gdtoaimp.h revision 1.15 1 1.15 riastrad /* $NetBSD: gdtoaimp.h,v 1.15 2019/08/01 02:06:31 riastradh Exp $ */
2 1.1 kleink
3 1.1 kleink /****************************************************************
4 1.1 kleink
5 1.1 kleink The author of this software is David M. Gay.
6 1.1 kleink
7 1.1 kleink Copyright (C) 1998-2000 by Lucent Technologies
8 1.1 kleink All Rights Reserved
9 1.1 kleink
10 1.1 kleink Permission to use, copy, modify, and distribute this software and
11 1.1 kleink its documentation for any purpose and without fee is hereby
12 1.1 kleink granted, provided that the above copyright notice appear in all
13 1.1 kleink copies and that both that the copyright notice and this
14 1.1 kleink permission notice and warranty disclaimer appear in supporting
15 1.1 kleink documentation, and that the name of Lucent or any of its entities
16 1.1 kleink not be used in advertising or publicity pertaining to
17 1.1 kleink distribution of the software without specific, written prior
18 1.1 kleink permission.
19 1.1 kleink
20 1.1 kleink LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
21 1.1 kleink INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
22 1.1 kleink IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
23 1.1 kleink SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
24 1.1 kleink WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
25 1.1 kleink IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
26 1.1 kleink ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
27 1.1 kleink THIS SOFTWARE.
28 1.1 kleink
29 1.1 kleink ****************************************************************/
30 1.1 kleink
31 1.1 kleink /* This is a variation on dtoa.c that converts arbitary binary
32 1.1 kleink floating-point formats to and from decimal notation. It uses
33 1.1 kleink double-precision arithmetic internally, so there are still
34 1.1 kleink various #ifdefs that adapt the calculations to the native
35 1.1 kleink double-precision arithmetic (any of IEEE, VAX D_floating,
36 1.1 kleink or IBM mainframe arithmetic).
37 1.1 kleink
38 1.1 kleink Please send bug reports to David M. Gay (dmg at acm dot org,
39 1.1 kleink with " at " changed at "@" and " dot " changed to ".").
40 1.1 kleink */
41 1.1 kleink
42 1.1 kleink /* On a machine with IEEE extended-precision registers, it is
43 1.1 kleink * necessary to specify double-precision (53-bit) rounding precision
44 1.1 kleink * before invoking strtod or dtoa. If the machine uses (the equivalent
45 1.1 kleink * of) Intel 80x87 arithmetic, the call
46 1.1 kleink * _control87(PC_53, MCW_PC);
47 1.1 kleink * does this with many compilers. Whether this or another call is
48 1.1 kleink * appropriate depends on the compiler; for this to work, it may be
49 1.1 kleink * necessary to #include "float.h" or another system-dependent header
50 1.1 kleink * file.
51 1.1 kleink */
52 1.1 kleink
53 1.1 kleink /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
54 1.1 kleink *
55 1.1 kleink * This strtod returns a nearest machine number to the input decimal
56 1.1 kleink * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
57 1.1 kleink * broken by the IEEE round-even rule. Otherwise ties are broken by
58 1.1 kleink * biased rounding (add half and chop).
59 1.1 kleink *
60 1.1 kleink * Inspired loosely by William D. Clinger's paper "How to Read Floating
61 1.1 kleink * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
62 1.1 kleink *
63 1.1 kleink * Modifications:
64 1.1 kleink *
65 1.1 kleink * 1. We only require IEEE, IBM, or VAX double-precision
66 1.1 kleink * arithmetic (not IEEE double-extended).
67 1.1 kleink * 2. We get by with floating-point arithmetic in a case that
68 1.1 kleink * Clinger missed -- when we're computing d * 10^n
69 1.1 kleink * for a small integer d and the integer n is not too
70 1.1 kleink * much larger than 22 (the maximum integer k for which
71 1.1 kleink * we can represent 10^k exactly), we may be able to
72 1.1 kleink * compute (d*10^k) * 10^(e-k) with just one roundoff.
73 1.1 kleink * 3. Rather than a bit-at-a-time adjustment of the binary
74 1.1 kleink * result in the hard case, we use floating-point
75 1.1 kleink * arithmetic to determine the adjustment to within
76 1.1 kleink * one bit; only in really hard cases do we need to
77 1.1 kleink * compute a second residual.
78 1.1 kleink * 4. Because of 3., we don't need a large table of powers of 10
79 1.1 kleink * for ten-to-e (just some small tables, e.g. of 10^k
80 1.1 kleink * for 0 <= k <= 22).
81 1.1 kleink */
82 1.1 kleink
83 1.1 kleink /*
84 1.2 kleink * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
85 1.1 kleink * significant byte has the lowest address.
