big key/data pair in which case we need to fix the
    278  * big key/data pair.
    279  *
    280  * Returns:
    281  *	 0 ==> success
    282  *	-1 ==> failure
    283  */
    284 static int
    285 ugly_split(
    286 	HTAB *hashp,
    287 	uint32_t obucket,	/* Same as __split_page. */
    288 	BUFHEAD *old_bufp,
    289 	BUFHEAD *new_bufp,
    290 	int copyto,	/* First byte on page which contains key/data values. */
    291 	int moved	/* Number of pairs moved to new page. */
    292 )
    293 {
    294 	BUFHEAD *bufp;	/* Buffer header for ino */
    295 	uint16_t *ino;	/* Page keys come off of */
    296 	uint16_t *np;	/* New page */
    297 	uint16_t *op;	/* Page keys go on to if they aren't moving */
    298 	size_t temp;
    299 
    300 	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
    301 	DBT key, val;
    302 	SPLIT_RETURN ret;
    303 	uint16_t n, off, ov_addr, scopyto;
    304 	char *cino;		/* Character value of ino */
    305 
    306 	bufp = old_bufp;
    307 	ino = (uint16_t *)(void *)old_bufp->page;
    308 	np = (uint16_t *)(void *)new_bufp->page;
    309 	op = (uint16_t *)(void *)old_bufp->page;
    310 	last_bfp = NULL;
    311 	scopyto = (uint16_t)copyto;	/* ANSI */
    312 
    313 	n = ino[0] - 1;
    314 	while (n < ino[0]) {
    315 		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
    316 			if (__big_split(hashp, old_bufp,
    317 			    new_bufp, bufp, (int)bufp->addr, obucket, &ret))
    318 				return (-1);
    319 			old_bufp = ret.oldp;
    320 			if (!old_bufp)
    321 				return (-1);
    322 			op = (uint16_t *)(void *)old_bufp->page;
    323 			new_bufp = ret.newp;
    324 			if (!new_bufp)
    325 				return (-1);
    326 			np = (uint16_t *)(void *)new_bufp->page;
    327 			bufp = ret.nextp;
    328 			if (!bufp)
    329 				return (0);
    330 			cino = (char *)bufp->page;
    331 			ino = (uint16_t *)(void *)cino;
    332 			last_bfp = ret.nextp;
    333 		} else if (ino[n + 1] == OVFLPAGE) {
    334 			ov_addr = ino[n];
    335 			/*
    336 			 * Fix up the old page -- the extra 2 are the fields
    337 			 * which contained the overflow information.
    338 			 */
    339 			ino[0] -= (moved + 2);
    340 			temp = sizeof(uint16_t) * (ino[0] + 3);
    341 			_DIAGASSERT(scopyto >= temp);
    342 			FREESPACE(ino) = (uint16_t)(scopyto - temp);
    343 			OFFSET(ino) = scopyto;
    344 
    345 			bufp = __get_buf(hashp, (uint32_t)ov_addr, bufp, 0);
    346 			if (!bufp)
    347 				return (-1);
    348 
    349 			ino = (uint16_t *)(void *)bufp->page;
    350 			n = 1;
    351 			scopyto = hashp->BSIZE;
    352 			moved = 0;
    353 
    354 			if (last_bfp)
    355 				__free_ovflpage(hashp, last_bfp);
    356 			last_bfp = bufp;
    357 		}
    358 		/* Move regular sized pairs of there are any */
    359 		off = hashp->BSIZE;
    360 		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
    361 			cino = (char *)(void *)ino;
    362 			key.data = (uint8_t *)cino + ino[n];
    363 			key.size = off - ino[n];
    364 			val.data = (uint8_t *)cino + ino[n + 1];
    365 			val.size = ino[n] - ino[n + 1];
    366 			off = ino[n + 1];
    367 
    368 			if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
    369 				/* Keep on old page */
    370 				if (PAIRFITS(op, (&key), (&val)))
    371 					putpair((char *)(void *)op, &key, &val);
    372 				else {
    373 					old_bufp =
    374 					    __add_ovflpage(hashp, old_bufp);
    375 					if (!old_bufp)
    376 						return (-1);
    377 					op = (uint16_t *)(void *)old_bufp->page;
    378 					putpair((char *)(void *)op, &key, &val);
    379 				}
    380 				old_bufp->flags |= BUF_MOD;
    381 			} else {
    382 				/* Move to new page */
    383 				if (PAIRFITS(np, (&key), (&val)))
    384 					putpair((char *)(void *)np, &key, &val);
    385 				else {
    386 					new_bufp =
    387 					    __add_ovflpage(hashp, new_bufp);
    388 					if (!new_bufp)
    389 						return (-1);
