gdtoaimp.h revision 1.1 1 1.1 kleink /* $NetBSD: gdtoaimp.h,v 1.1 2006/01/25 15:18:48 kleink Exp $ */
2 1.1 kleink
3 1.1 kleink /****************************************************************
4 1.1 kleink
5 1.1 kleink The author of this software is David M. Gay.
6 1.1 kleink
7 1.1 kleink Copyright (C) 1998-2000 by Lucent Technologies
8 1.1 kleink All Rights Reserved
9 1.1 kleink
10 1.1 kleink Permission to use, copy, modify, and distribute this software and
11 1.1 kleink its documentation for any purpose and without fee is hereby
12 1.1 kleink granted, provided that the above copyright notice appear in all
13 1.1 kleink copies and that both that the copyright notice and this
14 1.1 kleink permission notice and warranty disclaimer appear in supporting
15 1.1 kleink documentation, and that the name of Lucent or any of its entities
16 1.1 kleink not be used in advertising or publicity pertaining to
17 1.1 kleink distribution of the software without specific, written prior
18 1.1 kleink permission.
19 1.1 kleink
20 1.1 kleink LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
21 1.1 kleink INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
22 1.1 kleink IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
23 1.1 kleink SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
24 1.1 kleink WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
25 1.1 kleink IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
26 1.1 kleink ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
27 1.1 kleink THIS SOFTWARE.
28 1.1 kleink
29 1.1 kleink ****************************************************************/
30 1.1 kleink
31 1.1 kleink /* This is a variation on dtoa.c that converts arbitary binary
32 1.1 kleink floating-point formats to and from decimal notation. It uses
33 1.1 kleink double-precision arithmetic internally, so there are still
34 1.1 kleink various #ifdefs that adapt the calculations to the native
35 1.1 kleink double-precision arithmetic (any of IEEE, VAX D_floating,
36 1.1 kleink or IBM mainframe arithmetic).
37 1.1 kleink
38 1.1 kleink Please send bug reports to David M. Gay (dmg at acm dot org,
39 1.1 kleink with " at " changed at "@" and " dot " changed to ".").
40 1.1 kleink */
41 1.1 kleink
42 1.1 kleink /* On a machine with IEEE extended-precision registers, it is
43 1.1 kleink * necessary to specify double-precision (53-bit) rounding precision
44 1.1 kleink * before invoking strtod or dtoa. If the machine uses (the equivalent
45 1.1 kleink * of) Intel 80x87 arithmetic, the call
46 1.1 kleink * _control87(PC_53, MCW_PC);
47 1.1 kleink * does this with many compilers. Whether this or another call is
48 1.1 kleink * appropriate depends on the compiler; for this to work, it may be
49 1.1 kleink * necessary to #include "float.h" or another system-dependent header
50 1.1 kleink * file.
51 1.1 kleink */
52 1.1 kleink
53 1.1 kleink /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
54 1.1 kleink *
55 1.1 kleink * This strtod returns a nearest machine number to the input decimal
56 1.1 kleink * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
57 1.1 kleink * broken by the IEEE round-even rule. Otherwise ties are broken by
58 1.1 kleink * biased rounding (add half and chop).
59 1.1 kleink *
60 1.1 kleink * Inspired loosely by William D. Clinger's paper "How to Read Floating
61 1.1 kleink * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
62 1.1 kleink *
63 1.1 kleink * Modifications:
64 1.1 kleink *
65 1.1 kleink * 1. We only require IEEE, IBM, or VAX double-precision
66 1.1 kleink * arithmetic (not IEEE double-extended).
67 1.1 kleink * 2. We get by with floating-point arithmetic in a case that
68 1.1 kleink * Clinger missed -- when we're computing d * 10^n
69 1.1 kleink * for a small integer d and the integer n is not too
70 1.1 kleink * much larger than 22 (the maximum integer k for which
71 1.1 kleink * we can represent 10^k exactly), we may be able to
72 1.1 kleink * compute (d*10^k) * 10^(e-k) with just one roundoff.
73 1.1 kleink * 3. Rather than a bit-at-a-time adjustment of the binary
74 1.1 kleink * result in the hard case, we use floating-point
75 1.1 kleink * arithmetic to determine the adjustment to within
76 1.1 kleink * one bit; only in really hard cases do we need to
77 1.1 kleink * compute a second residual.