86 1.2 kleink * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
87 1.1 kleink * significant byte has the lowest address.
88 1.1 kleink * #define Long int on machines with 32-bit ints and 64-bit longs.
89 1.1 kleink * #define Sudden_Underflow for IEEE-format machines without gradual
90 1.1 kleink * underflow (i.e., that flush to zero on underflow).
91 1.1 kleink * #define IBM for IBM mainframe-style floating-point arithmetic.
92 1.1 kleink * #define VAX for VAX-style floating-point arithmetic (D_floating).
93 1.1 kleink * #define No_leftright to omit left-right logic in fast floating-point
94 1.1 kleink * computation of dtoa.
95 1.1 kleink * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
96 1.1 kleink * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
97 1.1 kleink * that use extended-precision instructions to compute rounded
98 1.1 kleink * products and quotients) with IBM.
99 1.9 christos * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
100 1.9 christos * that rounds toward +Infinity.
101 1.9 christos * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
102 1.9 christos * rounding when the underlying floating-point arithmetic uses
103 1.9 christos * unbiased rounding. This prevent using ordinary floating-point
104 1.9 christos * arithmetic when the result could be computed with one rounding error.
105 1.1 kleink * #define Inaccurate_Divide for IEEE-format with correctly rounded
106 1.1 kleink * products but inaccurate quotients, e.g., for Intel i860.
107 1.1 kleink * #define NO_LONG_LONG on machines that do not have a "long long"
108 1.1 kleink * integer type (of >= 64 bits). On such machines, you can
109 1.1 kleink * #define Just_16 to store 16 bits per 32-bit Long when doing
110 1.1 kleink * high-precision integer arithmetic. Whether this speeds things
111 1.1 kleink * up or slows things down depends on the machine and the number
112 1.1 kleink * being converted. If long long is available and the name is
113 1.1 kleink * something other than "long long", #define Llong to be the name,
114 1.1 kleink * and if "unsigned Llong" does not work as an unsigned version of
115 1.1 kleink * Llong, #define #ULLong to be the corresponding unsigned type.
116 1.1 kleink * #define KR_headers for old-style C function headers.
117 1.1 kleink * #define Bad_float_h if your system lacks a float.h or if it does not
118 1.1 kleink * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
119 1.1 kleink * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
120 1.1 kleink * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
121 1.1 kleink * if memory is available and otherwise does something you deem
122 1.1 kleink * appropriate. If MALLOC is undefined, malloc will be invoked
123 1.9 christos * directly -- and assumed always to succeed. Similarly, if you
124 1.9 christos * want something other than the system's free() to be called to
125 1.9 christos * recycle memory acquired from MALLOC, #define FREE to be the
126 1.9 christos * name of the alternate routine. (FREE or free is only called in
127 1.9 christos * pathological cases, e.g., in a gdtoa call after a gdtoa return in
128 1.9 christos * mode 3 with thousands of digits requested.)
129 1.1 kleink * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
130 1.1 kleink * memory allocations from a private pool of memory when possible.
131 1.1 kleink * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
132 1.1 kleink * unless #defined to be a different length. This default length
133 1.1 kleink * suffices to get rid of MALLOC calls except for unusual cases,
134 1.1 kleink * such as decimal-to-binary conversion of a very long string of
135 1.1 kleink * digits. When converting IEEE double precision values, the
136 1.1 kleink * longest string gdtoa can return is about 751 bytes long. For
137 1.1 kleink * conversions by strtod of strings of 800 digits and all gdtoa
138 1.1 kleink * conversions of IEEE doubles in single-threaded executions with
139 1.1 kleink * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
140 1.1 kleink * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
141 1.9 christos * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
142 1.9 christos * #defined automatically on IEEE systems. On such systems,
143 1.9 christos * when INFNAN_CHECK is #defined, strtod checks
144 1.9 christos * for Infinity and NaN (case insensitively).
145 1.1 kleink * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
146 1.1 kleink * strtodg also accepts (case insensitively) strings of the form
147 1.9 christos * NaN(x), where x is a string of hexadecimal digits (optionally
148 1.9 christos * preceded by 0x or 0X) and spaces; if there is only one string
149 1.9 christos * of hexadecimal digits, it is taken for the fraction bits of the
150 1.9 christos * resulting NaN; if there are two or more strings of hexadecimal
151 1.9 christos * digits, each string is assigned to the next available sequence
152 1.9 christos * of 32-bit words of fractions bits (starting with the most
153 1.9 christos * significant), right-aligned in each sequence.
154 1.9 christos * Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)"
155 1.9 christos * is consumed even when ... has the wrong form (in which case the
156 1.9 christos * "(...)" is consumed but ignored).
