Home | History | Annotate | Line # | Download | only in gdtoa
gdtoaimp.h revision 1.2
      1  1.2  kleink /* $NetBSD: gdtoaimp.h,v 1.2 2006/01/25 15:27:42 kleink Exp $ */
      2  1.1  kleink 
      3  1.1  kleink /****************************************************************
      4  1.1  kleink 
      5  1.1  kleink The author of this software is David M. Gay.
      6  1.1  kleink 
      7  1.1  kleink Copyright (C) 1998-2000 by Lucent Technologies
      8  1.1  kleink All Rights Reserved
      9  1.1  kleink 
     10  1.1  kleink Permission to use, copy, modify, and distribute this software and
     11  1.1  kleink its documentation for any purpose and without fee is hereby
     12  1.1  kleink granted, provided that the above copyright notice appear in all
     13  1.1  kleink copies and that both that the copyright notice and this
     14  1.1  kleink permission notice and warranty disclaimer appear in supporting
     15  1.1  kleink documentation, and that the name of Lucent or any of its entities
     16  1.1  kleink not be used in advertising or publicity pertaining to
     17  1.1  kleink distribution of the software without specific, written prior
     18  1.1  kleink permission.
     19  1.1  kleink 
     20  1.1  kleink LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
     21  1.1  kleink INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
     22  1.1  kleink IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
     23  1.1  kleink SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     24  1.1  kleink WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
     25  1.1  kleink IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
     26  1.1  kleink ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
     27  1.1  kleink THIS SOFTWARE.
     28  1.1  kleink 
     29  1.1  kleink ****************************************************************/
     30  1.1  kleink 
     31  1.1  kleink /* This is a variation on dtoa.c that converts arbitary binary
     32  1.1  kleink    floating-point formats to and from decimal notation.  It uses
     33  1.1  kleink    double-precision arithmetic internally, so there are still
     34  1.1  kleink    various #ifdefs that adapt the calculations to the native
     35  1.1  kleink    double-precision arithmetic (any of IEEE, VAX D_floating,
     36  1.1  kleink    or IBM mainframe arithmetic).
     37  1.1  kleink 
     38  1.1  kleink    Please send bug reports to David M. Gay (dmg at acm dot org,
     39  1.1  kleink    with " at " changed at "@" and " dot " changed to ".").
     40  1.1  kleink  */
     41  1.1  kleink 
     42  1.1  kleink /* On a machine with IEEE extended-precision registers, it is
     43  1.1  kleink  * necessary to specify double-precision (53-bit) rounding precision
     44  1.1  kleink  * before invoking strtod or dtoa.  If the machine uses (the equivalent
     45  1.1  kleink  * of) Intel 80x87 arithmetic, the call
     46  1.1  kleink  *	_control87(PC_53, MCW_PC);
     47  1.1  kleink  * does this with many compilers.  Whether this or another call is
     48  1.1  kleink  * appropriate depends on the compiler; for this to work, it may be
     49  1.1  kleink  * necessary to #include "float.h" or another system-dependent header
     50  1.1  kleink  * file.
     51  1.1  kleink  */
     52  1.1  kleink 
     53  1.1  kleink /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
     54  1.1  kleink  *
     55  1.1  kleink  * This strtod returns a nearest machine number to the input decimal
     56  1.1  kleink  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
     57  1.1  kleink  * broken by the IEEE round-even rule.  Otherwise ties are broken by
     58  1.1  kleink  * biased rounding (add half and chop).
     59  1.1  kleink  *
     60  1.1  kleink  * Inspired loosely by William D. Clinger's paper "How to Read Floating
     61  1.1  kleink  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
     62  1.1  kleink  *
     63  1.1  kleink  * Modifications:
     64  1.1  kleink  *
     65  1.1  kleink  *	1. We only require IEEE, IBM, or VAX double-precision
     66  1.1  kleink  *		arithmetic (not IEEE double-extended).