78 1.1 kleink * 4. Because of 3., we don't need a large table of powers of 10
79 1.1 kleink * for ten-to-e (just some small tables, e.g. of 10^k
80 1.1 kleink * for 0 <= k <= 22).
81 1.1 kleink */
82 1.1 kleink
83 1.1 kleink /*
84 1.1 kleink * #define IEEE_8087 for IEEE-arithmetic machines where the least
85 1.1 kleink * significant byte has the lowest address.
86 1.1 kleink * #define IEEE_MC68k for IEEE-arithmetic machines where the most
87 1.1 kleink * significant byte has the lowest address.
88 1.1 kleink * #define Long int on machines with 32-bit ints and 64-bit longs.
89 1.1 kleink * #define Sudden_Underflow for IEEE-format machines without gradual
90 1.1 kleink * underflow (i.e., that flush to zero on underflow).
91 1.1 kleink * #define IBM for IBM mainframe-style floating-point arithmetic.
92 1.1 kleink * #define VAX for VAX-style floating-point arithmetic (D_floating).
93 1.1 kleink * #define No_leftright to omit left-right logic in fast floating-point
94 1.1 kleink * computation of dtoa.
95 1.1 kleink * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
96 1.1 kleink * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
97 1.1 kleink * that use extended-precision instructions to compute rounded
98 1.1 kleink * products and quotients) with IBM.
99 1.1 kleink * #define ROUND_BIASED for IEEE-format with biased rounding.
100 1.1 kleink * #define Inaccurate_Divide for IEEE-format with correctly rounded
101 1.1 kleink * products but inaccurate quotients, e.g., for Intel i860.
102 1.1 kleink * #define NO_LONG_LONG on machines that do not have a "long long"
103 1.1 kleink * integer type (of >= 64 bits). On such machines, you can
104 1.1 kleink * #define Just_16 to store 16 bits per 32-bit Long when doing
105 1.1 kleink * high-precision integer arithmetic. Whether this speeds things
106 1.1 kleink * up or slows things down depends on the machine and the number
107 1.1 kleink * being converted. If long long is available and the name is
108 1.1 kleink * something other than "long long", #define Llong to be the name,
109 1.1 kleink * and if "unsigned Llong" does not work as an unsigned version of
110 1.1 kleink * Llong, #define #ULLong to be the corresponding unsigned type.
111 1.1 kleink * #define KR_headers for old-style C function headers.
112 1.1 kleink * #define Bad_float_h if your system lacks a float.h or if it does not
113 1.1 kleink * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
114 1.1 kleink * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
115 1.1 kleink * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
116 1.1 kleink * if memory is available and otherwise does something you deem
117 1.1 kleink * appropriate. If MALLOC is undefined, malloc will be invoked
118 1.1 kleink * directly -- and assumed always to succeed.
119 1.1 kleink * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
120 1.1 kleink * memory allocations from a private pool of memory when possible.
121 1.1 kleink * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
122 1.1 kleink * unless #defined to be a different length. This default length
123 1.1 kleink * suffices to get rid of MALLOC calls except for unusual cases,
124 1.1 kleink * such as decimal-to-binary conversion of a very long string of
125 1.1 kleink * digits. When converting IEEE double precision values, the
126 1.1 kleink * longest string gdtoa can return is about 751 bytes long. For
127 1.1 kleink * conversions by strtod of strings of 800 digits and all gdtoa
128 1.1 kleink * conversions of IEEE doubles in single-threaded executions with
129 1.1 kleink * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
130 1.1 kleink * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
131 1.1 kleink * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
132 1.1 kleink * Infinity and NaN (case insensitively).
133 1.1 kleink * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
134 1.1 kleink * strtodg also accepts (case insensitively) strings of the form
135 1.1 kleink * NaN(x), where x is a string of hexadecimal digits and spaces;
136 1.1 kleink * if there is only one string of hexadecimal digits, it is taken
137 1.1 kleink * for the fraction bits of the resulting NaN; if there are two or
138 1.1 kleink * more strings of hexadecimal digits, each string is assigned
139 1.1 kleink * to the next available sequence of 32-bit words of fractions
140 1.1 kleink * bits (starting with the most significant), right-aligned in
141 1.1 kleink * each sequence.