157 1.1 kleink * #define MULTIPLE_THREADS if the system offers preemptively scheduled
158 1.1 kleink * multiple threads. In this case, you must provide (or suitably
159 1.1 kleink * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
160 1.1 kleink * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
161 1.1 kleink * in pow5mult, ensures lazy evaluation of only one copy of high
162 1.1 kleink * powers of 5; omitting this lock would introduce a small
163 1.1 kleink * probability of wasting memory, but would otherwise be harmless.)
164 1.1 kleink * You must also invoke freedtoa(s) to free the value s returned by
165 1.1 kleink * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
166 1.1 kleink * #define IMPRECISE_INEXACT if you do not care about the setting of
167 1.1 kleink * the STRTOG_Inexact bits in the special case of doing IEEE double
168 1.9 christos * precision conversions (which could also be done by the strtod in
169 1.1 kleink * dtoa.c).
170 1.1 kleink * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
171 1.1 kleink * floating-point constants.
172 1.1 kleink * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
173 1.1 kleink * strtodg.c).
174 1.1 kleink * #define NO_STRING_H to use private versions of memcpy.
175 1.1 kleink * On some K&R systems, it may also be necessary to
176 1.1 kleink * #define DECLARE_SIZE_T in this case.
177 1.1 kleink * #define USE_LOCALE to use the current locale's decimal_point value.
178 1.1 kleink */
179 1.1 kleink
180 1.2 kleink /* #define IEEE_{BIG,LITTLE}_ENDIAN in ${ARCHDIR}/gdtoa/arith.h */
181 1.2 kleink
182 1.13 christos #include <assert.h>
183 1.2 kleink #include <stdint.h>
184 1.5 christos #define Short int16_t
185 1.5 christos #define UShort uint16_t
186 1.2 kleink #define Long int32_t
187 1.2 kleink #define ULong uint32_t
188 1.2 kleink #define LLong int64_t
189 1.2 kleink #define ULLong uint64_t
190 1.2 kleink
191 1.2 kleink #define INFNAN_CHECK
192 1.4 christos #ifdef _REENTRANT
193 1.2 kleink #define MULTIPLE_THREADS
194 1.4 christos #endif
195 1.2 kleink #define USE_LOCALE
196 1.2 kleink
197 1.1 kleink #ifndef GDTOAIMP_H_INCLUDED
198 1.1 kleink #define GDTOAIMP_H_INCLUDED
199 1.1 kleink #include "gdtoa.h"
200 1.1 kleink #include "gd_qnan.h"
201 1.9 christos #ifdef Honor_FLT_ROUNDS
202 1.9 christos #include <fenv.h>
203 1.15 riastrad __weakref_visible int __libc_fegetround_ref(void) __weak_reference(fegetround);
204 1.15 riastrad #define fegetround() \
205 1.15 riastrad (__libc_fegetround_ref ? __libc_fegetround_ref() : FE_TONEAREST)
206 1.9 christos #endif
207 1.1 kleink
208 1.1 kleink #ifdef DEBUG
209 1.1 kleink #include "stdio.h"
210 1.1 kleink #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
211 1.1 kleink #endif
212 1.1 kleink
213 1.1 kleink #include "stdlib.h"
214 1.1 kleink #include "string.h"
215 1.1 kleink
216 1.1 kleink #ifdef KR_headers
217 1.1 kleink #define Char char
218 1.1 kleink #else
219 1.1 kleink #define Char void
220 1.1 kleink #endif
221 1.1 kleink
222 1.1 kleink #ifdef MALLOC
223 1.1 kleink extern Char *MALLOC ANSI((size_t));
224 1.1 kleink #else
225 1.1 kleink #define MALLOC malloc
226 1.1 kleink #endif
227 1.1 kleink
