hash_page.c revision 1.9 1 /* $NetBSD: hash_page.c,v 1.9 1997/07/13 18:52:06 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Margo Seltzer.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 #if defined(LIBC_SCCS) && !defined(lint)
41 #if 0
42 static char sccsid[] = "@(#)hash_page.c 8.7 (Berkeley) 8/16/94";
43 #else
44 __RCSID("$NetBSD: hash_page.c,v 1.9 1997/07/13 18:52:06 christos Exp $");
45 #endif
46 #endif /* LIBC_SCCS and not lint */
47
48 /*
49 * PACKAGE: hashing
50 *
51 * DESCRIPTION:
52 * Page manipulation for hashing package.
53 *
54 * ROUTINES:
55 *
56 * External
57 * __get_page
58 * __add_ovflpage
59 * Internal
60 * overflow_page
61 * open_temp
62 */
63
64 #include <sys/types.h>
65
66 #include <errno.h>
67 #include <fcntl.h>
68 #include <signal.h>
69 #include <stdio.h>
70 #include <stdlib.h>
71 #include <string.h>
72 #include <unistd.h>
73 #ifdef DEBUG
74 #include <assert.h>
75 #endif
76
77 #include <db.h>
78 #include "hash.h"
79 #include "page.h"
80 #include "extern.h"
81
82 static u_int32_t *fetch_bitmap __P((HTAB *, int));
83 static u_int32_t first_free __P((u_int32_t));
84 static int open_temp __P((HTAB *));
85 static u_int16_t overflow_page __P((HTAB *));
86 static void putpair __P((char *, const DBT *, const DBT *));
87 static void squeeze_key __P((u_int16_t *, const DBT *, const DBT *));
88 static int ugly_split
89 __P((HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int));
90
91 #define PAGE_INIT(P) { \
92 ((u_int16_t *)(P))[0] = 0; \
93 ((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
94 ((u_int16_t *)(P))[2] = hashp->BSIZE; \
95 }
96
97 /*
98 * This is called AFTER we have verified that there is room on the page for
99 * the pair (PAIRFITS has returned true) so we go right ahead and start moving
100 * stuff on.
101 */
102 static void
103 putpair(p, key, val)
104 char *p;
105 const DBT *key, *val;
106 {
107 register u_int16_t *bp, n, off;
108
109 bp = (u_int16_t *)p;
110
111 /* Enter the key first. */
112 n = bp[0];
113
114 off = OFFSET(bp) - key->size;
115 memmove(p + off, key->data, key->size);
116 bp[++n] = off;
117
118 /* Now the data. */
119 off -= val->size;
120 memmove(p + off, val->data, val->size);
121 bp[++n] = off;
122
123 /* Adjust page info. */
124 bp[0] = n;
125 bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
126 bp[n + 2] = off;
127 }
128
129 /*
130 * Returns:
131 * 0 OK
132 * -1 error
133 */
134 extern int
135 __delpair(hashp, bufp, ndx)
136 HTAB *hashp;
137 BUFHEAD *bufp;
138 register int ndx;
139 {
140 register u_int16_t *bp, newoff;
141 register int n;
142 u_int16_t pairlen;
143
144 bp = (u_int16_t *)bufp->page;
145 n = bp[0];
146
147 if (bp[ndx + 1] < REAL_KEY)
148 return (__big_delete(hashp, bufp));
149 if (ndx != 1)
150 newoff = bp[ndx - 1];
151 else
152 newoff = hashp->BSIZE;
153 pairlen = newoff - bp[ndx + 1];
154
155 if (ndx != (n - 1)) {
156 /* Hard Case -- need to shuffle keys */
157 register int i;
158 register char *src = bufp->page + (int)OFFSET(bp);
159 register char *dst = src + (int)pairlen;
160 memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
161
162 /* Now adjust the pointers */
