Home | History | Annotate | Line # | Download | only in hash
hash_page.c revision 1.7
      1 /*	$NetBSD: hash_page.c,v 1.7 1995/02/27 13:22:34 cgd Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1990, 1993, 1994
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Margo Seltzer.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the University of
     21  *	California, Berkeley and its contributors.
     22  * 4. Neither the name of the University nor the names of its contributors
     23  *    may be used to endorse or promote products derived from this software
     24  *    without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  * SUCH DAMAGE.
     37  */
     38 
     39 #if defined(LIBC_SCCS) && !defined(lint)
     40 #if 0
     41 static char sccsid[] = "@(#)hash_page.c	8.6 (Berkeley) 6/16/94";
     42 #else
     43 static char rcsid[] = "$NetBSD: hash_page.c,v 1.7 1995/02/27 13:22:34 cgd Exp $";
     44 #endif
     45 #endif /* LIBC_SCCS and not lint */
     46 
     47 /*
     48  * PACKAGE:  hashing
     49  *
     50  * DESCRIPTION:
     51  *	Page manipulation for hashing package.
     52  *
     53  * ROUTINES:
     54  *
     55  * External
     56  *	__get_page
     57  *	__add_ovflpage
     58  * Internal
     59  *	overflow_page
     60  *	open_temp
     61  */
     62 
     63 #include <sys/types.h>
     64 
     65 #include <errno.h>
     66 #include <fcntl.h>
     67 #include <signal.h>
     68 #include <stdio.h>
     69 #include <stdlib.h>
     70 #include <string.h>
     71 #include <unistd.h>
     72 #ifdef DEBUG
     73 #include <assert.h>
     74 #endif
     75 
     76 #include <db.h>
     77 #include "hash.h"
     78 #include "page.h"
     79 #include "extern.h"
     80 
     81 static u_int32_t	*fetch_bitmap __P((HTAB *, int));
     82 static u_int32_t	 first_free __P((u_int32_t));
     83 static int	 open_temp __P((HTAB *));
     84 static u_int16_t	 overflow_page __P((HTAB *));
     85 static void	 putpair __P((char *, const DBT *, const DBT *));
     86 static void	 squeeze_key __P((u_int16_t *, const DBT *, const DBT *));
     87 static int	 ugly_split
     88 		    __P((HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int));
     89 
     90 #define	PAGE_INIT(P) { \
     91 	((u_int16_t *)(P))[0] = 0; \
     92 	((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
     93 	((u_int16_t *)(P))[2] = hashp->BSIZE; \
     94 }
     95 
     96 /*
     97  * This is called AFTER we have verified that there is room on the page for
     98  * the pair (PAIRFITS has returned true) so we go right ahead and start moving
     99  * stuff on.
    100  */
    101 static void
    102 putpair(p, key, val)
    103 	char *p;
    104 	const DBT *key, *val;
    105 {
    106 	register u_int16_t *bp, n, off;
    107 
    108 	bp = (u_int16_t *)p;
    109 
    110 	/* Enter the key first. */
    111 	n = bp[0];
    112 
    113 	off = OFFSET(bp) - key->size;
    114 	memmove(p + off, key->data, key->size);
    115 	bp[++n] = off;
    116 
    117 	/* Now the data. */
    118 	off -= val->size;
    119 	memmove(p + off, val->data, val->size);
    120 	bp[++n] = off;
    121 
    122 	/* Adjust page info. */
    123 	bp[0] = n;
    124 	bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
    125 	bp[n + 2] = off;
    126 }
    127 
    128 /*
    129  * Returns:
    130  *	 0 OK
    131  *	-1 error
    132  */
    133 extern int
    134 __delpair(hashp, bufp, ndx)
    135 	HTAB *hashp;
    136 	BUFHEAD *bufp;
    137 	register int ndx;
    138 {
    139 	register u_int16_t *bp, newoff;
    140 	register int n;
    141 	u_int16_t pairlen;
    142 
    143 	bp = (u_int16_t *)bufp->page;
    144 	n = bp[0];
    145 
    146 	if (bp[ndx + 1] < REAL_KEY)
    147 		return (__big_delete(hashp, bufp));
    148 	if (ndx != 1)
    149 		newoff = bp[ndx - 1];
    150 	else
    151 		newoff = hashp->BSIZE;