     67  1.1  kleink  *	2. We get by with floating-point arithmetic in a case that
     68  1.1  kleink  *		Clinger missed -- when we're computing d * 10^n
     69  1.1  kleink  *		for a small integer d and the integer n is not too
     70  1.1  kleink  *		much larger than 22 (the maximum integer k for which
     71  1.1  kleink  *		we can represent 10^k exactly), we may be able to
     72  1.1  kleink  *		compute (d*10^k) * 10^(e-k) with just one roundoff.
     73  1.1  kleink  *	3. Rather than a bit-at-a-time adjustment of the binary
     74  1.1  kleink  *		result in the hard case, we use floating-point
     75  1.1  kleink  *		arithmetic to determine the adjustment to within
     76  1.1  kleink  *		one bit; only in really hard cases do we need to
     77  1.1  kleink  *		compute a second residual.
     78  1.1  kleink  *	4. Because of 3., we don't need a large table of powers of 10
     79  1.1  kleink  *		for ten-to-e (just some small tables, e.g. of 10^k
     80  1.1  kleink  *		for 0 <= k <= 22).
     81  1.1  kleink  */
     82  1.1  kleink 
     83  1.1  kleink /*
     84  1.2  kleink  * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
     85  1.1  kleink  *	significant byte has the lowest address.
     86  1.2  kleink  * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
     87  1.1  kleink  *	significant byte has the lowest address.
     88  1.1  kleink  * #define Long int on machines with 32-bit ints and 64-bit longs.
     89  1.1  kleink  * #define Sudden_Underflow for IEEE-format machines without gradual
     90  1.1  kleink  *	underflow (i.e., that flush to zero on underflow).
     91  1.1  kleink  * #define IBM for IBM mainframe-style floating-point arithmetic.
     92  1.1  kleink  * #define VAX for VAX-style floating-point arithmetic (D_floating).
     93  1.1  kleink  * #define No_leftright to omit left-right logic in fast floating-point
     94  1.1  kleink  *	computation of dtoa.
     95  1.1  kleink  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
     96  1.1  kleink  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
     97  1.1  kleink  *	that use extended-precision instructions to compute rounded
     98  1.1  kleink  *	products and quotients) with IBM.
     99  1.1  kleink  * #define ROUND_BIASED for IEEE-format with biased rounding.
    100  1.1  kleink  * #define Inaccurate_Divide for IEEE-format with correctly rounded
    101  1.1  kleink  *	products but inaccurate quotients, e.g., for Intel i860.
    102  1.1  kleink  * #define NO_LONG_LONG on machines that do not have a "long long"
    103  1.1  kleink  *	integer type (of >= 64 bits).  On such machines, you can
    104  1.1  kleink  *	#define Just_16 to store 16 bits per 32-bit Long when doing
    105  1.1  kleink  *	high-precision integer arithmetic.  Whether this speeds things
    106  1.1  kleink  *	up or slows things down depends on the machine and the number
    107  1.1  kleink  *	being converted.  If long long is available and the name is
    108  1.1  kleink  *	something other than "long long", #define Llong to be the name,
    109  1.1  kleink  *	and if "unsigned Llong" does not work as an unsigned version of
    110  1.1  kleink  *	Llong, #define #ULLong to be the corresponding unsigned type.
    111  1.1  kleink  * #define KR_headers for old-style C function headers.
    112  1.1  kleink  * #define Bad_float_h if your system lacks a float.h or if it does not
    113  1.1  kleink  *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
    114  1.1  kleink  *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
    115  1.1  kleink  * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
    116  1.1  kleink  *	if memory is available and otherwise does something you deem
    117  1.1  kleink  *	appropriate.  If MALLOC is undefined, malloc will be invoked
    118  1.1  kleink  *	directly -- and assumed always to succeed.
    119  1.1  kleink  * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
    120  1.1  kleink  *	memory allocations from a private pool of memory when possible.