163 for (i = ndx + 2; i <= n; i += 2) {
164 if (bp[i + 1] == OVFLPAGE) {
165 bp[i - 2] = bp[i];
166 bp[i - 1] = bp[i + 1];
167 } else {
168 bp[i - 2] = bp[i] + pairlen;
169 bp[i - 1] = bp[i + 1] + pairlen;
170 }
171 }
172 }
173 /* Finally adjust the page data */
174 bp[n] = OFFSET(bp) + pairlen;
175 bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
176 bp[0] = n - 2;
177 hashp->NKEYS--;
178
179 bufp->flags |= BUF_MOD;
180 return (0);
181 }
182 /*
183 * Returns:
184 * 0 ==> OK
185 * -1 ==> Error
186 */
187 extern int
188 __split_page(hashp, obucket, nbucket)
189 HTAB *hashp;
190 u_int32_t obucket, nbucket;
191 {
192 register BUFHEAD *new_bufp, *old_bufp;
193 register u_int16_t *ino;
194 register char *np;
195 DBT key, val;
196 int n, ndx, retval;
197 u_int16_t copyto, diff, off, moved;
198 char *op;
199
200 copyto = (u_int16_t)hashp->BSIZE;
201 off = (u_int16_t)hashp->BSIZE;
202 old_bufp = __get_buf(hashp, obucket, NULL, 0);
203 if (old_bufp == NULL)
204 return (-1);
205 new_bufp = __get_buf(hashp, nbucket, NULL, 0);
206 if (new_bufp == NULL)
207 return (-1);
208
209 old_bufp->flags |= (BUF_MOD | BUF_PIN);
210 new_bufp->flags |= (BUF_MOD | BUF_PIN);
211
212 ino = (u_int16_t *)(op = old_bufp->page);
213 np = new_bufp->page;
214
215 moved = 0;
216
217 for (n = 1, ndx = 1; n < ino[0]; n += 2) {
218 if (ino[n + 1] < REAL_KEY) {
219 retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
220 (int)copyto, (int)moved);
221 old_bufp->flags &= ~BUF_PIN;
222 new_bufp->flags &= ~BUF_PIN;
223 return (retval);
224
225 }
226 key.data = (u_char *)op + ino[n];
227 key.size = off - ino[n];
228
229 if (__call_hash(hashp, key.data, key.size) == obucket) {
230 /* Don't switch page */
231 diff = copyto - off;
232 if (diff) {
233 copyto = ino[n + 1] + diff;
234 memmove(op + copyto, op + ino[n + 1],
235 off - ino[n + 1]);
236 ino[ndx] = copyto + ino[n] - ino[n + 1];
237 ino[ndx + 1] = copyto;
238 } else
239 copyto = ino[n + 1];
240 ndx += 2;
241 } else {
242 /* Switch page */
243 val.data = (u_char *)op + ino[n + 1];
244 val.size = ino[n] - ino[n + 1];
245 putpair(np, &key, &val);
246 moved += 2;
247 }
248
249 off = ino[n + 1];
250 }
251
252 /* Now clean up the page */
253 ino[0] -= moved;
254 FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
255 OFFSET(ino) = copyto;
256
257 #ifdef DEBUG3
258 (void)fprintf(stderr, "split %d/%d\n",
259 ((u_int16_t *)np)[0] / 2,
260 ((u_int16_t *)op)[0] / 2);
261 #endif
262 /* unpin both pages */
263 old_bufp->flags &= ~BUF_PIN;
264 new_bufp->flags &= ~BUF_PIN;
265 return (0);
266 }
267
268 /*
269 * Called when we encounter an overflow or big key/data page during split
270 * handling. This is special cased since we have to begin checking whether
271 * the key/data pairs fit on their respective pages and because we may need
272 * overflow pages for both the old and new pages.
273 *
274 * The first page might be a page with regular key/data pairs in which case
275 * we have a regular overflow condition and just need to go on to the next
276 * page or it might be a big key/data pair in which case we need to fix the
277 * big key/data pair.