    152 	pairlen = newoff - bp[ndx + 1];
    153 
    154 	if (ndx != (n - 1)) {
    155 		/* Hard Case -- need to shuffle keys */
    156 		register int i;
    157 		register char *src = bufp->page + (int)OFFSET(bp);
    158 		register char *dst = src + (int)pairlen;
    159 		memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
    160 
    161 		/* Now adjust the pointers */
    162 		for (i = ndx + 2; i <= n; i += 2) {
    163 			if (bp[i + 1] == OVFLPAGE) {
    164 				bp[i - 2] = bp[i];
    165 				bp[i - 1] = bp[i + 1];
    166 			} else {
    167 				bp[i - 2] = bp[i] + pairlen;
    168 				bp[i - 1] = bp[i + 1] + pairlen;
    169 			}
    170 		}
    171 	}
    172 	/* Finally adjust the page data */
    173 	bp[n] = OFFSET(bp) + pairlen;
    174 	bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
    175 	bp[0] = n - 2;
    176 	hashp->NKEYS--;
    177 
    178 	bufp->flags |= BUF_MOD;
    179 	return (0);
    180 }
    181 /*
    182  * Returns:
    183  *	 0 ==> OK
    184  *	-1 ==> Error
    185  */
    186 extern int
    187 __split_page(hashp, obucket, nbucket)
    188 	HTAB *hashp;
    189 	u_int32_t obucket, nbucket;
    190 {
    191 	register BUFHEAD *new_bufp, *old_bufp;
    192 	register u_int16_t *ino;
    193 	register char *np;
    194 	DBT key, val;
    195 	int n, ndx, retval;
    196 	u_int16_t copyto, diff, off, moved;
    197 	char *op;
    198 
    199 	copyto = (u_int16_t)hashp->BSIZE;
    200 	off = (u_int16_t)hashp->BSIZE;
    201 	old_bufp = __get_buf(hashp, obucket, NULL, 0);
    202 	if (old_bufp == NULL)
    203 		return (-1);
    204 	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
    205 	if (new_bufp == NULL)
    206 		return (-1);
    207 
    208 	old_bufp->flags |= (BUF_MOD | BUF_PIN);
    209 	new_bufp->flags |= (BUF_MOD | BUF_PIN);
    210 
    211 	ino = (u_int16_t *)(op = old_bufp->page);
    212 	np = new_bufp->page;
    213 
    214 	moved = 0;
    215 
    216 	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
    217 		if (ino[n + 1] < REAL_KEY) {
    218 			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
    219 			    (int)copyto, (int)moved);
    220 			old_bufp->flags &= ~BUF_PIN;
    221 			new_bufp->flags &= ~BUF_PIN;
    222 			return (retval);
    223 
    224 		}
    225 		key.data = (u_char *)op + ino[n];
    226 		key.size = off - ino[n];
    227 
    228 		if (__call_hash(hashp, key.data, key.size) == obucket) {
    229 			/* Don't switch page */
    230 			diff = copyto - off;
    231 			if (diff) {
    232 				copyto = ino[n + 1] + diff;
    233 				memmove(op + copyto, op + ino[n + 1],
    234 				    off - ino[n + 1]);
    235 				ino[ndx] = copyto + ino[n] - ino[n + 1];
    236 				ino[ndx + 1] = copyto;
    237 			} else
    238 				copyto = ino[n + 1];
    239 			ndx += 2;
    240 		} else {
    241 			/* Switch page */
    242 			val.data = (u_char *)op + ino[n + 1];
    243 			val.size = ino[n] - ino[n + 1];
    244 			putpair(np, &key, &val);
    245 			moved += 2;
    246 		}
    247 
    248 		off = ino[n + 1];
    249 	}
    250 
    251 	/* Now clean up the page */
    252 	ino[0] -= moved;
    253 	FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
    254 	OFFSET(ino) = copyto;
    255 
    256 #ifdef DEBUG3
    257 	(void)fprintf(stderr, "split %d/%d\n",
    258 	    ((u_int16_t *)np)[0] / 2,
    259 	    ((u_int16_t *)op)[0] / 2);
    260 #endif
    261 	/* unpin both pages */
    262 	old_bufp->flags &= ~BUF_PIN;
    263 	new_bufp->flags &= ~BUF_PIN;
    264 	return (0);
    265 }
    266 
    267 /*
    268  * Called when we encounter an overflow or big key/data page during split
    269  * handling.  This is special cased since we have to begin checking whether
    270  * the key/data pairs fit on their respective pages and because we may need
    271  * overflow pages for both the old and new pages.