    121  1.1  kleink  *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
    122  1.1  kleink  *	unless #defined to be a different length.  This default length
    123  1.1  kleink  *	suffices to get rid of MALLOC calls except for unusual cases,
    124  1.1  kleink  *	such as decimal-to-binary conversion of a very long string of
    125  1.1  kleink  *	digits.  When converting IEEE double precision values, the
    126  1.1  kleink  *	longest string gdtoa can return is about 751 bytes long.  For
    127  1.1  kleink  *	conversions by strtod of strings of 800 digits and all gdtoa
    128  1.1  kleink  *	conversions of IEEE doubles in single-threaded executions with
    129  1.1  kleink  *	8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
    130  1.1  kleink  *	4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
    131  1.1  kleink  * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
    132  1.1  kleink  *	Infinity and NaN (case insensitively).
    133  1.1  kleink  *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
    134  1.1  kleink  *	strtodg also accepts (case insensitively) strings of the form
    135  1.1  kleink  *	NaN(x), where x is a string of hexadecimal digits and spaces;
    136  1.1  kleink  *	if there is only one string of hexadecimal digits, it is taken
    137  1.1  kleink  *	for the fraction bits of the resulting NaN; if there are two or
    138  1.1  kleink  *	more strings of hexadecimal digits, each string is assigned
    139  1.1  kleink  *	to the next available sequence of 32-bit words of fractions
    140  1.1  kleink  *	bits (starting with the most significant), right-aligned in
    141  1.1  kleink  *	each sequence.
    142  1.1  kleink  * #define MULTIPLE_THREADS if the system offers preemptively scheduled
    143  1.1  kleink  *	multiple threads.  In this case, you must provide (or suitably
    144  1.1  kleink  *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
    145  1.1  kleink  *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
    146  1.1  kleink  *	in pow5mult, ensures lazy evaluation of only one copy of high
    147  1.1  kleink  *	powers of 5; omitting this lock would introduce a small
    148  1.1  kleink  *	probability of wasting memory, but would otherwise be harmless.)
    149  1.1  kleink  *	You must also invoke freedtoa(s) to free the value s returned by
    150  1.1  kleink  *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
    151  1.1  kleink  * #define IMPRECISE_INEXACT if you do not care about the setting of
    152  1.1  kleink  *	the STRTOG_Inexact bits in the special case of doing IEEE double
    153  1.1  kleink  *	precision conversions (which could also be done by the strtog in
    154  1.1  kleink  *	dtoa.c).
    155  1.1  kleink  * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
    156  1.1  kleink  *	floating-point constants.
    157  1.1  kleink  * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
    158  1.1  kleink  *	strtodg.c).
    159  1.1  kleink  * #define NO_STRING_H to use private versions of memcpy.
    160  1.1  kleink  *	On some K&R systems, it may also be necessary to
    161  1.1  kleink  *	#define DECLARE_SIZE_T in this case.
    162  1.1  kleink  * #define YES_ALIAS to permit aliasing certain double values with
    163  1.1  kleink  *	arrays of ULongs.  This leads to slightly better code with
    164  1.1  kleink  *	some compilers and was always used prior to 19990916, but it
    165  1.1  kleink  *	is not strictly legal and can cause trouble with aggressively
    166  1.1  kleink  *	optimizing compilers (e.g., gcc 2.95.1 under -O2).
    167  1.1  kleink  * #define USE_LOCALE to use the current locale's decimal_point value.