278 *
279 * Returns:
280 * 0 ==> success
281 * -1 ==> failure
282 */
283 static int
284 ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
285 HTAB *hashp;
286 u_int32_t obucket; /* Same as __split_page. */
287 BUFHEAD *old_bufp, *new_bufp;
288 int copyto; /* First byte on page which contains key/data values. */
289 int moved; /* Number of pairs moved to new page. */
290 {
291 register BUFHEAD *bufp; /* Buffer header for ino */
292 register u_int16_t *ino; /* Page keys come off of */
293 register u_int16_t *np; /* New page */
294 register u_int16_t *op; /* Page keys go on to if they aren't moving */
295
296 BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */
297 DBT key, val;
298 SPLIT_RETURN ret;
299 u_int16_t n, off, ov_addr, scopyto;
300 char *cino; /* Character value of ino */
301
302 bufp = old_bufp;
303 ino = (u_int16_t *)old_bufp->page;
304 np = (u_int16_t *)new_bufp->page;
305 op = (u_int16_t *)old_bufp->page;
306 last_bfp = NULL;
307 scopyto = (u_int16_t)copyto; /* ANSI */
308
309 n = ino[0] - 1;
310 while (n < ino[0]) {
311 if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
312 if (__big_split(hashp, old_bufp,
313 new_bufp, bufp, bufp->addr, obucket, &ret))
314 return (-1);
315 old_bufp = ret.oldp;
316 if (!old_bufp)
317 return (-1);
318 op = (u_int16_t *)old_bufp->page;
319 new_bufp = ret.newp;
320 if (!new_bufp)
321 return (-1);
322 np = (u_int16_t *)new_bufp->page;
323 bufp = ret.nextp;
324 if (!bufp)
325 return (0);
326 cino = (char *)bufp->page;
327 ino = (u_int16_t *)cino;
328 last_bfp = ret.nextp;
329 } else if (ino[n + 1] == OVFLPAGE) {
330 ov_addr = ino[n];
331 /*
332 * Fix up the old page -- the extra 2 are the fields
333 * which contained the overflow information.
334 */
335 ino[0] -= (moved + 2);
336 FREESPACE(ino) =
337 scopyto - sizeof(u_int16_t) * (ino[0] + 3);
338 OFFSET(ino) = scopyto;
339
340 bufp = __get_buf(hashp, ov_addr, bufp, 0);
341 if (!bufp)
342 return (-1);
343
344 ino = (u_int16_t *)bufp->page;
345 n = 1;
346 scopyto = hashp->BSIZE;
347 moved = 0;
348
349 if (last_bfp)
350 __free_ovflpage(hashp, last_bfp);
351 last_bfp = bufp;
352 }
353 /* Move regular sized pairs of there are any */
354 off = hashp->BSIZE;
355 for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
356 cino = (char *)ino;
357 key.data = (u_char *)cino + ino[n];
358 key.size = off - ino[n];
359 val.data = (u_char *)cino + ino[n + 1];
360 val.size = ino[n] - ino[n + 1];
361 off = ino[n + 1];
362
363 if (__call_hash(hashp, key.data, key.size) == obucket) {
364 /* Keep on old page */
365 if (PAIRFITS(op, (&key), (&val)))
366 putpair((char *)op, &key, &val);
367 else {
368 old_bufp =
369 __add_ovflpage(hashp, old_bufp);
370 if (!old_bufp)
371 return (-1);
372 op = (u_int16_t *)old_bufp->page;
373 putpair((char *)op, &key, &val);
374 }
375 old_bufp->flags |= BUF_MOD;
376 } else {
377 /* Move to new page */
378 if (PAIRFITS(np, (&key), (&val)))
379 putpair((char *)np, &key, &val);
380 else {
381 new_bufp =
382 __add_ovflpage(hashp, new_bufp);
383 if (!new_bufp)
384 return (-1);