228 1.1 kleink #undef IEEE_Arith
229 1.1 kleink #undef Avoid_Underflow
230 1.2 kleink #ifdef IEEE_BIG_ENDIAN
231 1.1 kleink #define IEEE_Arith
232 1.1 kleink #endif
233 1.2 kleink #ifdef IEEE_LITTLE_ENDIAN
234 1.1 kleink #define IEEE_Arith
235 1.1 kleink #endif
236 1.1 kleink
237 1.1 kleink #include "errno.h"
238 1.1 kleink #ifdef Bad_float_h
239 1.1 kleink
240 1.1 kleink #ifdef IEEE_Arith
241 1.1 kleink #define DBL_DIG 15
242 1.1 kleink #define DBL_MAX_10_EXP 308
243 1.1 kleink #define DBL_MAX_EXP 1024
244 1.1 kleink #define FLT_RADIX 2
245 1.1 kleink #define DBL_MAX 1.7976931348623157e+308
246 1.1 kleink #endif
247 1.1 kleink
248 1.1 kleink #ifdef IBM
249 1.1 kleink #define DBL_DIG 16
250 1.1 kleink #define DBL_MAX_10_EXP 75
251 1.1 kleink #define DBL_MAX_EXP 63
252 1.1 kleink #define FLT_RADIX 16
253 1.1 kleink #define DBL_MAX 7.2370055773322621e+75
254 1.1 kleink #endif
255 1.1 kleink
256 1.1 kleink #ifdef VAX
257 1.1 kleink #define DBL_DIG 16
258 1.1 kleink #define DBL_MAX_10_EXP 38
259 1.1 kleink #define DBL_MAX_EXP 127
260 1.1 kleink #define FLT_RADIX 2
261 1.1 kleink #define DBL_MAX 1.7014118346046923e+38
262 1.1 kleink #define n_bigtens 2
263 1.1 kleink #endif
264 1.1 kleink
265 1.1 kleink #ifndef LONG_MAX
266 1.1 kleink #define LONG_MAX 2147483647
267 1.1 kleink #endif
268 1.1 kleink
269 1.1 kleink #else /* ifndef Bad_float_h */
270 1.1 kleink #include "float.h"
271 1.1 kleink #endif /* Bad_float_h */
272 1.1 kleink
273 1.1 kleink #ifdef IEEE_Arith
274 1.1 kleink #define Scale_Bit 0x10
275 1.1 kleink #define n_bigtens 5
276 1.1 kleink #endif
277 1.1 kleink
278 1.1 kleink #ifdef IBM
279 1.1 kleink #define n_bigtens 3
280 1.1 kleink #endif
281 1.1 kleink
282 1.1 kleink #ifdef VAX
283 1.1 kleink #define n_bigtens 2
284 1.1 kleink #endif
285 1.1 kleink
286 1.1 kleink #include "math.h"
287 1.1 kleink
288 1.1 kleink #ifdef __cplusplus
289 1.1 kleink extern "C" {
290 1.1 kleink #endif
291 1.1 kleink
292 1.2 kleink #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + defined(IBM) != 1
293 1.2 kleink Exactly one of IEEE_LITTLE_ENDIAN, IEEE_BIG_ENDIAN, VAX, or IBM should be defined.
294 1.1 kleink #endif
295 1.1 kleink
296 1.8 christos typedef union { double d; ULong L[2]; } __attribute__((__may_alias__)) U;
297 1.1 kleink
298 1.1 kleink #ifdef YES_ALIAS
299 1.1 kleink #define dval(x) x
300 1.2 kleink #ifdef IEEE_LITTLE_ENDIAN
301 1.9 christos #define word0(x) ((ULong *)x)[1]
302 1.9 christos #define word1(x) ((ULong *)x)[0]
303 1.1 kleink #else
304 1.9 christos #define word0(x) ((ULong *)x)[0]
305 1.9 christos #define word1(x) ((ULong *)x)[1]
306 1.1 kleink #endif
307 1.1 kleink #else /* !YES_ALIAS */
308 1.2 kleink #ifdef IEEE_LITTLE_ENDIAN
309 1.9 christos #define word0(x) ( /* LINTED */ (U*)x)->L[1]
310 1.9 christos #define word1(x) ( /* LINTED */ (U*)x)->L[0]
311 1.1 kleink #else
312 1.9 christos #define word0(x) ( /* LINTED */ (U*)x)->L[0]
313 1.9 christos #define word1(x) ( /* LINTED */ (U*)x)->L[1]
314 1.1 kleink #endif
315 1.9 christos #define dval(x) ( /* LINTED */ (U*)x)->d
316 1.1 kleink #endif /* YES_ALIAS */
317 1.1 kleink
318 1.1 kleink /* The following definition of Storeinc is appropriate for MIPS processors.