142 1.1 kleink * #define MULTIPLE_THREADS if the system offers preemptively scheduled
143 1.1 kleink * multiple threads. In this case, you must provide (or suitably
144 1.1 kleink * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
145 1.1 kleink * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
146 1.1 kleink * in pow5mult, ensures lazy evaluation of only one copy of high
147 1.1 kleink * powers of 5; omitting this lock would introduce a small
148 1.1 kleink * probability of wasting memory, but would otherwise be harmless.)
149 1.1 kleink * You must also invoke freedtoa(s) to free the value s returned by
150 1.1 kleink * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
151 1.1 kleink * #define IMPRECISE_INEXACT if you do not care about the setting of
152 1.1 kleink * the STRTOG_Inexact bits in the special case of doing IEEE double
153 1.1 kleink * precision conversions (which could also be done by the strtog in
154 1.1 kleink * dtoa.c).
155 1.1 kleink * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
156 1.1 kleink * floating-point constants.
157 1.1 kleink * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
158 1.1 kleink * strtodg.c).
159 1.1 kleink * #define NO_STRING_H to use private versions of memcpy.
160 1.1 kleink * On some K&R systems, it may also be necessary to
161 1.1 kleink * #define DECLARE_SIZE_T in this case.
162 1.1 kleink * #define YES_ALIAS to permit aliasing certain double values with
163 1.1 kleink * arrays of ULongs. This leads to slightly better code with
164 1.1 kleink * some compilers and was always used prior to 19990916, but it
165 1.1 kleink * is not strictly legal and can cause trouble with aggressively
166 1.1 kleink * optimizing compilers (e.g., gcc 2.95.1 under -O2).
167 1.1 kleink * #define USE_LOCALE to use the current locale's decimal_point value.
168 1.1 kleink */
169 1.1 kleink
170 1.1 kleink #ifndef GDTOAIMP_H_INCLUDED
171 1.1 kleink #define GDTOAIMP_H_INCLUDED
172 1.1 kleink #include "gdtoa.h"
173 1.1 kleink #include "gd_qnan.h"
174 1.1 kleink
175 1.1 kleink #ifdef DEBUG
176 1.1 kleink #include "stdio.h"
177 1.1 kleink #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
178 1.1 kleink #endif
179 1.1 kleink
180 1.1 kleink #include "stdlib.h"
181 1.1 kleink #include "string.h"
182 1.1 kleink
183 1.1 kleink #ifdef KR_headers
184 1.1 kleink #define Char char
185 1.1 kleink #else
186 1.1 kleink #define Char void
187 1.1 kleink #endif
188 1.1 kleink
189 1.1 kleink #ifdef MALLOC
190 1.1 kleink extern Char *MALLOC ANSI((size_t));
191 1.1 kleink #else
192 1.1 kleink #define MALLOC malloc
193 1.1 kleink #endif
194 1.1 kleink
195 1.1 kleink #undef IEEE_Arith
196 1.1 kleink #undef Avoid_Underflow
197 1.1 kleink #ifdef IEEE_MC68k
198 1.1 kleink #define IEEE_Arith
199 1.1 kleink #endif
200 1.1 kleink #ifdef IEEE_8087
201 1.1 kleink #define IEEE_Arith