385 np = (u_int16_t *)new_bufp->page;
386 putpair((char *)np, &key, &val);
387 }
388 new_bufp->flags |= BUF_MOD;
389 }
390 }
391 }
392 if (last_bfp)
393 __free_ovflpage(hashp, last_bfp);
394 return (0);
395 }
396
397 /*
398 * Add the given pair to the page
399 *
400 * Returns:
401 * 0 ==> OK
402 * 1 ==> failure
403 */
404 extern int
405 __addel(hashp, bufp, key, val)
406 HTAB *hashp;
407 BUFHEAD *bufp;
408 const DBT *key, *val;
409 {
410 register u_int16_t *bp, *sop;
411 int do_expand;
412
413 bp = (u_int16_t *)bufp->page;
414 do_expand = 0;
415 while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
416 /* Exception case */
417 if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
418 /* This is the last page of a big key/data pair
419 and we need to add another page */
420 break;
421 else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
422 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
423 if (!bufp)
424 return (-1);
425 bp = (u_int16_t *)bufp->page;
426 } else
427 /* Try to squeeze key on this page */
428 if (FREESPACE(bp) > PAIRSIZE(key, val)) {
429 squeeze_key(bp, key, val);
430 return (0);
431 } else {
432 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
433 if (!bufp)
434 return (-1);
435 bp = (u_int16_t *)bufp->page;
436 }
437
438 if (PAIRFITS(bp, key, val))
439 putpair(bufp->page, key, val);
440 else {
441 do_expand = 1;
442 bufp = __add_ovflpage(hashp, bufp);
443 if (!bufp)
444 return (-1);
445 sop = (u_int16_t *)bufp->page;
446
447 if (PAIRFITS(sop, key, val))
448 putpair((char *)sop, key, val);
449 else
450 if (__big_insert(hashp, bufp, key, val))
451 return (-1);
452 }
453 bufp->flags |= BUF_MOD;
454 /*
455 * If the average number of keys per bucket exceeds the fill factor,
456 * expand the table.
457 */
458 hashp->NKEYS++;
459 if (do_expand ||
460 (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
461 return (__expand_table(hashp));
462 return (0);
463 }
464
465 /*
466 *
467 * Returns:
468 * pointer on success
469 * NULL on error
470 */
471 extern BUFHEAD *
472 __add_ovflpage(hashp, bufp)
473 HTAB *hashp;
474 BUFHEAD *bufp;
475 {
476 register u_int16_t *sp;
477 u_int16_t ndx, ovfl_num;
478 #ifdef DEBUG1
479 int tmp1, tmp2;
480 #endif
481 sp = (u_int16_t *)bufp->page;
482
483 /* Check if we are dynamically determining the fill factor */
484 if (hashp->FFACTOR == DEF_FFACTOR) {
485 hashp->FFACTOR = sp[0] >> 1;
486 if (hashp->FFACTOR < MIN_FFACTOR)
487 hashp->FFACTOR = MIN_FFACTOR;
488 }
489 bufp->flags |= BUF_MOD;
490 ovfl_num = overflow_page(hashp);
491 #ifdef DEBUG1
492 tmp1 = bufp->addr;
493 tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
494 #endif
495 if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
496 return (NULL);
497 bufp->ovfl->flags |= BUF_MOD;
498 #ifdef DEBUG1
499 (void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
500 tmp1, tmp2, bufp->ovfl->addr);
501 #endif
502 ndx = sp[0];
503 /*
504 * Since a pair is allocated on a page only if there's room to add
505 * an overflow page, we know that the OVFL information will fit on
506 * the page.