    390 					np = (uint16_t *)(void *)new_bufp->page;
    391 					putpair((char *)(void *)np, &key, &val);
    392 				}
    393 				new_bufp->flags |= BUF_MOD;
    394 			}
    395 		}
    396 	}
    397 	if (last_bfp)
    398 		__free_ovflpage(hashp, last_bfp);
    399 	return (0);
    400 }
    401 
    402 /*
    403  * Add the given pair to the page
    404  *
    405  * Returns:
    406  *	0 ==> OK
    407  *	1 ==> failure
    408  */
    409 int
    410 __addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
    411 {
    412 	uint16_t *bp, *sop;
    413 	int do_expand;
    414 
    415 	bp = (uint16_t *)(void *)bufp->page;
    416 	do_expand = 0;
    417 	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
    418 		/* Exception case */
    419 		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
    420 			/* This is the last page of a big key/data pair
    421 			   and we need to add another page */
    422 			break;
    423 		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
    424 			bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp,
    425 			    0);
    426 			if (!bufp)
    427 				return (-1);
    428 			bp = (uint16_t *)(void *)bufp->page;
    429 		} else if (bp[bp[0]] != OVFLPAGE) {
    430 			/* Short key/data pairs, no more pages */
    431 			break;
    432 		} else {
    433 			/* Try to squeeze key on this page */
    434 			if (bp[2] >= REAL_KEY &&
    435 			    FREESPACE(bp) >= PAIRSIZE(key, val)) {
    436 				squeeze_key(bp, key, val);
    437 				goto stats;
    438 			} else {
    439 				bufp = __get_buf(hashp,
    440 				    (uint32_t)bp[bp[0] - 1], bufp, 0);
    441 				if (!bufp)
    442 					return (-1);
    443 				bp = (uint16_t *)(void *)bufp->page;
    444 			}
    445 		}
    446 
    447 	if (PAIRFITS(bp, key, val))
    448 		putpair(bufp->page, key, val);
    449 	else {
    450 		do_expand = 1;
    451 		bufp = __add_ovflpage(hashp, bufp);
    452 		if (!bufp)
    453 			return (-1);
    454 		sop = (uint16_t *)(void *)bufp->page;
    455 
    456 		if (PAIRFITS(sop, key, val))
    457 			putpair((char *)(void *)sop, key, val);
    458 		else
    459 			if (__big_insert(hashp, bufp, key, val))
    460 				return (-1);
    461 	}
    462 stats:
    463 	bufp->flags |= BUF_MOD;
    464 	/*
    465 	 * If the average number of keys per bucket exceeds the fill factor,
    466 	 * expand the table.
    467 	 */
    468 	hashp->NKEYS++;
    469 	if (do_expand ||
    470 	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
    471 		return (__expand_table(hashp));
    472 	return (0);
    473 }
    474 
    475 /*
    476  *
    477  * Returns:
    478  *	pointer on success
    479  *	NULL on error
    480  */
    481 BUFHEAD *
    482 __add_ovflpage(HTAB *hashp, BUFHEAD *bufp)
    483 {
    484 	uint16_t *sp;
    485 	uint16_t ndx, ovfl_num;
    486 	size_t temp;
    487 #ifdef DEBUG1
    488 	int tmp1, tmp2;
    489 #endif
    490 	sp = (uint16_t *)(void *)bufp->page;
    491 
    492 	/* Check if we are dynamically determining the fill factor */
    493 	if (hashp->FFACTOR == DEF_FFACTOR) {
    494 		hashp->FFACTOR = (uint32_t)sp[0] >> 1;
    495 		if (hashp->FFACTOR < MIN_FFACTOR)
    496 			hashp->FFACTOR = MIN_FFACTOR;
    497 	}
    498 	bufp->flags |= BUF_MOD;
    499 	ovfl_num = overflow_page(hashp);
    500 #ifdef DEBUG1
    501 	tmp1 = bufp->addr;
    502 	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
    503 #endif
    504 	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, (uint32_t)ovfl_num,
    505 	    bufp, 1)))
    506 		return (NULL);
    507 	bufp->ovfl->flags |= BUF_MOD;
    508 #ifdef DEBUG1
    509 	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
    510 	    tmp1, tmp2, bufp->ovfl->addr);
    511 #endif
    512 	ndx = sp[0];
    513 	/*
    514 	 * Since a pair is allocated on a page only if there's room to add
    515 	 * an overflow page, we know that the OVFL information will fit on
    516 	 * the page.