    272  *
    273  * The first page might be a page with regular key/data pairs in which case
    274  * we have a regular overflow condition and just need to go on to the next
    275  * page or it might be a big key/data pair in which case we need to fix the
    276  * big key/data pair.
    277  *
    278  * Returns:
    279  *	 0 ==> success
    280  *	-1 ==> failure
    281  */
    282 static int
    283 ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
    284 	HTAB *hashp;
    285 	u_int32_t obucket;	/* Same as __split_page. */
    286 	BUFHEAD *old_bufp, *new_bufp;
    287 	int copyto;	/* First byte on page which contains key/data values. */
    288 	int moved;	/* Number of pairs moved to new page. */
    289 {
    290 	register BUFHEAD *bufp;	/* Buffer header for ino */
    291 	register u_int16_t *ino;	/* Page keys come off of */
    292 	register u_int16_t *np;	/* New page */
    293 	register u_int16_t *op;	/* Page keys go on to if they aren't moving */
    294 
    295 	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
    296 	DBT key, val;
    297 	SPLIT_RETURN ret;
    298 	u_int16_t n, off, ov_addr, scopyto;
    299 	char *cino;		/* Character value of ino */
    300 
    301 	bufp = old_bufp;
    302 	ino = (u_int16_t *)old_bufp->page;
    303 	np = (u_int16_t *)new_bufp->page;
    304 	op = (u_int16_t *)old_bufp->page;
    305 	last_bfp = NULL;
    306 	scopyto = (u_int16_t)copyto;	/* ANSI */
    307 
    308 	n = ino[0] - 1;
    309 	while (n < ino[0]) {
    310 		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
    311 			if (__big_split(hashp, old_bufp,
    312 			    new_bufp, bufp, bufp->addr, obucket, &ret))
    313 				return (-1);
    314 			old_bufp = ret.oldp;
    315 			if (!old_bufp)
    316 				return (-1);
    317 			op = (u_int16_t *)old_bufp->page;
    318 			new_bufp = ret.newp;
    319 			if (!new_bufp)
    320 				return (-1);
    321 			np = (u_int16_t *)new_bufp->page;
    322 			bufp = ret.nextp;
    323 			if (!bufp)
    324 				return (0);
    325 			cino = (char *)bufp->page;
    326 			ino = (u_int16_t *)cino;
    327 			last_bfp = ret.nextp;
    328 		} else if (ino[n + 1] == OVFLPAGE) {
    329 			ov_addr = ino[n];
    330 			/*
    331 			 * Fix up the old page -- the extra 2 are the fields
    332 			 * which contained the overflow information.