507 */
508 sp[ndx + 4] = OFFSET(sp);
509 sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
510 sp[ndx + 1] = ovfl_num;
511 sp[ndx + 2] = OVFLPAGE;
512 sp[0] = ndx + 2;
513 #ifdef HASH_STATISTICS
514 hash_overflows++;
515 #endif
516 return (bufp->ovfl);
517 }
518
519 /*
520 * Returns:
521 * 0 indicates SUCCESS
522 * -1 indicates FAILURE
523 */
524 extern int
525 __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
526 HTAB *hashp;
527 char *p;
528 u_int32_t bucket;
529 int is_bucket, is_disk, is_bitmap;
530 {
531 register int fd, page, size;
532 int rsize;
533 u_int16_t *bp;
534
535 fd = hashp->fp;
536 size = hashp->BSIZE;
537
538 if ((fd == -1) || !is_disk) {
539 PAGE_INIT(p);
540 return (0);
541 }
542 if (is_bucket)
543 page = BUCKET_TO_PAGE(bucket);
544 else
545 page = OADDR_TO_PAGE(bucket);
546 if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
547 ((rsize = read(fd, p, size)) == -1))
548 return (-1);
549 bp = (u_int16_t *)p;
550 if (!rsize)
551 bp[0] = 0; /* We hit the EOF, so initialize a new page */
552 else
553 if (rsize != size) {
554 errno = EFTYPE;
555 return (-1);
556 }
557 if (!is_bitmap && !bp[0]) {
558 PAGE_INIT(p);
559 } else
560 if (hashp->LORDER != BYTE_ORDER) {
561 register int i, max;
562
563 if (is_bitmap) {
564 max = hashp->BSIZE >> 2; /* divide by 4 */
565 for (i = 0; i < max; i++)
566 M_32_SWAP(((int *)p)[i]);
567 } else {
568 M_16_SWAP(bp[0]);
569 max = bp[0] + 2;
570 for (i = 1; i <= max; i++)
571 M_16_SWAP(bp[i]);
572 }
573 }
574 return (0);
575 }
576
577 /*
578 * Write page p to disk
579 *
580 * Returns:
581 * 0 ==> OK
582 * -1 ==>failure
583 */
584 extern int
585 __put_page(hashp, p, bucket, is_bucket, is_bitmap)
586 HTAB *hashp;
587 char *p;
588 u_int32_t bucket;
589 int is_bucket, is_bitmap;
590 {
591 register int fd, page, size;
592 int wsize;
593
594 size = hashp->BSIZE;
595 if ((hashp->fp == -1) && open_temp(hashp))
596 return (-1);
597 fd = hashp->fp;
598
599 if (hashp->LORDER != BYTE_ORDER) {
600 register int i;
601 register int max;
602
603 if (is_bitmap) {
604 max = hashp->BSIZE >> 2; /* divide by 4 */
605 for (i = 0; i < max; i++)
606 M_32_SWAP(((int *)p)[i]);
607 } else {
608 max = ((u_int16_t *)p)[0] + 2;
609 for (i = 0; i <= max; i++)
610 M_16_SWAP(((u_int16_t *)p)[i]);
611 }
612 }
613 if (is_bucket)
614 page = BUCKET_TO_PAGE(bucket);
615 else
616 page = OADDR_TO_PAGE(bucket);
617 if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
618 ((wsize = write(fd, p, size)) == -1))
619 /* Errno is set */
620 return (-1);
621 if (wsize != size) {
622 errno = EFTYPE;
623 return (-1);
624 }
625 return (0);
626 }
627
628 #define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1)
629 /*
630 * Initialize a new bitmap page. Bitmap pages are left in memory
631 * once they are read in.
632 */
633 extern int
634 __ibitmap(hashp, pnum, nbits, ndx)
635 HTAB *hashp;
636 int pnum, nbits, ndx;
637 {
638 u_int32_t *ip;
639 int clearbytes, clearints;
640
641 if ((ip = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
642 return (1);
643 hashp->nmaps++;
644 clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
645 clearbytes = clearints << INT_TO_BYTE;
646 (void)memset((char *)ip, 0, clearbytes);
647 (void)memset(((char *)ip) + clearbytes, 0xFF,
648 hashp->BSIZE - clearbytes);
649 ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
650 SETBIT(ip, 0);
651 hashp->BITMAPS[ndx] = (u_int16_t)pnum;
652 hashp->mapp[ndx] = ip;
653 return (0);
654 }
655
656 static u_int32_t
657 first_free(map)
658 u_int32_t map;
659 {
660 register u_int32_t i, mask;
661
662 mask = 0x1;
663 for (i = 0; i < BITS_PER_MAP; i++) {
664 if (!(mask & map))
665 return (i);
666 mask = mask << 1;
667 }
668 return (i);
669 }
670
671 static u_int16_t
672 overflow_page(hashp)
673 HTAB *hashp;
674 {
675 register u_int32_t *freep = NULL;
676 register int max_free, offset, splitnum;
677 u_int16_t addr;
678 int bit, first_page, free_bit, free_page, i, in_use_bits, j;
679 #ifdef DEBUG2
680 int tmp1, tmp2;
681 #endif
682 splitnum = hashp->OVFL_POINT;
683 max_free = hashp->SPARES[splitnum];
684