    517 	 */
    518 	sp[ndx + 4] = OFFSET(sp);
    519 	temp = FREESPACE(sp);
    520 	_DIAGASSERT(temp >= OVFLSIZE);
    521 	sp[ndx + 3] = (uint16_t)(temp - OVFLSIZE);
    522 	sp[ndx + 1] = ovfl_num;
    523 	sp[ndx + 2] = OVFLPAGE;
    524 	sp[0] = ndx + 2;
    525 #ifdef HASH_STATISTICS
    526 	hash_overflows++;
    527 #endif
    528 	return (bufp->ovfl);
    529 }
    530 
    531 /*
    532  * Returns:
    533  *	 0 indicates SUCCESS
    534  *	-1 indicates FAILURE
    535  */
    536 int
    537 __get_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_disk,
    538     int is_bitmap)
    539 {
    540 	int fd, page, size;
    541 	ssize_t rsize;
    542 	uint16_t *bp;
    543 	size_t temp;
    544 
    545 	fd = hashp->fp;
    546 	size = hashp->BSIZE;
    547 
    548 	if ((fd == -1) || !is_disk) {
    549 		PAGE_INIT(p);
    550 		return (0);
    551 	}
    552 	if (is_bucket)
    553 		page = BUCKET_TO_PAGE(bucket);
    554 	else
    555 		page = OADDR_TO_PAGE(bucket);
    556 	if ((rsize = pread(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
    557 		return (-1);
    558 	bp = (uint16_t *)(void *)p;
    559 	if (!rsize)
    560 		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
    561 	else
    562 		if (rsize != size) {
    563 			errno = EFTYPE;
    564 			return (-1);
    565 		}
    566 	if (!is_bitmap && !bp[0]) {
    567 		PAGE_INIT(p);
    568 	} else
    569 		if (hashp->LORDER != BYTE_ORDER) {
    570 			int i, max;
    571 
    572 			if (is_bitmap) {
    573 				max = (uint32_t)hashp->BSIZE >> 2; /* divide by 4 */
    574 				for (i = 0; i < max; i++)
    575 					M_32_SWAP(((int *)(void *)p)[i]);
    576 			} else {
    577 				M_16_SWAP(bp[0]);
    578 				max = bp[0] + 2;
    579 				for (i = 1; i <= max; i++)
    580 					M_16_SWAP(bp[i]);
    581 			}
    582 		}
    583 	return (0);
    584 }
    585 
    586 /*
    587  * Write page p to disk
    588  *
    589  * Returns:
    590  *	 0 ==> OK
    591  *	-1 ==>failure
    592  */
    593 int
    594 __put_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_bitmap)
    595 {
    596 	int fd, page, size;
    597 	ssize_t wsize;
    598 
    599 	size = hashp->BSIZE;
    600 	if ((hashp->fp == -1) && open_temp(hashp))
    601 		return (-1);
    602 	fd = hashp->fp;
    603 
    604 	if (hashp->LORDER != BYTE_ORDER) {
    605 		int i;
    606 		int max;
    607 
    608 		if (is_bitmap) {
    609 			max = (uint32_t)hashp->BSIZE >> 2;	/* divide by 4 */
    610 			for (i = 0; i < max; i++)
    611 				M_32_SWAP(((int *)(void *)p)[i]);
    612 		} else {
    613 			max = ((uint16_t *)(void *)p)[0] + 2;
    614 			for (i = 0; i <= max; i++)
    615 				M_16_SWAP(((uint16_t *)(void *)p)[i]);
    616 		}
    617 	}
    618 	if (is_bucket)
    619 		page = BUCKET_TO_PAGE(bucket);
    620 	else
    621 		page = OADDR_TO_PAGE(bucket);
    622 	if ((wsize = pwrite(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
    623 		/* Errno is set */
    624 		return (-1);
    625 	if (wsize != size) {
    626 		errno = EFTYPE;
    627 		return (-1);
    628 	}
    629 	return (0);
    630 }
    631 
    632 #define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
    633 /*
    634  * Initialize a new bitmap page.  Bitmap pages are left in memory
    635  * once they are read in.