    333 			 */
    334 			ino[0] -= (moved + 2);
    335 			FREESPACE(ino) =
    336 			    scopyto - sizeof(u_int16_t) * (ino[0] + 3);
    337 			OFFSET(ino) = scopyto;
    338 
    339 			bufp = __get_buf(hashp, ov_addr, bufp, 0);
    340 			if (!bufp)
    341 				return (-1);
    342 
    343 			ino = (u_int16_t *)bufp->page;
    344 			n = 1;
    345 			scopyto = hashp->BSIZE;
    346 			moved = 0;
    347 
    348 			if (last_bfp)
    349 				__free_ovflpage(hashp, last_bfp);
    350 			last_bfp = bufp;
    351 		}
    352 		/* Move regular sized pairs of there are any */
    353 		off = hashp->BSIZE;
    354 		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
    355 			cino = (char *)ino;
    356 			key.data = (u_char *)cino + ino[n];
    357 			key.size = off - ino[n];
    358 			val.data = (u_char *)cino + ino[n + 1];
    359 			val.size = ino[n] - ino[n + 1];
    360 			off = ino[n + 1];
    361 
    362 			if (__call_hash(hashp, key.data, key.size) == obucket) {
    363 				/* Keep on old page */
    364 				if (PAIRFITS(op, (&key), (&val)))
    365 					putpair((char *)op, &key, &val);
    366 				else {
    367 					old_bufp =
    368 					    __add_ovflpage(hashp, old_bufp);
    369 					if (!old_bufp)
    370 						return (-1);
    371 					op = (u_int16_t *)old_bufp->page;
    372 					putpair((char *)op, &key, &val);
    373 				}
    374 				old_bufp->flags |= BUF_MOD;
    375 			} else {
    376 				/* Move to new page */
    377 				if (PAIRFITS(np, (&key), (&val)))
    378 					putpair((char *)np, &key, &val);
    379 				else {
    380 					new_bufp =
    381 					    __add_ovflpage(hashp, new_bufp);
    382 					if (!new_bufp)
    383 						return (-1);
    384 					np = (u_int16_t *)new_bufp->page;
    385 					putpair((char *)np, &key, &val);
    386 				}
    387 				new_bufp->flags |= BUF_MOD;
    388 			}
    389 		}
    390 	}
    391 	if (last_bfp)
    392 		__free_ovflpage(hashp, last_bfp);
    393 	return (0);
    394 }
    395 
    396 /*
    397  * Add the given pair to the page
    398  *
    399  * Returns:
    400  *	0 ==> OK
    401  *	1 ==> failure
    402  */
    403 extern int
    404 __addel(hashp, bufp, key, val)
    405 	HTAB *hashp;
    406 	BUFHEAD *bufp;
    407 	const DBT *key, *val;
    408 {
    409 	register u_int16_t *bp, *sop;
    410 	int do_expand;
    411 
    412 	bp = (u_int16_t *)bufp->page;
    413 	do_expand = 0;
    414 	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
    415 		/* Exception case */
    416 		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
    417 			/* This is the last page of a big key/data pair
    418 			   and we need to add another page */
    419 			break;
    420 		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
    421 			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
    422 			if (!bufp)
    423 				return (-1);
    424 			bp = (u_int16_t *)bufp->page;
    425 		} else
    426 			/* Try to squeeze key on this page */
    427 			if (FREESPACE(bp) > PAIRSIZE(key, val)) {
    428 				squeeze_key(bp, key, val);
    429 				return (0);
    430 			} else {
    431 				bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
    432 				if (!bufp)
    433 					return (-1);
    434 				bp = (u_int16_t *)bufp->page;
    435 			}
    436 
    437 	if (PAIRFITS(bp, key, val))
    438 		putpair(bufp->page, key, val);
    439 	else {
    440 		do_expand = 1;
    441 		bufp = __add_ovflpage(hashp, bufp);
    442 		if (!bufp)
    443 			return (-1);
    444 		sop = (u_int16_t *)bufp->page;
    445 
    446 		if (PAIRFITS(sop, key, val))
    447 			putpair((char *)sop, key, val);
    448 		else
    449 			if (__big_insert(hashp, bufp, key, val))
    450 				return (-1);
    451 	}
    452 	bufp->flags |= BUF_MOD;
    453 	/*
    454 	 * If the average number of keys per bucket exceeds the fill factor,
    455 	 * expand the table.