685 free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
686 free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
687
688 /* Look through all the free maps to find the first free block */
689 first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
690 for ( i = first_page; i <= free_page; i++ ) {
691 if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
692 !(freep = fetch_bitmap(hashp, i)))
693 return (0);
694 if (i == free_page)
695 in_use_bits = free_bit;
696 else
697 in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
698
699 if (i == first_page) {
700 bit = hashp->LAST_FREED &
701 ((hashp->BSIZE << BYTE_SHIFT) - 1);
702 j = bit / BITS_PER_MAP;
703 bit = bit & ~(BITS_PER_MAP - 1);
704 } else {
705 bit = 0;
706 j = 0;
707 }
708 for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
709 if (freep[j] != ALL_SET)
710 goto found;
711 }
712
713 /* No Free Page Found */
714 hashp->LAST_FREED = hashp->SPARES[splitnum];
715 hashp->SPARES[splitnum]++;
716 offset = hashp->SPARES[splitnum] -
717 (splitnum ? hashp->SPARES[splitnum - 1] : 0);
718
719 #define OVMSG "HASH: Out of overflow pages. Increase page size\n"
720 if (offset > SPLITMASK) {
721 if (++splitnum >= NCACHED) {
722 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
723 return (0);
724 }
725 hashp->OVFL_POINT = splitnum;
726 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
727 hashp->SPARES[splitnum-1]--;
728 offset = 1;
729 }
730
731 /* Check if we need to allocate a new bitmap page */
732 if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
733 free_page++;
734 if (free_page >= NCACHED) {
735 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
736 return (0);
737 }
738 /*
739 * This is tricky. The 1 indicates that you want the new page
740 * allocated with 1 clear bit. Actually, you are going to
741 * allocate 2 pages from this map. The first is going to be
742 * the map page, the second is the overflow page we were
743 * looking for. The init_bitmap routine automatically, sets
744 * the first bit of itself to indicate that the bitmap itself
745 * is in use. We would explicitly set the second bit, but
746 * don't have to if we tell init_bitmap not to leave it clear
747 * in the first place.
748 */
749 if (__ibitmap(hashp,
750 (int)OADDR_OF(splitnum, offset), 1, free_page))
751 return (0);
752 hashp->SPARES[splitnum]++;
753 #ifdef DEBUG2
754 free_bit = 2;
755 #endif
756 offset++;
757 if (offset > SPLITMASK) {
758 if (++splitnum >= NCACHED) {
759 (void)write(STDERR_FILENO, OVMSG,
760 sizeof(OVMSG) - 1);
761 return (0);
762 }
763 hashp->OVFL_POINT = splitnum;
764 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
765 hashp->SPARES[splitnum-1]--;
766 offset = 0;
767 }
768 } else {
769 /*
770 * Free_bit addresses the last used bit. Bump it to address
771 * the first available bit.
772 */
773 free_bit++;
774 SETBIT(freep, free_bit);
775 }
776
777 /* Calculate address of the new overflow page */
778 addr = OADDR_OF(splitnum, offset);
779 #ifdef DEBUG2
780 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
781 addr, free_bit, free_page);
782 #endif
783 return (addr);
784
785 found:
786 bit = bit + first_free(freep[j]);
787 SETBIT(freep, bit);
788 #ifdef DEBUG2
789 tmp1 = bit;
790 tmp2 = i;
791 #endif
792 /*
793 * Bits are addressed starting with 0, but overflow pages are addressed
794 * beginning at 1. Bit is a bit addressnumber, so we need to increment
795 * it to convert it to a page number.
796 */
797 bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
798 if (bit >= hashp->LAST_FREED)
799 hashp->LAST_FREED = bit - 1;
800
801 /* Calculate the split number for this page */
802 for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
803 offset = (i ? bit - hashp->SPARES[i - 1] : bit);
804 if (offset >= SPLITMASK)
805 return (0); /* Out of overflow pages */
806 addr = OADDR_OF(i, offset);
807 #ifdef DEBUG2
808 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
809 addr, tmp1, tmp2);
810 #endif
811
812 /* Allocate and return the overflow page */
813 return (addr);
814 }
815
816 /*
817 * Mark this overflow page as free.