    636  */
    637 int
    638 __ibitmap(HTAB *hashp, int pnum, int nbits, int ndx)
    639 {
    640 	uint32_t *ip;
    641 	int clearbytes, clearints;
    642 
    643 	if ((ip = malloc((size_t)hashp->BSIZE)) == NULL)
    644 		return (1);
    645 	hashp->nmaps++;
    646 	clearints = ((uint32_t)(nbits - 1) >> INT_BYTE_SHIFT) + 1;
    647 	clearbytes = clearints << INT_TO_BYTE;
    648 	(void)memset(ip, 0, (size_t)clearbytes);
    649 	(void)memset(((char *)(void *)ip) + clearbytes, 0xFF,
    650 	    (size_t)(hashp->BSIZE - clearbytes));
    651 	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
    652 	SETBIT(ip, 0);
    653 	hashp->BITMAPS[ndx] = (uint16_t)pnum;
    654 	hashp->mapp[ndx] = ip;
    655 	return (0);
    656 }
    657 
    658 static uint32_t
    659 first_free(uint32_t map)
    660 {
    661 	uint32_t i, mask;
    662 
    663 	mask = 0x1;
    664 	for (i = 0; i < BITS_PER_MAP; i++) {
    665 		if (!(mask & map))
    666 			return (i);
    667 		mask = mask << 1;
    668 	}
    669 	return (i);
    670 }
    671 
    672 static uint16_t
    673 overflow_page(HTAB *hashp)
    674 {
    675 	uint32_t *freep = NULL;
    676 	int max_free, offset, splitnum;
    677 	uint16_t addr;
    678 	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
    679 #ifdef DEBUG2
    680 	int tmp1, tmp2;
    681 #endif
    682 	splitnum = hashp->OVFL_POINT;
    683 	max_free = hashp->SPARES[splitnum];
    684 
    685 	free_page = (uint32_t)(max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
    686 	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
    687 
    688 	/* Look through all the free maps to find the first free block */
    689 	first_page = (uint32_t)hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
    690 	for ( i = first_page; i <= free_page; i++ ) {
    691 		if (!(freep = (uint32_t *)hashp->mapp[i]) &&
    692 		    !(freep = fetch_bitmap(hashp, i)))
    693 			return (0);
    694 		if (i == free_page)
    695 			in_use_bits = free_bit;
    696 		else
    697 			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
    698 
    699 		if (i == first_page) {
    700 			bit = hashp->LAST_FREED &
    701 			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
    702 			j = bit / BITS_PER_MAP;
    703 			bit = bit & ~(BITS_PER_MAP - 1);
    704 		} else {
    705 			bit = 0;
    706 			j = 0;
    707 		}
    708 		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
    709 			if (freep[j] != ALL_SET)
    710 				goto found;
    711 	}
    712 
    713 	/* No Free Page Found */
    714 	hashp->LAST_FREED = hashp->SPARES[splitnum];
    715 	hashp->SPARES[splitnum]++;
    716 	offset = hashp->SPARES[splitnum] -
    717 	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
    718 
    719 #define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
    720 	if (offset > SPLITMASK) {
    721 		if (++splitnum >= NCACHED) {
    722 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
    723 			errno = EFBIG;
    724 			return (0);
    725 		}
    726 		hashp->OVFL_POINT = splitnum;
    727 		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
    728 		hashp->SPARES[splitnum-1]--;
    729 		offset = 1;
    730 	}
    731 
    732 	/* Check if we need to allocate a new bitmap page */
    733 	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
    734 		free_page++;
    735 		if (free_page >= NCACHED) {
    736 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
    737 			errno = EFBIG;
    738 			return (0);
    739 		}
    740 		/*
    741 		 * This is tricky.  The 1 indicates that you want the new page
    742 		 * allocated with 1 clear bit.  Actually, you are going to
    743 		 * allocate 2 pages from this map.  The first is going to be
    744 		 * the map page, the second is the overflow page we were
    745 		 * looking for.  The init_bitmap routine automatically, sets
    746 		 * the first bit of itself to indicate that the bitmap itself
    747 		 * is in use.  We would explicitly set the second bit, but
    748 		 * don't have to if we tell init_bitmap not to leave it clear
    749 		 * in the first place.