319 1.1 kleink * An alternative that might be better on some machines is
320 1.1 kleink * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
321 1.1 kleink */
322 1.2 kleink #if defined(IEEE_LITTLE_ENDIAN) + defined(VAX)
323 1.2 kleink #define Storeinc(a,b,c) \
324 1.2 kleink (((unsigned short *)(void *)a)[1] = (unsigned short)b, \
325 1.2 kleink ((unsigned short *)(void *)a)[0] = (unsigned short)c, \
326 1.2 kleink a++)
327 1.2 kleink #else
328 1.2 kleink #define Storeinc(a,b,c) \
329 1.2 kleink (((unsigned short *)(void *)a)[0] = (unsigned short)b, \
330 1.2 kleink ((unsigned short *)(void *)a)[1] = (unsigned short)c, \
331 1.2 kleink a++)
332 1.1 kleink #endif
333 1.1 kleink
334 1.1 kleink /* #define P DBL_MANT_DIG */
335 1.1 kleink /* Ten_pmax = floor(P*log(2)/log(5)) */
336 1.1 kleink /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
337 1.1 kleink /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
338 1.1 kleink /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
339 1.1 kleink
340 1.1 kleink #ifdef IEEE_Arith
341 1.1 kleink #define Exp_shift 20
342 1.1 kleink #define Exp_shift1 20
343 1.1 kleink #define Exp_msk1 0x100000
344 1.1 kleink #define Exp_msk11 0x100000
345 1.1 kleink #define Exp_mask 0x7ff00000
346 1.1 kleink #define P 53
347 1.1 kleink #define Bias 1023
348 1.1 kleink #define Emin (-1022)
349 1.1 kleink #define Exp_1 0x3ff00000
350 1.1 kleink #define Exp_11 0x3ff00000
351 1.1 kleink #define Ebits 11
352 1.1 kleink #define Frac_mask 0xfffff
353 1.1 kleink #define Frac_mask1 0xfffff
354 1.1 kleink #define Ten_pmax 22
355 1.1 kleink #define Bletch 0x10
356 1.1 kleink #define Bndry_mask 0xfffff
357 1.1 kleink #define Bndry_mask1 0xfffff
358 1.1 kleink #define LSB 1
359 1.1 kleink #define Sign_bit 0x80000000
360 1.1 kleink #define Log2P 1
361 1.1 kleink #define Tiny0 0
362 1.1 kleink #define Tiny1 1
363 1.1 kleink #define Quick_max 14
364 1.1 kleink #define Int_max 14
365 1.1 kleink
366 1.1 kleink #ifndef Flt_Rounds
367 1.1 kleink #ifdef FLT_ROUNDS
368 1.1 kleink #define Flt_Rounds FLT_ROUNDS
369 1.1 kleink #else
370 1.1 kleink #define Flt_Rounds 1
371 1.1 kleink #endif
372 1.1 kleink #endif /*Flt_Rounds*/
373 1.1 kleink
374 1.1 kleink #else /* ifndef IEEE_Arith */
375 1.1 kleink #undef Sudden_Underflow
376 1.1 kleink #define Sudden_Underflow
377 1.1 kleink #ifdef IBM
378 1.1 kleink #undef Flt_Rounds
379 1.1 kleink #define Flt_Rounds 0
380 1.1 kleink #define Exp_shift 24
381 1.1 kleink #define Exp_shift1 24
382 1.1 kleink #define Exp_msk1 0x1000000
383 1.1 kleink #define Exp_msk11 0x1000000
384 1.1 kleink #define Exp_mask 0x7f000000
385 1.1 kleink #define P 14
386 1.1 kleink #define Bias 65
387 1.1 kleink #define Exp_1 0x41000000
388 1.1 kleink #define Exp_11 0x41000000
389 1.1 kleink #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
390 1.1 kleink #define Frac_mask 0xffffff
391 1.1 kleink #define Frac_mask1 0xffffff
392 1.1 kleink #define Bletch 4
393 1.1 kleink #define Ten_pmax 22
394 1.1 kleink #define Bndry_mask 0xefffff
395 1.1 kleink #define Bndry_mask1 0xffffff
396 1.1 kleink #define LSB 1
397 1.1 kleink #define Sign_bit 0x80000000
398 1.1 kleink #define Log2P 4
399 1.1 kleink #define Tiny0 0x100000
400 1.1 kleink #define Tiny1 0
401 1.1 kleink #define Quick_max 14
402 1.1 kleink #define Int_max 15
403 1.1 kleink #else /* VAX */
404 1.1 kleink #undef Flt_Rounds
405 1.1 kleink #define Flt_Rounds 1
406 1.1 kleink #define Exp_shift 23
407 1.1 kleink #define Exp_shift1 7
408 1.1 kleink #define Exp_msk1 0x80
409 1.1 kleink #define Exp_msk11 0x800000
410 1.1 kleink #define Exp_mask 0x7f80
411 1.1 kleink #define P 56
412 1.1 kleink #define Bias 129
413 1.11 christos #define Emin (-127) /* XXX: Check this */