818 */
819 extern void
820 __free_ovflpage(hashp, obufp)
821 HTAB *hashp;
822 BUFHEAD *obufp;
823 {
824 register u_int16_t addr;
825 u_int32_t *freep;
826 int bit_address, free_page, free_bit;
827 u_int16_t ndx;
828
829 addr = obufp->addr;
830 #ifdef DEBUG1
831 (void)fprintf(stderr, "Freeing %d\n", addr);
832 #endif
833 ndx = (((u_int16_t)addr) >> SPLITSHIFT);
834 bit_address =
835 (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
836 if (bit_address < hashp->LAST_FREED)
837 hashp->LAST_FREED = bit_address;
838 free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
839 free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
840
841 if (!(freep = hashp->mapp[free_page]))
842 freep = fetch_bitmap(hashp, free_page);
843 #ifdef DEBUG
844 /*
845 * This had better never happen. It means we tried to read a bitmap
846 * that has already had overflow pages allocated off it, and we
847 * failed to read it from the file.
848 */
849 if (!freep)
850 assert(0);
851 #endif
852 CLRBIT(freep, free_bit);
853 #ifdef DEBUG2
854 (void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
855 obufp->addr, free_bit, free_page);
856 #endif
857 __reclaim_buf(hashp, obufp);
858 }
859
860 /*
861 * Returns:
862 * 0 success
863 * -1 failure
864 */
865 static int
866 open_temp(hashp)
867 HTAB *hashp;
868 {
869 sigset_t set, oset;
870 static char namestr[] = "_hashXXXXXX";
871
872 /* Block signals; make sure file goes away at process exit. */
873 (void)sigfillset(&set);
874 (void)sigprocmask(SIG_BLOCK, &set, &oset);
875 if ((hashp->fp = mkstemp(namestr)) != -1) {
876 (void)unlink(namestr);
877 (void)fcntl(hashp->fp, F_SETFD, 1);
878 }
879 (void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
880 return (hashp->fp != -1 ? 0 : -1);
881 }
882
883 /*
884 * We have to know that the key will fit, but the last entry on the page is
885 * an overflow pair, so we need to shift things.
886 */
887 static void
888 squeeze_key(sp, key, val)
889 u_int16_t *sp;
890 const DBT *key, *val;
891 {
892 register char *p;
893 u_int16_t free_space, n, off, pageno;
894
895 p = (char *)sp;
896 n = sp[0];
897 free_space = FREESPACE(sp);
898 off = OFFSET(sp);
899
900 pageno = sp[n - 1];
901 off -= key->size;
902 sp[n - 1] = off;
903 memmove(p + off, key->data, key->size);
904 off -= val->size;
905 sp[n] = off;
906 memmove(p + off, val->data, val->size);
907 sp[0] = n + 2;
908 sp[n + 1] = pageno;
909 sp[n + 2] = OVFLPAGE;
910 FREESPACE(sp) = free_space - PAIRSIZE(key, val);
911 OFFSET(sp) = off;
912 }
913
914 static u_int32_t *
915 fetch_bitmap(hashp, ndx)
916 HTAB *hashp;
917 int ndx;
918 {
919 if (ndx >= hashp->nmaps)
920 return (NULL);
921 if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
922 return (NULL);
923 if (__get_page(hashp,
924 (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
925 free(hashp->mapp[ndx]);
926 return (NULL);
927 }
928 return (hashp->mapp[ndx]);
929 }
930
931 #ifdef DEBUG4
932 int
933 print_chain(addr)
934 int addr;
935 {
936 BUFHEAD *bufp;
937 short *bp, oaddr;
938
939 (void)fprintf(stderr, "%d ", addr);
940 bufp = __get_buf(hashp, addr, NULL, 0);
941 bp = (short *)bufp->page;
942 while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
943 ((bp[0] > 2) && bp[2] < REAL_KEY))) {
944 oaddr = bp[bp[0] - 1];
945 (void)fprintf(stderr, "%d ", (int)oaddr);
946 bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
947 bp = (short *)bufp->page;
948 }
949 (void)fprintf(stderr, "\n");
950 }
951 #endif
952