    168  1.1  kleink  */
    169  1.1  kleink 
    170  1.2  kleink /* #define IEEE_{BIG,LITTLE}_ENDIAN in ${ARCHDIR}/gdtoa/arith.h */
    171  1.2  kleink 
    172  1.2  kleink #include <stdint.h>
    173  1.2  kleink #define Long    int32_t
    174  1.2  kleink #define ULong  uint32_t
    175  1.2  kleink #define LLong   int64_t
    176  1.2  kleink #define ULLong uint64_t
    177  1.2  kleink 
    178  1.2  kleink #define INFNAN_CHECK
    179  1.2  kleink #define MULTIPLE_THREADS
    180  1.2  kleink #define USE_LOCALE
    181  1.2  kleink 
    182  1.1  kleink #ifndef GDTOAIMP_H_INCLUDED
    183  1.1  kleink #define GDTOAIMP_H_INCLUDED
    184  1.1  kleink #include "gdtoa.h"
    185  1.1  kleink #include "gd_qnan.h"
    186  1.1  kleink 
    187  1.1  kleink #ifdef DEBUG
    188  1.1  kleink #include "stdio.h"
    189  1.1  kleink #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
    190  1.1  kleink #endif
    191  1.1  kleink 
    192  1.1  kleink #include "stdlib.h"
    193  1.1  kleink #include "string.h"
    194  1.1  kleink 
    195  1.1  kleink #ifdef KR_headers
    196  1.1  kleink #define Char char
    197  1.1  kleink #else
    198  1.1  kleink #define Char void
    199  1.1  kleink #endif
    200  1.1  kleink 
    201  1.1  kleink #ifdef MALLOC
    202  1.1  kleink extern Char *MALLOC ANSI((size_t));
    203  1.1  kleink #else
    204  1.1  kleink #define MALLOC malloc
    205  1.1  kleink #endif
    206  1.1  kleink 
    207  1.1  kleink #undef IEEE_Arith
    208  1.1  kleink #undef Avoid_Underflow
    209  1.2  kleink #ifdef IEEE_BIG_ENDIAN
    210  1.1  kleink #define IEEE_Arith
    211  1.1  kleink #endif
    212  1.2  kleink #ifdef IEEE_LITTLE_ENDIAN
    213  1.1  kleink #define IEEE_Arith
    214  1.1  kleink #endif
    215  1.1  kleink 
    216  1.1  kleink #include "errno.h"
    217  1.1  kleink #ifdef Bad_float_h
    218  1.1  kleink 
    219  1.1  kleink #ifdef IEEE_Arith
    220  1.1  kleink #define DBL_DIG 15
    221  1.1  kleink #define DBL_MAX_10_EXP 308
    222  1.1  kleink #define DBL_MAX_EXP 1024
    223  1.1  kleink #define FLT_RADIX 2
    224  1.1  kleink #define DBL_MAX 1.7976931348623157e+308
    225  1.1  kleink #endif
    226  1.1  kleink 
    227  1.1  kleink #ifdef IBM
    228  1.1  kleink #define DBL_DIG 16
    229  1.1  kleink #define DBL_MAX_10_EXP 75
    230  1.1  kleink #define DBL_MAX_EXP 63
    231  1.1  kleink #define FLT_RADIX 16
    232  1.1  kleink #define DBL_MAX 7.2370055773322621e+75
    233  1.1  kleink #endif
    234  1.1  kleink 
    235  1.1  kleink #ifdef VAX
    236  1.1  kleink #define DBL_DIG 16
    237  1.1  kleink #define DBL_MAX_10_EXP 38
    238  1.1  kleink #define DBL_MAX_EXP 127
    239  1.1  kleink #define FLT_RADIX 2
    240  1.1  kleink #define DBL_MAX 1.7014118346046923e+38
    241  1.1  kleink #define n_bigtens 2
    242  1.1  kleink #endif
    243  1.1  kleink 
    244  1.1  kleink #ifndef LONG_MAX
    245  1.1  kleink #define LONG_MAX 2147483647
    246  1.1  kleink #endif
    247  1.1  kleink 
    248  1.1  kleink #else /* ifndef Bad_float_h */
    249  1.1  kleink #include "float.h"
    250  1.1  kleink #endif /* Bad_float_h */
    251  1.1  kleink 
    252  1.1  kleink #ifdef IEEE_Arith
    253  1.1  kleink #define Scale_Bit 0x10
    254  1.1  kleink #define n_bigtens 5
    255  1.1  kleink #endif
    256  1.1  kleink 
    257  1.1  kleink #ifdef IBM
    258  1.1  kleink #define n_bigtens 3
    259  1.1  kleink #endif
    260  1.1  kleink 
    261  1.1  kleink #ifdef VAX
    262  1.1  kleink #define n_bigtens 2
    263  1.1  kleink #endif
    264  1.1  kleink 
    265  1.1  kleink #include "math.h"
    266  1.1  kleink 
    267  1.1  kleink #ifdef __cplusplus
    268  1.1  kleink extern "C" {
    269  1.1  kleink #endif
    270  1.1  kleink 
    271  1.2  kleink #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + defined(IBM) != 1
    272  1.2  kleink Exactly one of IEEE_LITTLE_ENDIAN, IEEE_BIG_ENDIAN, VAX, or IBM should be defined.