    456 	 */
    457 	hashp->NKEYS++;
    458 	if (do_expand ||
    459 	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
    460 		return (__expand_table(hashp));
    461 	return (0);
    462 }
    463 
    464 /*
    465  *
    466  * Returns:
    467  *	pointer on success
    468  *	NULL on error
    469  */
    470 extern BUFHEAD *
    471 __add_ovflpage(hashp, bufp)
    472 	HTAB *hashp;
    473 	BUFHEAD *bufp;
    474 {
    475 	register u_int16_t *sp;
    476 	u_int16_t ndx, ovfl_num;
    477 #ifdef DEBUG1
    478 	int tmp1, tmp2;
    479 #endif
    480 	sp = (u_int16_t *)bufp->page;
    481 
    482 	/* Check if we are dynamically determining the fill factor */
    483 	if (hashp->FFACTOR == DEF_FFACTOR) {
    484 		hashp->FFACTOR = sp[0] >> 1;
    485 		if (hashp->FFACTOR < MIN_FFACTOR)
    486 			hashp->FFACTOR = MIN_FFACTOR;
    487 	}
    488 	bufp->flags |= BUF_MOD;
    489 	ovfl_num = overflow_page(hashp);
    490 #ifdef DEBUG1
    491 	tmp1 = bufp->addr;
    492 	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
    493 #endif
    494 	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
    495 		return (NULL);
    496 	bufp->ovfl->flags |= BUF_MOD;
    497 #ifdef DEBUG1
    498 	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
    499 	    tmp1, tmp2, bufp->ovfl->addr);
    500 #endif
    501 	ndx = sp[0];
    502 	/*
    503 	 * Since a pair is allocated on a page only if there's room to add
    504 	 * an overflow page, we know that the OVFL information will fit on
    505 	 * the page.
    506 	 */
    507 	sp[ndx + 4] = OFFSET(sp);
    508 	sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
    509 	sp[ndx + 1] = ovfl_num;
    510 	sp[ndx + 2] = OVFLPAGE;
    511 	sp[0] = ndx + 2;
    512 #ifdef HASH_STATISTICS
    513 	hash_overflows++;
    514 #endif
    515 	return (bufp->ovfl);
    516 }
    517 
    518 /*
    519  * Returns:
    520  *	 0 indicates SUCCESS
    521  *	-1 indicates FAILURE
    522  */
    523 extern int
    524 __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
    525 	HTAB *hashp;
    526 	char *p;
    527 	u_int32_t bucket;
    528 	int is_bucket, is_disk, is_bitmap;
    529 {
    530 	register int fd, page, size;
    531 	int rsize;
    532 	u_int16_t *bp;
    533 
    534 	fd = hashp->fp;
    535 	size = hashp->BSIZE;
    536 
    537 	if ((fd == -1) || !is_disk) {
    538 		PAGE_INIT(p);
    539 		return (0);
    540 	}
    541 	if (is_bucket)
    542 		page = BUCKET_TO_PAGE(bucket);
    543 	else
    544 		page = OADDR_TO_PAGE(bucket);
    545 	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
    546 	    ((rsize = read(fd, p, size)) == -1))
    547 		return (-1);
    548 	bp = (u_int16_t *)p;
    549 	if (!rsize)
    550 		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
    551 	else
    552 		if (rsize != size) {
    553 			errno = EFTYPE;
    554 			return (-1);
    555 		}
    556 	if (!is_bitmap && !bp[0]) {
    557 		PAGE_INIT(p);
    558 	} else
    559 		if (hashp->LORDER != BYTE_ORDER) {
    560 			register int i, max;
    561 
    562 			if (is_bitmap) {
    563 				max = hashp->BSIZE >> 2; /* divide by 4 */
    564 				for (i = 0; i < max; i++)
    565 					M_32_SWAP(((int *)p)[i]);
    566 			} else {
    567 				M_16_SWAP(bp[0]);
    568 				max = bp[0] + 2;
    569 				for (i = 1; i <= max; i++)
    570 					M_16_SWAP(bp[i]);
    571 			}
    572 		}
    573 	return (0);
    574 }
    575 
    576 /*
    577  * Write page p to disk
    578  *
    579  * Returns:
    580  *	 0 ==> OK
    581  *	-1 ==>failure
    582  */
    583 extern int
    584 __put_page(hashp, p, bucket, is_bucket, is_bitmap)
    585 	HTAB *hashp;
    586 	char *p;
    587 	u_int32_t bucket;
    588 	int is_bucket, is_bitmap;
    589 {
    590 	register int fd, page, size;
    591 	int wsize;
    592 
    593 	size = hashp->BSIZE;
    594 	if ((hashp->fp == -1) && open_temp(hashp))
    595 		return (-1);
    596 	fd = hashp->fp;
    597 
    598 	if (hashp->LORDER != BYTE_ORDER) {
    599 		register int i;
    600 		register int max;
    601 
    602 		if (is_bitmap) {
    603 			max = hashp->BSIZE >> 2;	/* divide by 4 */
    604 			for (i = 0; i < max; i++)
    605 				M_32_SWAP(((int *)p)[i]);
    606 		} else {
    607 			max = ((u_int16_t *)p)[0] + 2;
    608 			for (i = 0; i <= max; i++)
    609 				M_16_SWAP(((u_int16_t *)p)[i]);
    610 		}
    611 	}
    612 	if (is_bucket)
    613 		page = BUCKET_TO_PAGE(bucket);
    614 	else
    615 		page = OADDR_TO_PAGE(bucket);
    616 	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