202 1.1 kleink #endif
203 1.1 kleink
204 1.1 kleink #include "errno.h"
205 1.1 kleink #ifdef Bad_float_h
206 1.1 kleink
207 1.1 kleink #ifdef IEEE_Arith
208 1.1 kleink #define DBL_DIG 15
209 1.1 kleink #define DBL_MAX_10_EXP 308
210 1.1 kleink #define DBL_MAX_EXP 1024
211 1.1 kleink #define FLT_RADIX 2
212 1.1 kleink #define DBL_MAX 1.7976931348623157e+308
213 1.1 kleink #endif
214 1.1 kleink
215 1.1 kleink #ifdef IBM
216 1.1 kleink #define DBL_DIG 16
217 1.1 kleink #define DBL_MAX_10_EXP 75
218 1.1 kleink #define DBL_MAX_EXP 63
219 1.1 kleink #define FLT_RADIX 16
220 1.1 kleink #define DBL_MAX 7.2370055773322621e+75
221 1.1 kleink #endif
222 1.1 kleink
223 1.1 kleink #ifdef VAX
224 1.1 kleink #define DBL_DIG 16
225 1.1 kleink #define DBL_MAX_10_EXP 38
226 1.1 kleink #define DBL_MAX_EXP 127
227 1.1 kleink #define FLT_RADIX 2
228 1.1 kleink #define DBL_MAX 1.7014118346046923e+38
229 1.1 kleink #define n_bigtens 2
230 1.1 kleink #endif
231 1.1 kleink
232 1.1 kleink #ifndef LONG_MAX
233 1.1 kleink #define LONG_MAX 2147483647
234 1.1 kleink #endif
235 1.1 kleink
236 1.1 kleink #else /* ifndef Bad_float_h */
237 1.1 kleink #include "float.h"
238 1.1 kleink #endif /* Bad_float_h */
239 1.1 kleink
240 1.1 kleink #ifdef IEEE_Arith
241 1.1 kleink #define Scale_Bit 0x10
242 1.1 kleink #define n_bigtens 5
243 1.1 kleink #endif
244 1.1 kleink
245 1.1 kleink #ifdef IBM
246 1.1 kleink #define n_bigtens 3
247 1.1 kleink #endif
248 1.1 kleink
249 1.1 kleink #ifdef VAX
250 1.1 kleink #define n_bigtens 2
251 1.1 kleink #endif
252 1.1 kleink
253 1.1 kleink #ifndef __MATH_H__
254 1.1 kleink #include "math.h"
255 1.1 kleink #endif
256 1.1 kleink
257 1.1 kleink #ifdef __cplusplus
258 1.1 kleink extern "C" {
259 1.1 kleink #endif
260 1.1 kleink
261 1.1 kleink #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
262 1.1 kleink Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
263 1.1 kleink #endif
264 1.1 kleink
265 1.1 kleink typedef union { double d; ULong L[2]; } U;
266 1.1 kleink
267 1.1 kleink #ifdef YES_ALIAS
268 1.1 kleink #define dval(x) x
269 1.1 kleink #ifdef IEEE_8087
270 1.1 kleink #define word0(x) ((ULong *)&x)[1]
271 1.1 kleink #define word1(x) ((ULong *)&x)[0]
272 1.1 kleink #else
273 1.1 kleink #define word0(x) ((ULong *)&x)[0]
274 1.1 kleink #define word1(x) ((ULong *)&x)[1]
275 1.1 kleink #endif
276 1.1 kleink #else /* !YES_ALIAS */
277 1.1 kleink #ifdef IEEE_8087
278 1.1 kleink #define word0(x) ((U*)&x)->L[1]
279 1.1 kleink #define word1(x) ((U*)&x)->L[0]
280 1.1 kleink #else
281 1.1 kleink #define word0(x) ((U*)&x)->L[0]
282 1.1 kleink #define word1(x) ((U*)&x)->L[1]
283 1.1 kleink #endif
284 1.1 kleink #define dval(x) ((U*)&x)->d
285 1.1 kleink #endif /* YES_ALIAS */
286 1.1 kleink
287 1.1 kleink /* The following definition of Storeinc is appropriate for MIPS processors.