    273  1.1  kleink #endif
    274  1.1  kleink 
    275  1.1  kleink typedef union { double d; ULong L[2]; } U;
    276  1.1  kleink 
    277  1.1  kleink #ifdef YES_ALIAS
    278  1.1  kleink #define dval(x) x
    279  1.2  kleink #ifdef IEEE_LITTLE_ENDIAN
    280  1.1  kleink #define word0(x) ((ULong *)&x)[1]
    281  1.1  kleink #define word1(x) ((ULong *)&x)[0]
    282  1.1  kleink #else
    283  1.1  kleink #define word0(x) ((ULong *)&x)[0]
    284  1.1  kleink #define word1(x) ((ULong *)&x)[1]
    285  1.1  kleink #endif
    286  1.1  kleink #else /* !YES_ALIAS */
    287  1.2  kleink #ifdef IEEE_LITTLE_ENDIAN
    288  1.2  kleink #define word0(x) ( /* LINTED */ (U*)&x)->L[1]
    289  1.2  kleink #define word1(x) ( /* LINTED */ (U*)&x)->L[0]
    290  1.1  kleink #else
    291  1.2  kleink #define word0(x) ( /* LINTED */ (U*)&x)->L[0]
    292  1.2  kleink #define word1(x) ( /* LINTED */ (U*)&x)->L[1]
    293  1.1  kleink #endif
    294  1.2  kleink #define dval(x) ( /* LINTED */ (U*)&x)->d
    295  1.1  kleink #endif /* YES_ALIAS */
    296  1.1  kleink 
    297  1.1  kleink /* The following definition of Storeinc is appropriate for MIPS processors.
    298  1.1  kleink  * An alternative that might be better on some machines is
    299  1.1  kleink  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
    300  1.1  kleink  */
    301  1.2  kleink #if defined(IEEE_LITTLE_ENDIAN) + defined(VAX)
    302  1.2  kleink #define Storeinc(a,b,c) \
    303  1.2  kleink  (((unsigned short *)(void *)a)[1] = (unsigned short)b, \
    304  1.2  kleink   ((unsigned short *)(void *)a)[0] = (unsigned short)c, \
    305  1.2  kleink   a++)
    306  1.2  kleink #else
    307  1.2  kleink #define Storeinc(a,b,c) \
    308  1.2  kleink  (((unsigned short *)(void *)a)[0] = (unsigned short)b, \
    309  1.2  kleink   ((unsigned short *)(void *)a)[1] = (unsigned short)c, \
    310  1.2  kleink   a++)
    311  1.1  kleink #endif
    312  1.1  kleink 
    313  1.1  kleink /* #define P DBL_MANT_DIG */
    314  1.1  kleink /* Ten_pmax = floor(P*log(2)/log(5)) */
    315  1.1  kleink /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
    316  1.1  kleink /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
    317  1.1  kleink /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
    318  1.1  kleink 
    319  1.1  kleink #ifdef IEEE_Arith
    320  1.1  kleink #define Exp_shift  20
    321  1.1  kleink #define Exp_shift1 20
    322  1.1  kleink #define Exp_msk1    0x100000
    323  1.1  kleink #define Exp_msk11   0x100000
    324  1.1  kleink #define Exp_mask  0x7ff00000
    325  1.1  kleink #define P 53
    326  1.1  kleink #define Bias 1023
    327  1.1  kleink #define Emin (-1022)
    328  1.1  kleink #define Exp_1  0x3ff00000
    329  1.1  kleink #define Exp_11 0x3ff00000
    330  1.1  kleink #define Ebits 11
    331  1.1  kleink #define Frac_mask  0xfffff
    332  1.1  kleink #define Frac_mask1 0xfffff