    617 	    ((wsize = write(fd, p, size)) == -1))
    618 		/* Errno is set */
    619 		return (-1);
    620 	if (wsize != size) {
    621 		errno = EFTYPE;
    622 		return (-1);
    623 	}
    624 	return (0);
    625 }
    626 
    627 #define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
    628 /*
    629  * Initialize a new bitmap page.  Bitmap pages are left in memory
    630  * once they are read in.
    631  */
    632 extern int
    633 __ibitmap(hashp, pnum, nbits, ndx)
    634 	HTAB *hashp;
    635 	int pnum, nbits, ndx;
    636 {
    637 	u_int32_t *ip;
    638 	int clearbytes, clearints;
    639 
    640 	if ((ip = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
    641 		return (1);
    642 	hashp->nmaps++;
    643 	clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
    644 	clearbytes = clearints << INT_TO_BYTE;
    645 	(void)memset((char *)ip, 0, clearbytes);
    646 	(void)memset(((char *)ip) + clearbytes, 0xFF,
    647 	    hashp->BSIZE - clearbytes);
    648 	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
    649 	SETBIT(ip, 0);
    650 	hashp->BITMAPS[ndx] = (u_int16_t)pnum;
    651 	hashp->mapp[ndx] = ip;
    652 	return (0);
    653 }
    654 
    655 static u_int32_t
    656 first_free(map)
    657 	u_int32_t map;
    658 {
    659 	register u_int32_t i, mask;
    660 
    661 	mask = 0x1;
    662 	for (i = 0; i < BITS_PER_MAP; i++) {
    663 		if (!(mask & map))
    664 			return (i);
    665 		mask = mask << 1;
    666 	}
    667 	return (i);
    668 }
    669 
    670 static u_int16_t
    671 overflow_page(hashp)
    672 	HTAB *hashp;
    673 {
    674 	register u_int32_t *freep;
    675 	register int max_free, offset, splitnum;
    676 	u_int16_t addr;
    677 	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
    678 #ifdef DEBUG2
    679 	int tmp1, tmp2;
    680 #endif
    681 	splitnum = hashp->OVFL_POINT;
    682 	max_free = hashp->SPARES[splitnum];
    683 
    684 	free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
    685 	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
    686 
    687 	/* Look through all the free maps to find the first free block */
    688 	first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
    689 	for ( i = first_page; i <= free_page; i++ ) {
    690 		if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
    691 		    !(freep = fetch_bitmap(hashp, i)))
    692 			return (NULL);
    693 		if (i == free_page)
    694 			in_use_bits = free_bit;
    695 		else
    696 			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
    697 
    698 		if (i == first_page) {
    699 			bit = hashp->LAST_FREED &
    700 			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
    701 			j = bit / BITS_PER_MAP;
    702 			bit = bit & ~(BITS_PER_MAP - 1);
    703 		} else {
    704 			bit = 0;
    705 			j = 0;
    706 		}
    707 		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
    708 			if (freep[j] != ALL_SET)
    709 				goto found;
    710 	}
    711 
    712 	/* No Free Page Found */
    713 	hashp->LAST_FREED = hashp->SPARES[splitnum];
    714 	hashp->SPARES[splitnum]++;
    715 	offset = hashp->SPARES[splitnum] -
    716 	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
    717 
    718 #define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
    719 	if (offset > SPLITMASK) {
    720 		if (++splitnum >= NCACHED) {
    721 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
    722 			return (NULL);
    723 		}
    724 		hashp->OVFL_POINT = splitnum;
    725 		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
    726 		hashp->SPARES[splitnum-1]--;
    727 		offset = 1;
    728 	}
    729 
    730 	/* Check if we need to allocate a new bitmap page */
    731 	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
    732 		free_page++;
    733 		if (free_page >= NCACHED) {
    734 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
    735 			return (NULL);
    736 		}
    737 		/*
    738 		 * This is tricky.  The 1 indicates that you want the new page
    739 		 * allocated with 1 clear bit.  Actually, you are going to
    740 		 * allocate 2 pages from this map.  The first is going to be
    741 		 * the map page, the second is the overflow page we were
    742 		 * looking for.  The init_bitmap routine automatically, sets
    743 		 * the first bit of itself to indicate that the bitmap itself
    744 		 * is in use.  We would explicitly set the second bit, but
    745 		 * don't have to if we tell init_bitmap not to leave it clear
    746 		 * in the first place.