288 1.1 kleink * An alternative that might be better on some machines is
289 1.1 kleink * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
290 1.1 kleink */
291 1.1 kleink #if defined(IEEE_8087) + defined(VAX)
292 1.1 kleink #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
293 1.1 kleink ((unsigned short *)a)[0] = (unsigned short)c, a++)
294 1.1 kleink #else
295 1.1 kleink #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
296 1.1 kleink ((unsigned short *)a)[1] = (unsigned short)c, a++)
297 1.1 kleink #endif
298 1.1 kleink
299 1.1 kleink /* #define P DBL_MANT_DIG */
300 1.1 kleink /* Ten_pmax = floor(P*log(2)/log(5)) */
301 1.1 kleink /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
302 1.1 kleink /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
303 1.1 kleink /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
304 1.1 kleink
305 1.1 kleink #ifdef IEEE_Arith
306 1.1 kleink #define Exp_shift 20
307 1.1 kleink #define Exp_shift1 20
308 1.1 kleink #define Exp_msk1 0x100000
309 1.1 kleink #define Exp_msk11 0x100000
310 1.1 kleink #define Exp_mask 0x7ff00000
311 1.1 kleink #define P 53
312 1.1 kleink #define Bias 1023
313 1.1 kleink #define Emin (-1022)
314 1.1 kleink #define Exp_1 0x3ff00000
315 1.1 kleink #define Exp_11 0x3ff00000
316 1.1 kleink #define Ebits 11
317 1.1 kleink #define Frac_mask 0xfffff
318 1.1 kleink #define Frac_mask1 0xfffff
319 1.1 kleink #define Ten_pmax 22
320 1.1 kleink #define Bletch 0x10
321 1.1 kleink #define Bndry_mask 0xfffff
322 1.1 kleink #define Bndry_mask1 0xfffff
323 1.1 kleink #define LSB 1
324 1.1 kleink #define Sign_bit 0x80000000
325 1.1 kleink #define Log2P 1
326 1.1 kleink #define Tiny0 0
327 1.1 kleink #define Tiny1 1
328 1.1 kleink #define Quick_max 14
329 1.1 kleink #define Int_max 14
330 1.1 kleink
331 1.1 kleink #ifndef Flt_Rounds
332 1.1 kleink #ifdef FLT_ROUNDS
333 1.1 kleink #define Flt_Rounds FLT_ROUNDS
334 1.1 kleink #else
335 1.1 kleink #define Flt_Rounds 1
336 1.1 kleink #endif
337 1.1 kleink #endif /*Flt_Rounds*/
338 1.1 kleink
339 1.1 kleink #else /* ifndef IEEE_Arith */
340 1.1 kleink #undef Sudden_Underflow
341 1.1 kleink #define Sudden_Underflow
342 1.1 kleink #ifdef IBM
343 1.1 kleink #undef Flt_Rounds
344 1.1 kleink #define Flt_Rounds 0
345 1.1 kleink #define Exp_shift 24
346 1.1 kleink #define Exp_shift1 24
347 1.1 kleink #define Exp_msk1 0x1000000
348 1.1 kleink #define Exp_msk11 0x1000000
349 1.1 kleink #define Exp_mask 0x7f000000
350 1.1 kleink #define P 14
351 1.1 kleink #define Bias 65
352 1.1 kleink #define Exp_1 0x41000000
353 1.1 kleink #define Exp_11 0x41000000
354 1.1 kleink #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
355 1.1 kleink #define Frac_mask 0xffffff
356 1.1 kleink #define Frac_mask1 0xffffff
357 1.1 kleink #define Bletch 4
358 1.1 kleink #define Ten_pmax 22
359 1.1 kleink #define Bndry_mask 0xefffff
360 1.1 kleink #define Bndry_mask1 0xffffff
361 1.1 kleink #define LSB 1
362 1.1 kleink #define Sign_bit 0x80000000
363 1.1 kleink #define Log2P 4
364 1.1 kleink #define Tiny0 0x100000
365 1.1 kleink #define Tiny1 0
366 1.1 kleink #define Quick_max 14
367 1.1 kleink #define Int_max 15
368 1.1 kleink #else /* VAX */
369 1.1 kleink #undef Flt_Rounds
370 1.1 kleink #define Flt_Rounds 1
371 1.1 kleink #define Exp_shift 23
372 1.1 kleink #define Exp_shift1 7
373 1.1 kleink #define Exp_msk1 0x80