    333  1.1  kleink #define Ten_pmax 22
    334  1.1  kleink #define Bletch 0x10
    335  1.1  kleink #define Bndry_mask  0xfffff
    336  1.1  kleink #define Bndry_mask1 0xfffff
    337  1.1  kleink #define LSB 1
    338  1.1  kleink #define Sign_bit 0x80000000
    339  1.1  kleink #define Log2P 1
    340  1.1  kleink #define Tiny0 0
    341  1.1  kleink #define Tiny1 1
    342  1.1  kleink #define Quick_max 14
    343  1.1  kleink #define Int_max 14
    344  1.1  kleink 
    345  1.1  kleink #ifndef Flt_Rounds
    346  1.1  kleink #ifdef FLT_ROUNDS
    347  1.1  kleink #define Flt_Rounds FLT_ROUNDS
    348  1.1  kleink #else
    349  1.1  kleink #define Flt_Rounds 1
    350  1.1  kleink #endif
    351  1.1  kleink #endif /*Flt_Rounds*/
    352  1.1  kleink 
    353  1.1  kleink #else /* ifndef IEEE_Arith */
    354  1.1  kleink #undef  Sudden_Underflow
    355  1.1  kleink #define Sudden_Underflow
    356  1.1  kleink #ifdef IBM
    357  1.1  kleink #undef Flt_Rounds
    358  1.1  kleink #define Flt_Rounds 0
    359  1.1  kleink #define Exp_shift  24
    360  1.1  kleink #define Exp_shift1 24
    361  1.1  kleink #define Exp_msk1   0x1000000
    362  1.1  kleink #define Exp_msk11  0x1000000
    363  1.1  kleink #define Exp_mask  0x7f000000
    364  1.1  kleink #define P 14
    365  1.1  kleink #define Bias 65
    366  1.1  kleink #define Exp_1  0x41000000
    367  1.1  kleink #define Exp_11 0x41000000
    368  1.1  kleink #define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
    369  1.1  kleink #define Frac_mask  0xffffff
    370  1.1  kleink #define Frac_mask1 0xffffff
    371  1.1  kleink #define Bletch 4
    372  1.1  kleink #define Ten_pmax 22
    373  1.1  kleink #define Bndry_mask  0xefffff
    374  1.1  kleink #define Bndry_mask1 0xffffff
    375  1.1  kleink #define LSB 1
    376  1.1  kleink #define Sign_bit 0x80000000
    377  1.1  kleink #define Log2P 4
    378  1.1  kleink #define Tiny0 0x100000
    379  1.1  kleink #define Tiny1 0
    380  1.1  kleink #define Quick_max 14
    381  1.1  kleink #define Int_max 15
    382  1.1  kleink #else /* VAX */
    383  1.1  kleink #undef Flt_Rounds
    384  1.1  kleink #define Flt_Rounds 1
    385  1.1  kleink #define Exp_shift  23
    386  1.1  kleink #define Exp_shift1 7
    387  1.1  kleink #define Exp_msk1    0x80
    388  1.1  kleink #define Exp_msk11   0x800000
    389  1.1  kleink #define Exp_mask  0x7f80
    390  1.1  kleink #define P 56
    391  1.1  kleink #define Bias 129
    392  1.1  kleink #define Exp_1  0x40800000
    393  1.1  kleink #define Exp_11 0x4080
    394  1.1  kleink #define Ebits 8
    395  1.1  kleink #define Frac_mask  0x7fffff
    396  1.1  kleink #define Frac_mask1 0xffff007f
    397  1.1  kleink #define Ten_pmax 24
    398  1.1  kleink #define Bletch 2
    399  1.1  kleink #define Bndry_mask  0xffff007f
    400  1.1  kleink #define Bndry_mask1 0xffff007f
    401  1.1  kleink #define LSB 0x10000