    747 		 */
    748 		if (__ibitmap(hashp, (int)OADDR_OF(splitnum, offset),
    749 		    1, free_page))
    750 			return (NULL);
    751 		hashp->SPARES[splitnum]++;
    752 #ifdef DEBUG2
    753 		free_bit = 2;
    754 #endif
    755 		offset++;
    756 		if (offset > SPLITMASK) {
    757 			if (++splitnum >= NCACHED) {
    758 				(void)write(STDERR_FILENO, OVMSG,
    759 				    sizeof(OVMSG) - 1);
    760 				return (NULL);
    761 			}
    762 			hashp->OVFL_POINT = splitnum;
    763 			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
    764 			hashp->SPARES[splitnum-1]--;
    765 			offset = 0;
    766 		}
    767 	} else {
    768 		/*
    769 		 * Free_bit addresses the last used bit.  Bump it to address
    770 		 * the first available bit.
    771 		 */
    772 		free_bit++;
    773 		SETBIT(freep, free_bit);
    774 	}
    775 
    776 	/* Calculate address of the new overflow page */
    777 	addr = OADDR_OF(splitnum, offset);
    778 #ifdef DEBUG2
    779 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
    780 	    addr, free_bit, free_page);
    781 #endif
    782 	return (addr);
    783 
    784 found:
    785 	bit = bit + first_free(freep[j]);
    786 	SETBIT(freep, bit);
    787 #ifdef DEBUG2
    788 	tmp1 = bit;
    789 	tmp2 = i;
    790 #endif
    791 	/*
    792 	 * Bits are addressed starting with 0, but overflow pages are addressed
    793 	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
    794 	 * it to convert it to a page number.
    795 	 */
    796 	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
    797 	if (bit >= hashp->LAST_FREED)
    798 		hashp->LAST_FREED = bit - 1;
    799 
    800 	/* Calculate the split number for this page */
    801 	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
    802 	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
    803 	if (offset >= SPLITMASK)
    804 		return (NULL);	/* Out of overflow pages */
    805 	addr = OADDR_OF(i, offset);
    806 #ifdef DEBUG2
    807 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
    808 	    addr, tmp1, tmp2);
    809 #endif
    810 
    811 	/* Allocate and return the overflow page */
    812 	return (addr);
    813 }
    814 
    815 /*
    816  * Mark this overflow page as free.
    817  */
    818 extern void
    819 __free_ovflpage(hashp, obufp)
    820 	HTAB *hashp;
    821 	BUFHEAD *obufp;
    822 {
    823 	register u_int16_t addr;
    824 	u_int32_t *freep;
    825 	int bit_address, free_page, free_bit;
    826 	u_int16_t ndx;
    827 
    828 	addr = obufp->addr;
    829 #ifdef DEBUG1
    830 	(void)fprintf(stderr, "Freeing %d\n", addr);
    831 #endif
    832 	ndx = (((u_int16_t)addr) >> SPLITSHIFT);
    833 	bit_address =
    834 	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
    835 	 if (bit_address < hashp->LAST_FREED)
    836 		hashp->LAST_FREED = bit_address;
    837 	free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
    838 	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
    839 
    840 	if (!(freep = hashp->mapp[free_page]))
    841 		freep = fetch_bitmap(hashp, free_page);
    842 #ifdef DEBUG
    843 	/*
    844 	 * This had better never happen.  It means we tried to read a bitmap
    845 	 * that has already had overflow pages allocated off it, and we
    846 	 * failed to read it from the file.