374 1.1 kleink #define Exp_msk11 0x800000
375 1.1 kleink #define Exp_mask 0x7f80
376 1.1 kleink #define P 56
377 1.1 kleink #define Bias 129
378 1.1 kleink #define Exp_1 0x40800000
379 1.1 kleink #define Exp_11 0x4080
380 1.1 kleink #define Ebits 8
381 1.1 kleink #define Frac_mask 0x7fffff
382 1.1 kleink #define Frac_mask1 0xffff007f
383 1.1 kleink #define Ten_pmax 24
384 1.1 kleink #define Bletch 2
385 1.1 kleink #define Bndry_mask 0xffff007f
386 1.1 kleink #define Bndry_mask1 0xffff007f
387 1.1 kleink #define LSB 0x10000
388 1.1 kleink #define Sign_bit 0x8000
389 1.1 kleink #define Log2P 1
390 1.1 kleink #define Tiny0 0x80
391 1.1 kleink #define Tiny1 0
392 1.1 kleink #define Quick_max 15
393 1.1 kleink #define Int_max 15
394 1.1 kleink #endif /* IBM, VAX */
395 1.1 kleink #endif /* IEEE_Arith */
396 1.1 kleink
397 1.1 kleink #ifndef IEEE_Arith
398 1.1 kleink #define ROUND_BIASED
399 1.1 kleink #endif
400 1.1 kleink
401 1.1 kleink #ifdef RND_PRODQUOT
402 1.1 kleink #define rounded_product(a,b) a = rnd_prod(a, b)
403 1.1 kleink #define rounded_quotient(a,b) a = rnd_quot(a, b)
404 1.1 kleink #ifdef KR_headers
405 1.1 kleink extern double rnd_prod(), rnd_quot();
406 1.1 kleink #else
407 1.1 kleink extern double rnd_prod(double, double), rnd_quot(double, double);
408 1.1 kleink #endif
409 1.1 kleink #else
410 1.1 kleink #define rounded_product(a,b) a *= b
411 1.1 kleink #define rounded_quotient(a,b) a /= b
412 1.1 kleink #endif
413 1.1 kleink
414 1.1 kleink #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
415 1.1 kleink #define Big1 0xffffffff
416 1.1 kleink
417 1.1 kleink #undef Pack_16
418 1.1 kleink #ifndef Pack_32
419 1.1 kleink #define Pack_32
420 1.1 kleink #endif
421 1.1 kleink
422 1.1 kleink #ifdef NO_LONG_LONG
423 1.1 kleink #undef ULLong
424 1.1 kleink #ifdef Just_16
425 1.1 kleink #undef Pack_32
426 1.1 kleink #define Pack_16
427 1.1 kleink /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
428 1.1 kleink * This makes some inner loops simpler and sometimes saves work
429 1.1 kleink * during multiplications, but it often seems to make things slightly
430 1.1 kleink * slower. Hence the default is now to store 32 bits per Long.
431 1.1 kleink */
432 1.1 kleink #endif
433 1.1 kleink #else /* long long available */
434 1.1 kleink #ifndef Llong
435 1.1 kleink #define Llong long long
436 1.1 kleink #endif
437 1.1 kleink #ifndef ULLong
438 1.1 kleink #define ULLong unsigned Llong
439 1.1 kleink #endif
440 1.1 kleink #endif /* NO_LONG_LONG */
441 1.1 kleink
442 1.1 kleink #ifdef Pack_32
443 1.1 kleink #define ULbits 32
444 1.1 kleink #define kshift 5
445 1.1 kleink #define kmask 31
446 1.1 kleink #define ALL_ON 0xffffffff
447 1.1 kleink #else
448 1.1 kleink #define ULbits 16
449 1.1 kleink #define kshift 4
450 1.1 kleink #define kmask 15
451 1.1 kleink #define ALL_ON 0xffff
452 1.1 kleink #endif
453 1.1 kleink
454 1.1 kleink #ifndef MULTIPLE_THREADS
455 1.1 kleink #define ACQUIRE_DTOA_LOCK(n) /*nothing*/
456 1.1 kleink #define FREE_DTOA_LOCK(n) /*nothing*/
457 1.1 kleink #endif
458 1.1 kleink
459 1.1 kleink #define Kmax 15
460 1.1 kleink
461 1.1 kleink struct
462 1.1 kleink Bigint {
463 1.1 kleink struct Bigint *next;
464 1.1 kleink int k, maxwds, sign, wds;
465 1.1 kleink ULong x[1];
466 1.1 kleink };
467 1.1 kleink
468 1.1 kleink typedef struct Bigint Bigint;