    750 		 */
    751 		if (__ibitmap(hashp,
    752 		    (int)OADDR_OF(splitnum, offset), 1, free_page))
    753 			return (0);
    754 		hashp->SPARES[splitnum]++;
    755 #ifdef DEBUG2
    756 		free_bit = 2;
    757 #endif
    758 		offset++;
    759 		if (offset > SPLITMASK) {
    760 			if (++splitnum >= NCACHED) {
    761 				(void)write(STDERR_FILENO, OVMSG,
    762 				    sizeof(OVMSG) - 1);
    763 				errno = EFBIG;
    764 				return (0);
    765 			}
    766 			hashp->OVFL_POINT = splitnum;
    767 			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
    768 			hashp->SPARES[splitnum-1]--;
    769 			offset = 0;
    770 		}
    771 	} else {
    772 		/*
    773 		 * Free_bit addresses the last used bit.  Bump it to address
    774 		 * the first available bit.
    775 		 */
    776 		free_bit++;
    777 		SETBIT(freep, free_bit);
    778 	}
    779 
    780 	/* Calculate address of the new overflow page */
    781 	addr = OADDR_OF(splitnum, offset);
    782 #ifdef DEBUG2
    783 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
    784 	    addr, free_bit, free_page);
    785 #endif
    786 	return (addr);
    787 
    788 found:
    789 	bit = bit + first_free(freep[j]);
    790 	SETBIT(freep, bit);
    791 #ifdef DEBUG2
    792 	tmp1 = bit;
    793 	tmp2 = i;
    794 #endif
    795 	/*
    796 	 * Bits are addressed starting with 0, but overflow pages are addressed
    797 	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
    798 	 * it to convert it to a page number.
    799 	 */
    800 	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
    801 	if (bit >= hashp->LAST_FREED)
    802 		hashp->LAST_FREED = bit - 1;
    803 
    804 	/* Calculate the split number for this page */
    805 	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
    806 	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
    807 	if (offset >= SPLITMASK) {
    808 		(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
    809 		errno = EFBIG;
    810 		return (0);	/* Out of overflow pages */
    811 	}
    812 	addr = OADDR_OF(i, offset);
    813 #ifdef DEBUG2
    814 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
    815 	    addr, tmp1, tmp2);
    816 #endif
    817 
    818 	/* Allocate and return the overflow page */
    819 	return (addr);
    820 }
    821 
    822 /*
    823  * Mark this overflow page as free.
    824  */
    825 void
    826 __free_ovflpage(HTAB *hashp, BUFHEAD *obufp)
    827 {
    828 	uint16_t addr;
    829 	uint32_t *freep;
    830 	int bit_address, free_page, free_bit;
    831 	uint16_t ndx;
    832 
    833 	addr = obufp->addr;
    834 #ifdef DEBUG1
    835 	(void)fprintf(stderr, "Freeing %d\n", addr);
    836 #endif
    837 	ndx = (((uint32_t)addr) >> SPLITSHIFT);
    838 	bit_address =
    839 	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
    840 	 if (bit_address < hashp->LAST_FREED)
    841 		hashp->LAST_FREED = bit_address;
    842 	free_page = ((uint32_t)bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
    843 	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
    844 
    845 	if (!(freep = hashp->mapp[free_page]))
    846 		freep = fetch_bitmap(hashp, free_page);
    847 	/*
    848 	 * This had better never happen.  It means we tried to read a bitmap
    849 	 * that has already had overflow pages allocated off it, and we
    850 	 * failed to read it from the file.