414 1.1 kleink #define Exp_1 0x40800000
415 1.1 kleink #define Exp_11 0x4080
416 1.1 kleink #define Ebits 8
417 1.1 kleink #define Frac_mask 0x7fffff
418 1.1 kleink #define Frac_mask1 0xffff007f
419 1.1 kleink #define Ten_pmax 24
420 1.1 kleink #define Bletch 2
421 1.1 kleink #define Bndry_mask 0xffff007f
422 1.1 kleink #define Bndry_mask1 0xffff007f
423 1.1 kleink #define LSB 0x10000
424 1.1 kleink #define Sign_bit 0x8000
425 1.1 kleink #define Log2P 1
426 1.1 kleink #define Tiny0 0x80
427 1.1 kleink #define Tiny1 0
428 1.1 kleink #define Quick_max 15
429 1.1 kleink #define Int_max 15
430 1.1 kleink #endif /* IBM, VAX */
431 1.1 kleink #endif /* IEEE_Arith */
432 1.1 kleink
433 1.1 kleink #ifndef IEEE_Arith
434 1.1 kleink #define ROUND_BIASED
435 1.9 christos #else
436 1.9 christos #ifdef ROUND_BIASED_without_Round_Up
437 1.9 christos #undef ROUND_BIASED
438 1.9 christos #define ROUND_BIASED
439 1.9 christos #endif
440 1.1 kleink #endif
441 1.1 kleink
442 1.1 kleink #ifdef RND_PRODQUOT
443 1.1 kleink #define rounded_product(a,b) a = rnd_prod(a, b)
444 1.1 kleink #define rounded_quotient(a,b) a = rnd_quot(a, b)
445 1.1 kleink #ifdef KR_headers
446 1.1 kleink extern double rnd_prod(), rnd_quot();
447 1.1 kleink #else
448 1.1 kleink extern double rnd_prod(double, double), rnd_quot(double, double);
449 1.1 kleink #endif
450 1.1 kleink #else
451 1.1 kleink #define rounded_product(a,b) a *= b
452 1.1 kleink #define rounded_quotient(a,b) a /= b
453 1.1 kleink #endif
454 1.1 kleink
455 1.1 kleink #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
456 1.1 kleink #define Big1 0xffffffff
457 1.1 kleink
458 1.1 kleink #undef Pack_16
459 1.1 kleink #ifndef Pack_32
460 1.1 kleink #define Pack_32
461 1.1 kleink #endif
462 1.1 kleink
463 1.1 kleink #ifdef NO_LONG_LONG
464 1.1 kleink #undef ULLong
465 1.1 kleink #ifdef Just_16
466 1.1 kleink #undef Pack_32
467 1.1 kleink #define Pack_16
468 1.1 kleink /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
469 1.1 kleink * This makes some inner loops simpler and sometimes saves work
470 1.1 kleink * during multiplications, but it often seems to make things slightly
471 1.1 kleink * slower. Hence the default is now to store 32 bits per Long.
472 1.1 kleink */
473 1.1 kleink #endif
474 1.1 kleink #else /* long long available */
475 1.1 kleink #ifndef Llong
476 1.1 kleink #define Llong long long
477 1.1 kleink #endif
478 1.1 kleink #ifndef ULLong
479 1.1 kleink #define ULLong unsigned Llong
480 1.1 kleink #endif
481 1.1 kleink #endif /* NO_LONG_LONG */
482 1.1 kleink
483 1.1 kleink #ifdef Pack_32
484 1.1 kleink #define ULbits 32
485 1.1 kleink #define kshift 5
486 1.1 kleink #define kmask 31
487 1.1 kleink #define ALL_ON 0xffffffff
488 1.1 kleink #else
489 1.1 kleink #define ULbits 16
490 1.1 kleink #define kshift 4
491 1.1 kleink #define kmask 15
492 1.1 kleink #define ALL_ON 0xffff
493 1.1 kleink #endif
494 1.1 kleink
495 1.1 kleink #ifndef MULTIPLE_THREADS
496 1.1 kleink #define ACQUIRE_DTOA_LOCK(n) /*nothing*/
497 1.1 kleink #define FREE_DTOA_LOCK(n) /*nothing*/
498 1.2 kleink #else
499 1.2 kleink #include "reentrant.h"
500 1.2 kleink
501 1.2 kleink extern mutex_t __gdtoa_locks[2];
502 1.2 kleink
503 1.2 kleink #define ACQUIRE_DTOA_LOCK(n) \
504 1.2 kleink do { \
505 1.2 kleink if (__isthreaded) \
506 1.2 kleink mutex_lock(&__gdtoa_locks[n]); \
507 1.2 kleink } while (/* CONSTCOND */ 0)
508 1.2 kleink #define FREE_DTOA_LOCK(n) \
509 1.2 kleink do { \
510 1.2 kleink if (__isthreaded) \
511 1.2 kleink mutex_unlock(&__gdtoa_locks[n]); \
512 1.2 kleink } while (/* CONSTCOND */ 0)
513 1.1 kleink #endif
514 1.1 kleink
515 1.7 christos #define Kmax (sizeof(size_t) << 3)