469 1.1 kleink
470 1.1 kleink #ifdef NO_STRING_H
471 1.1 kleink #ifdef DECLARE_SIZE_T
472 1.1 kleink typedef unsigned int size_t;
473 1.1 kleink #endif
474 1.1 kleink extern void memcpy_D2A ANSI((void*, const void*, size_t));
475 1.1 kleink #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
476 1.1 kleink #else /* !NO_STRING_H */
477 1.1 kleink #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
478 1.1 kleink #endif /* NO_STRING_H */
479 1.1 kleink
480 1.1 kleink #define Balloc Balloc_D2A
481 1.1 kleink #define Bfree Bfree_D2A
482 1.1 kleink #define ULtoQ ULtoQ_D2A
483 1.1 kleink #define ULtof ULtof_D2A
484 1.1 kleink #define ULtod ULtod_D2A
485 1.1 kleink #define ULtodd ULtodd_D2A
486 1.1 kleink #define ULtox ULtox_D2A
487 1.1 kleink #define ULtoxL ULtoxL_D2A
488 1.1 kleink #define any_on any_on_D2A
489 1.1 kleink #define b2d b2d_D2A
490 1.1 kleink #define bigtens bigtens_D2A
491 1.1 kleink #define cmp cmp_D2A
492 1.1 kleink #define copybits copybits_D2A
493 1.1 kleink #define d2b d2b_D2A
494 1.1 kleink #define decrement decrement_D2A
495 1.1 kleink #define diff diff_D2A
496 1.1 kleink #define dtoa_result dtoa_result_D2A
497 1.1 kleink #define g__fmt g__fmt_D2A
498 1.1 kleink #define gethex gethex_D2A
499 1.1 kleink #define hexdig hexdig_D2A
500 1.1 kleink #define hexnan hexnan_D2A
501 1.1 kleink #define hi0bits(x) hi0bits_D2A((ULong)(x))
502 1.1 kleink #define i2b i2b_D2A
503 1.1 kleink #define increment increment_D2A
504 1.1 kleink #define lo0bits lo0bits_D2A
505 1.1 kleink #define lshift lshift_D2A
506 1.1 kleink #define match match_D2A
507 1.1 kleink #define mult mult_D2A
508 1.1 kleink #define multadd multadd_D2A
509 1.1 kleink #define nrv_alloc nrv_alloc_D2A
510 1.1 kleink #define pow5mult pow5mult_D2A
511 1.1 kleink #define quorem quorem_D2A
512 1.1 kleink #define ratio ratio_D2A
513 1.1 kleink #define rshift rshift_D2A
514 1.1 kleink #define rv_alloc rv_alloc_D2A
515 1.1 kleink #define s2b s2b_D2A
516 1.1 kleink #define set_ones set_ones_D2A
517 1.1 kleink #define strcp strcp_D2A
518 1.1 kleink #define strtoIg strtoIg_D2A
519 1.1 kleink #define sum sum_D2A
520 1.1 kleink #define tens tens_D2A
521 1.1 kleink #define tinytens tinytens_D2A
522 1.1 kleink #define tinytens tinytens_D2A
523 1.1 kleink #define trailz trailz_D2A
524 1.1 kleink #define ulp ulp_D2A
525 1.1 kleink
526 1.1 kleink extern char *dtoa_result;
527 1.1 kleink extern CONST double bigtens[], tens[], tinytens[];
528 1.1 kleink extern unsigned char hexdig[];
529 1.1 kleink
530 1.1 kleink extern Bigint *Balloc ANSI((int));
531 1.1 kleink extern void Bfree ANSI((Bigint*));
532 1.1 kleink extern void ULtof ANSI((ULong*, ULong*, Long, int));
533 1.1 kleink extern void ULtod ANSI((ULong*, ULong*, Long, int));
534 1.1 kleink extern void ULtodd ANSI((ULong*, ULong*, Long, int));
535 1.1 kleink extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
536 1.1 kleink extern void ULtox ANSI((UShort*, ULong*, Long, int));
537 1.1 kleink extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
538 1.1 kleink extern ULong any_on ANSI((Bigint*, int));
539 1.1 kleink extern double b2d ANSI((Bigint*, int*));
540 1.1 kleink extern int cmp ANSI((Bigint*, Bigint*));
541 1.1 kleink extern void copybits ANSI((ULong*, int, Bigint*));
542 1.1 kleink extern Bigint *d2b ANSI((double, int*, int*));
543 1.1 kleink extern int decrement ANSI((Bigint*));