    847 	 */
    848 	if (!freep)
    849 		assert(0);
    850 #endif
    851 	CLRBIT(freep, free_bit);
    852 #ifdef DEBUG2
    853 	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
    854 	    obufp->addr, free_bit, free_page);
    855 #endif
    856 	__reclaim_buf(hashp, obufp);
    857 }
    858 
    859 /*
    860  * Returns:
    861  *	 0 success
    862  *	-1 failure
    863  */
    864 static int
    865 open_temp(hashp)
    866 	HTAB *hashp;
    867 {
    868 	sigset_t set, oset;
    869 	static char namestr[] = "_hashXXXXXX";
    870 
    871 	/* Block signals; make sure file goes away at process exit. */
    872 	(void)sigfillset(&set);
    873 	(void)sigprocmask(SIG_BLOCK, &set, &oset);
    874 	if ((hashp->fp = mkstemp(namestr)) != -1) {
    875 		(void)unlink(namestr);
    876 		(void)fcntl(hashp->fp, F_SETFD, 1);
    877 	}
    878 	(void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
    879 	return (hashp->fp != -1 ? 0 : -1);
    880 }
    881 
    882 /*
    883  * We have to know that the key will fit, but the last entry on the page is
    884  * an overflow pair, so we need to shift things.
    885  */
    886 static void
    887 squeeze_key(sp, key, val)
    888 	u_int16_t *sp;
    889 	const DBT *key, *val;
    890 {
    891 	register char *p;
    892 	u_int16_t free_space, n, off, pageno;
    893 
    894 	p = (char *)sp;
    895 	n = sp[0];
    896 	free_space = FREESPACE(sp);
    897 	off = OFFSET(sp);
    898 
    899 	pageno = sp[n - 1];
    900 	off -= key->size;
    901 	sp[n - 1] = off;
    902 	memmove(p + off, key->data, key->size);
    903 	off -= val->size;
    904 	sp[n] = off;
    905 	memmove(p + off, val->data, val->size);
    906 	sp[0] = n + 2;
    907 	sp[n + 1] = pageno;
    908 	sp[n + 2] = OVFLPAGE;
    909 	FREESPACE(sp) = free_space - PAIRSIZE(key, val);
    910 	OFFSET(sp) = off;
    911 }
    912 
    913 static u_int32_t *
    914 fetch_bitmap(hashp, ndx)
    915 	HTAB *hashp;
    916 	int ndx;
    917 {
    918 	if (ndx >= hashp->nmaps)
    919 		return (NULL);
    920 	if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
    921 		return (NULL);
    922 	if (__get_page(hashp,
    923 	    (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
    924 		free(hashp->mapp[ndx]);
    925 		return (NULL);
    926 	}
    927 	return (hashp->mapp[ndx]);
    928 }
    929 
    930 #ifdef DEBUG4
    931 int
    932 print_chain(addr)
    933 	int addr;
    934 {
    935 	BUFHEAD *bufp;
    936 	short *bp, oaddr;
    937 
    938 	(void)fprintf(stderr, "%d ", addr);
    939 	bufp = __get_buf(hashp, addr, NULL, 0);
    940 	bp = (short *)bufp->page;
    941 	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
    942 		((bp[0] > 2) && bp[2] < REAL_KEY))) {
    943 		oaddr = bp[bp[0] - 1];
    944 		(void)fprintf(stderr, "%d ", (int)oaddr);
    945 		bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
    946 		bp = (short *)bufp->page;
    947 	}
    948 	(void)fprintf(stderr, "\n");
    949 }
    950 #endif
    951