    851 	 */
    852 	_DIAGASSERT(freep != NULL);
    853 	CLRBIT(freep, free_bit);
    854 #ifdef DEBUG2
    855 	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
    856 	    obufp->addr, free_bit, free_page);
    857 #endif
    858 	__reclaim_buf(hashp, obufp);
    859 }
    860 
    861 /*
    862  * Returns:
    863  *	 0 success
    864  *	-1 failure
    865  */
    866 static int
    867 open_temp(HTAB *hashp)
    868 {
    869 	sigset_t set, oset;
    870 	char *envtmp;
    871 	char namestr[PATH_MAX];
    872 
    873 	if (issetugid())
    874 		envtmp = NULL;
    875 	else
    876 		envtmp = getenv("TMPDIR");
    877 
    878 	if (-1 == snprintf(namestr, sizeof(namestr), "%s/_hashXXXXXX",
    879 	    envtmp ? envtmp : _PATH_TMP))
    880 		return -1;
    881 
    882 	/* Block signals; make sure file goes away at process exit. */
    883 	(void)sigfillset(&set);
    884 	(void)sigprocmask(SIG_BLOCK, &set, &oset);
    885 	if ((hashp->fp = mkstemp(namestr)) != -1) {
    886 		(void)unlink(namestr);
    887 		(void)fcntl(hashp->fp, F_SETFD, FD_CLOEXEC);
    888 	}
    889 	(void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
    890 	return (hashp->fp != -1 ? 0 : -1);
    891 }
    892 
    893 /*
    894  * We have to know that the key will fit, but the last entry on the page is
    895  * an overflow pair, so we need to shift things.
    896  */
    897 static void
    898 squeeze_key(uint16_t *sp, const DBT *key, const DBT *val)
    899 {
    900 	char *p;
    901 	uint16_t free_space, n, off, pageno;
    902 	size_t temp;
    903 
    904 	p = (char *)(void *)sp;
    905 	n = sp[0];
    906 	free_space = FREESPACE(sp);
    907 	off = OFFSET(sp);
    908 
    909 	pageno = sp[n - 1];
    910 	_DIAGASSERT(off >= key->size);
    911 	off -= (uint16_t)key->size;
    912 	sp[n - 1] = off;
    913 	memmove(p + off, key->data, key->size);
    914 	_DIAGASSERT(off >= val->size);
    915 	off -= (uint16_t)val->size;
    916 	sp[n] = off;
    917 	memmove(p + off, val->data, val->size);
    918 	sp[0] = n + 2;
    919 	sp[n + 1] = pageno;
    920 	sp[n + 2] = OVFLPAGE;
    921 	temp = PAIRSIZE(key, val);
    922 	_DIAGASSERT(free_space >= temp);
    923 	FREESPACE(sp) = (uint16_t)(free_space - temp);
    924 	OFFSET(sp) = off;
    925 }
    926 
    927 static uint32_t *
    928 fetch_bitmap(HTAB *hashp, int ndx)
    929 {
    930 	if (ndx >= hashp->nmaps)
    931 		return (NULL);
    932 	if ((hashp->mapp[ndx] = malloc((size_t)hashp->BSIZE)) == NULL)
    933 		return (NULL);
    934 	if (__get_page(hashp,
    935 	    (char *)(void *)hashp->mapp[ndx], (uint32_t)hashp->BITMAPS[ndx], 0, 1, 1)) {
    936 		free(hashp->mapp[ndx]);
    937 		return (NULL);
    938 	}
    939 	return (hashp->mapp[ndx]);
    940 }
    941 
    942 #ifdef DEBUG4
    943 void print_chain(HTAB *, uint32_t);
    944 void
    945 print_chain(HTAB *hashp, uint32_t addr)
    946 {
    947 	BUFHEAD *bufp;
    948 	uint16_t *bp, oaddr;
    949 
    950 	(void)fprintf(stderr, "%d ", addr);
    951 	bufp = __get_buf(hashp, addr, NULL, 0);
    952 	bp = (uint16_t *)bufp->page;
    953 	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
    954 		((bp[0] > 2) && bp[2] < REAL_KEY))) {
    955 		oaddr = bp[bp[0] - 1];
    956 		(void)fprintf(stderr, "%d ", (int)oaddr);
    957 		bufp = __get_buf(hashp, (uint32_t)oaddr, bufp, 0);
    958 		bp = (uint16_t *)bufp->page;
    959 	}
    960 	(void)fprintf(stderr, "\n");
    961 }
    962 #endif
    963