544 1.1 kleink extern Bigint *diff ANSI((Bigint*, Bigint*));
545 1.1 kleink extern char *dtoa ANSI((double d, int mode, int ndigits,
546 1.1 kleink int *decpt, int *sign, char **rve));
547 1.1 kleink extern char *g__fmt ANSI((char*, char*, char*, int, ULong));
548 1.1 kleink extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int));
549 1.1 kleink extern void hexdig_init_D2A(Void);
550 1.1 kleink extern int hexnan ANSI((CONST char**, FPI*, ULong*));
551 1.1 kleink extern int hi0bits_D2A ANSI((ULong));
552 1.1 kleink extern Bigint *i2b ANSI((int));
553 1.1 kleink extern Bigint *increment ANSI((Bigint*));
554 1.1 kleink extern int lo0bits ANSI((ULong*));
555 1.1 kleink extern Bigint *lshift ANSI((Bigint*, int));
556 1.1 kleink extern int match ANSI((CONST char**, char*));
557 1.1 kleink extern Bigint *mult ANSI((Bigint*, Bigint*));
558 1.1 kleink extern Bigint *multadd ANSI((Bigint*, int, int));
559 1.1 kleink extern char *nrv_alloc ANSI((char*, char **, int));
560 1.1 kleink extern Bigint *pow5mult ANSI((Bigint*, int));
561 1.1 kleink extern int quorem ANSI((Bigint*, Bigint*));
562 1.1 kleink extern double ratio ANSI((Bigint*, Bigint*));
563 1.1 kleink extern void rshift ANSI((Bigint*, int));
564 1.1 kleink extern char *rv_alloc ANSI((int));
565 1.1 kleink extern Bigint *s2b ANSI((CONST char*, int, int, ULong));
566 1.1 kleink extern Bigint *set_ones ANSI((Bigint*, int));
567 1.1 kleink extern char *strcp ANSI((char*, const char*));
568 1.1 kleink extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
569 1.1 kleink extern double strtod ANSI((const char *s00, char **se));
570 1.1 kleink extern Bigint *sum ANSI((Bigint*, Bigint*));
571 1.1 kleink extern int trailz ANSI((Bigint*));
572 1.1 kleink extern double ulp ANSI((double));
573 1.1 kleink
574 1.1 kleink #ifdef __cplusplus
575 1.1 kleink }
576 1.1 kleink #endif
577 1.1 kleink /*
578 1.1 kleink * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to
579 1.1 kleink * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
580 1.1 kleink * respectively), but now are determined by compiling and running
581 1.1 kleink * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
582 1.1 kleink * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
583 1.1 kleink * and -DNAN_WORD1=... values if necessary. This should still work.
584 1.1 kleink * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
585 1.1 kleink */
586 1.1 kleink #ifdef IEEE_Arith
587 1.1 kleink #ifdef IEEE_MC68k
588 1.1 kleink #define _0 0
589 1.1 kleink #define _1 1
590 1.1 kleink #ifndef NAN_WORD0
591 1.1 kleink #define NAN_WORD0 d_QNAN0
592 1.1 kleink #endif
593 1.1 kleink #ifndef NAN_WORD1
594 1.1 kleink #define NAN_WORD1 d_QNAN1
595 1.1 kleink #endif
596 1.1 kleink #else
597 1.1 kleink #define _0 1
598 1.1 kleink #define _1 0
599 1.1 kleink #ifndef NAN_WORD0
600 1.1 kleink #define NAN_WORD0 d_QNAN1
601 1.1 kleink #endif
602 1.1 kleink #ifndef NAN_WORD1
603 1.1 kleink #define NAN_WORD1 d_QNAN0
604 1.1 kleink #endif
605 1.1 kleink #endif
606 1.1 kleink #else
607 1.1 kleink #undef INFNAN_CHECK
608 1.1 kleink #endif
609 1.1 kleink
610 1.1 kleink #undef SI
611 1.1 kleink #ifdef Sudden_Underflow
612 1.1 kleink #define SI 1
613 1.1 kleink #else
614 1.1 kleink #define SI 0
615 1.1 kleink #endif
616 1.1 kleink
617 1.1 kleink #endif /* GDTOAIMP_H_INCLUDED */
618