    402  1.1  kleink #define Sign_bit 0x8000
    403  1.1  kleink #define Log2P 1
    404  1.1  kleink #define Tiny0 0x80
    405  1.1  kleink #define Tiny1 0
    406  1.1  kleink #define Quick_max 15
    407  1.1  kleink #define Int_max 15
    408  1.1  kleink #endif /* IBM, VAX */
    409  1.1  kleink #endif /* IEEE_Arith */
    410  1.1  kleink 
    411  1.1  kleink #ifndef IEEE_Arith
    412  1.1  kleink #define ROUND_BIASED
    413  1.1  kleink #endif
    414  1.1  kleink 
    415  1.1  kleink #ifdef RND_PRODQUOT
    416  1.1  kleink #define rounded_product(a,b) a = rnd_prod(a, b)
    417  1.1  kleink #define rounded_quotient(a,b) a = rnd_quot(a, b)
    418  1.1  kleink #ifdef KR_headers
    419  1.1  kleink extern double rnd_prod(), rnd_quot();
    420  1.1  kleink #else
    421  1.1  kleink extern double rnd_prod(double, double), rnd_quot(double, double);
    422  1.1  kleink #endif
    423  1.1  kleink #else
    424  1.1  kleink #define rounded_product(a,b) a *= b
    425  1.1  kleink #define rounded_quotient(a,b) a /= b
    426  1.1  kleink #endif
    427  1.1  kleink 
    428  1.1  kleink #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
    429  1.1  kleink #define Big1 0xffffffff
    430  1.1  kleink 
    431  1.1  kleink #undef  Pack_16
    432  1.1  kleink #ifndef Pack_32
    433  1.1  kleink #define Pack_32
    434  1.1  kleink #endif
    435  1.1  kleink 
    436  1.1  kleink #ifdef NO_LONG_LONG
    437  1.1  kleink #undef ULLong
    438  1.1  kleink #ifdef Just_16
    439  1.1  kleink #undef Pack_32
    440  1.1  kleink #define Pack_16
    441  1.1  kleink /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
    442  1.1  kleink  * This makes some inner loops simpler and sometimes saves work
    443  1.1  kleink  * during multiplications, but it often seems to make things slightly
    444  1.1  kleink  * slower.  Hence the default is now to store 32 bits per Long.
    445  1.1  kleink  */
    446  1.1  kleink #endif
    447  1.1  kleink #else	/* long long available */
    448  1.1  kleink #ifndef Llong
    449  1.1  kleink #define Llong long long
    450  1.1  kleink #endif
    451  1.1  kleink #ifndef ULLong
    452  1.1  kleink #define ULLong unsigned Llong
    453  1.1  kleink #endif
    454  1.1  kleink #endif /* NO_LONG_LONG */
    455  1.1  kleink 
    456  1.1  kleink #ifdef Pack_32
    457  1.1  kleink #define ULbits 32
    458  1.1  kleink #define kshift 5
    459  1.1  kleink #define kmask 31
    460  1.1  kleink #define ALL_ON 0xffffffff
    461  1.1  kleink #else
    462  1.1  kleink #define ULbits 16
    463  1.1  kleink #define kshift 4
    464  1.1  kleink #define kmask 15
    465  1.1  kleink #define ALL_ON 0xffff
    466  1.1  kleink #endif
    467  1.1  kleink 
    468  1.1  kleink #ifndef MULTIPLE_THREADS
    469  1.1  kleink #define ACQUIRE_DTOA_LOCK(n)	/*nothing*/
    470  1.1  kleink #define FREE_DTOA_LOCK(n)	/*nothing*/
    471  1.2  kleink #else