516 1.1 kleink
517 1.1 kleink struct
518 1.1 kleink Bigint {
519 1.1 kleink struct Bigint *next;
520 1.1 kleink int k, maxwds, sign, wds;
521 1.1 kleink ULong x[1];
522 1.1 kleink };
523 1.1 kleink
524 1.1 kleink typedef struct Bigint Bigint;
525 1.1 kleink
526 1.1 kleink #ifdef NO_STRING_H
527 1.1 kleink #ifdef DECLARE_SIZE_T
528 1.1 kleink typedef unsigned int size_t;
529 1.1 kleink #endif
530 1.1 kleink extern void memcpy_D2A ANSI((void*, const void*, size_t));
531 1.1 kleink #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
532 1.1 kleink #else /* !NO_STRING_H */
533 1.1 kleink #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
534 1.1 kleink #endif /* NO_STRING_H */
535 1.1 kleink
536 1.2 kleink #define Balloc __Balloc_D2A
537 1.2 kleink #define Bfree __Bfree_D2A
538 1.2 kleink #define ULtoQ __ULtoQ_D2A
539 1.2 kleink #define ULtof __ULtof_D2A
540 1.2 kleink #define ULtod __ULtod_D2A
541 1.2 kleink #define ULtodd __ULtodd_D2A
542 1.2 kleink #define ULtox __ULtox_D2A
543 1.2 kleink #define ULtoxL __ULtoxL_D2A
544 1.2 kleink #define any_on __any_on_D2A
545 1.2 kleink #define b2d __b2d_D2A
546 1.2 kleink #define bigtens __bigtens_D2A
547 1.2 kleink #define cmp __cmp_D2A
548 1.2 kleink #define copybits __copybits_D2A
549 1.2 kleink #define d2b __d2b_D2A
550 1.2 kleink #define decrement __decrement_D2A
551 1.2 kleink #define diff __diff_D2A
552 1.2 kleink #define dtoa_result __dtoa_result_D2A
553 1.2 kleink #define g__fmt __g__fmt_D2A
554 1.2 kleink #define gethex __gethex_D2A
555 1.2 kleink #define hexdig __hexdig_D2A
556 1.2 kleink #define hexdig_init_D2A __hexdig_init_D2A
557 1.2 kleink #define hexnan __hexnan_D2A
558 1.2 kleink #define hi0bits __hi0bits_D2A
559 1.2 kleink #define hi0bits_D2A __hi0bits_D2A
560 1.2 kleink #define i2b __i2b_D2A
561 1.2 kleink #define increment __increment_D2A
562 1.2 kleink #define lo0bits __lo0bits_D2A
563 1.2 kleink #define lshift __lshift_D2A
564 1.2 kleink #define match __match_D2A
565 1.2 kleink #define mult __mult_D2A
566 1.2 kleink #define multadd __multadd_D2A
567 1.2 kleink #define nrv_alloc __nrv_alloc_D2A
568 1.2 kleink #define pow5mult __pow5mult_D2A
569 1.2 kleink #define quorem __quorem_D2A
570 1.2 kleink #define ratio __ratio_D2A
571 1.2 kleink #define rshift __rshift_D2A
572 1.2 kleink #define rv_alloc __rv_alloc_D2A
573 1.2 kleink #define s2b __s2b_D2A
574 1.2 kleink #define set_ones __set_ones_D2A
575 1.2 kleink #define strcp __strcp_D2A
576 1.2 kleink #define strcp_D2A __strcp_D2A
577 1.2 kleink #define strtoIg __strtoIg_D2A
578 1.2 kleink #define sum __sum_D2A
579 1.2 kleink #define tens __tens_D2A
580 1.2 kleink #define tinytens __tinytens_D2A
581 1.2 kleink #define tinytens __tinytens_D2A
582 1.2 kleink #define trailz __trailz_D2A
583 1.2 kleink #define ulp __ulp_D2A
584 1.1 kleink
585 1.1 kleink extern char *dtoa_result;
586 1.1 kleink extern CONST double bigtens[], tens[], tinytens[];
587 1.1 kleink extern unsigned char hexdig[];
588 1.1 kleink
589 1.10 christos extern Bigint *Balloc ANSI((int));
590 1.1 kleink extern void Bfree ANSI((Bigint*));
591 1.1 kleink extern void ULtof ANSI((ULong*, ULong*, Long, int));
592 1.1 kleink extern void ULtod ANSI((ULong*, ULong*, Long, int));
593 1.1 kleink extern void ULtodd ANSI((ULong*, ULong*, Long, int));
594 1.1 kleink extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
595 1.1 kleink extern void ULtox ANSI((UShort*, ULong*, Long, int));
596 1.1 kleink extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
597 1.1 kleink extern ULong any_on ANSI((Bigint*, int));
598 1.1 kleink extern double b2d ANSI((Bigint*, int*));
599 1.1 kleink extern int cmp ANSI((Bigint*, Bigint*));
600 1.1 kleink extern void copybits ANSI((ULong*, int, Bigint*));
601 1.1 kleink extern Bigint *d2b ANSI((double, int*, int*));
602 1.9 christos extern void decrement ANSI((Bigint*));
603 1.1 kleink extern Bigint *diff ANSI((Bigint*, Bigint*));
604 1.1 kleink extern char *dtoa ANSI((double d, int mode, int ndigits,
605 1.1 kleink int *decpt, int *sign, char **rve));
606 1.9 christos extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t));
607 1.14 joerg extern int gethex ANSI((CONST char**, CONST FPI*, Long*, Bigint**, int, locale_t));
608 1.1 kleink extern void hexdig_init_D2A(Void);
609 1.3 kleink extern int hexnan ANSI((CONST char**, CONST FPI*, ULong*));
610 1.1 kleink extern int hi0bits_D2A ANSI((ULong));
611 1.1 kleink extern Bigint *i2b ANSI((int));
612 1.1 kleink extern Bigint *increment ANSI((Bigint*));
613 1.1 kleink extern int lo0bits ANSI((ULong*));
614 1.1 kleink extern Bigint *lshift ANSI((Bigint*, int));
615 1.2 kleink extern int match ANSI((CONST char**, CONST char*));
616 1.1 kleink extern Bigint *mult ANSI((Bigint*, Bigint*));
617 1.1 kleink extern Bigint *multadd ANSI((Bigint*, int, int));
618 1.6 christos extern char *nrv_alloc ANSI((CONST char*, char **, size_t));
619 1.1 kleink extern Bigint *pow5mult ANSI((Bigint*, int));
620 1.1 kleink extern int quorem ANSI((Bigint*, Bigint*));
621 1.1 kleink extern double ratio ANSI((Bigint*, Bigint*));
622 1.1 kleink extern void rshift ANSI((Bigint*, int));
623 1.6 christos extern char *rv_alloc ANSI((size_t));
624 1.13 christos extern Bigint *s2b ANSI((CONST char*, int, int, ULong, size_t));
625 1.1 kleink extern Bigint *set_ones ANSI((Bigint*, int));
626 1.1 kleink extern char *strcp ANSI((char*, const char*));
627 1.1 kleink extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
628 1.1 kleink extern double strtod ANSI((const char *s00, char **se));
629 1.1 kleink extern Bigint *sum ANSI((Bigint*, Bigint*));
630 1.3 kleink extern int trailz ANSI((CONST Bigint*));
631 1.9 christos extern double ulp ANSI((U*));
632 1.1 kleink
633 1.1 kleink #ifdef __cplusplus
634 1.1 kleink }
635 1.1 kleink #endif
636 1.1 kleink /*
637 1.1 kleink * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to
638 1.1 kleink * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
639 1.1 kleink * respectively), but now are determined by compiling and running
640 1.1 kleink * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
641 1.1 kleink * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
642 1.1 kleink * and -DNAN_WORD1=... values if necessary. This should still work.
643 1.1 kleink * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
644 1.1 kleink */
645 1.1 kleink #ifdef IEEE_Arith
646 1.9 christos #ifndef NO_INFNAN_CHECK
647 1.9 christos #undef INFNAN_CHECK
648 1.9 christos #define INFNAN_CHECK
649 1.9 christos #endif
650 1.2 kleink #ifdef IEEE_BIG_ENDIAN
651 1.1 kleink #define _0 0
652 1.1 kleink #define _1 1
653 1.1 kleink #ifndef NAN_WORD0
654 1.1 kleink #define NAN_WORD0 d_QNAN0
655 1.1 kleink #endif
656 1.1 kleink #ifndef NAN_WORD1
657 1.1 kleink #define NAN_WORD1 d_QNAN1
658 1.1 kleink #endif
659 1.1 kleink #else
660 1.1 kleink #define _0 1
661 1.1 kleink #define _1 0
662 1.1 kleink #ifndef NAN_WORD0
663 1.1 kleink #define NAN_WORD0 d_QNAN1
664 1.1 kleink #endif
665 1.1 kleink #ifndef NAN_WORD1
666 1.1 kleink #define NAN_WORD1 d_QNAN0
667 1.1 kleink #endif
668 1.1 kleink #endif
669 1.1 kleink #else
670 1.1 kleink #undef INFNAN_CHECK
671 1.1 kleink #endif
672 1.1 kleink
673 1.1 kleink #undef SI
674 1.1 kleink #ifdef Sudden_Underflow
675 1.1 kleink #define SI 1
676 1.1 kleink #else
677 1.1 kleink #define SI 0
678 1.1 kleink #endif
679 1.1 kleink
680 1.1 kleink #endif /* GDTOAIMP_H_INCLUDED */
681