    472  1.2  kleink #include "reentrant.h"
    473  1.2  kleink 
    474  1.2  kleink extern mutex_t __gdtoa_locks[2];
    475  1.2  kleink 
    476  1.2  kleink #define ACQUIRE_DTOA_LOCK(n)	\
    477  1.2  kleink 	do {							\
    478  1.2  kleink 		if (__isthreaded)				\
    479  1.2  kleink 			mutex_lock(&__gdtoa_locks[n]);		\
    480  1.2  kleink 	} while (/* CONSTCOND */ 0)
    481  1.2  kleink #define FREE_DTOA_LOCK(n)	\
    482  1.2  kleink 	do {							\
    483  1.2  kleink 		if (__isthreaded)				\
    484  1.2  kleink 			mutex_unlock(&__gdtoa_locks[n]);	\
    485  1.2  kleink 	} while (/* CONSTCOND */ 0)
    486  1.1  kleink #endif
    487  1.1  kleink 
    488  1.1  kleink #define Kmax 15
    489  1.1  kleink 
    490  1.1  kleink  struct
    491  1.1  kleink Bigint {
    492  1.1  kleink 	struct Bigint *next;
    493  1.1  kleink 	int k, maxwds, sign, wds;
    494  1.1  kleink 	ULong x[1];
    495  1.1  kleink 	};
    496  1.1  kleink 
    497  1.1  kleink  typedef struct Bigint Bigint;
    498  1.1  kleink 
    499  1.1  kleink #ifdef NO_STRING_H
    500  1.1  kleink #ifdef DECLARE_SIZE_T
    501  1.1  kleink typedef unsigned int size_t;
    502  1.1  kleink #endif
    503  1.1  kleink extern void memcpy_D2A ANSI((void*, const void*, size_t));
    504  1.1  kleink #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
    505  1.1  kleink #else /* !NO_STRING_H */
    506  1.1  kleink #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
    507  1.1  kleink #endif /* NO_STRING_H */
    508  1.1  kleink 
    509  1.2  kleink #define Balloc		__Balloc_D2A
    510  1.2  kleink #define Bfree		__Bfree_D2A
    511  1.2  kleink #define ULtoQ		__ULtoQ_D2A
    512  1.2  kleink #define ULtof		__ULtof_D2A
    513  1.2  kleink #define ULtod		__ULtod_D2A
    514  1.2  kleink #define ULtodd		__ULtodd_D2A
    515  1.2  kleink #define ULtox		__ULtox_D2A
    516  1.2  kleink #define ULtoxL		__ULtoxL_D2A
    517  1.2  kleink #define any_on 		__any_on_D2A
    518  1.2  kleink #define b2d 		__b2d_D2A
    519  1.2  kleink #define bigtens 	__bigtens_D2A
    520  1.2  kleink #define cmp 		__cmp_D2A
    521  1.2  kleink #define copybits 	__copybits_D2A
    522  1.2  kleink #define d2b 		__d2b_D2A
    523  1.2  kleink #define decrement 	__decrement_D2A
    524  1.2  kleink #define diff 		__diff_D2A
    525  1.2  kleink #define dtoa_result 	__dtoa_result_D2A
    526  1.2  kleink #define g__fmt 		__g__fmt_D2A
    527  1.2  kleink #define gethex 		__gethex_D2A
    528  1.2  kleink #define hexdig 		__hexdig_D2A
    529  1.2  kleink #define hexdig_init_D2A	__hexdig_init_D2A
    530  1.2  kleink #define hexnan		__hexnan_D2A
    531  1.2  kleink #define hi0bits		__hi0bits_D2A
    532  1.2  kleink #define hi0bits_D2A	__hi0bits_D2A
    533  1.2  kleink #define i2b		__i2b_D2A
    534  1.2  kleink #define increment	__increment_D2A
    535  1.2  kleink #define lo0bits		__lo0bits_D2A
    536  1.2  kleink #define lshift		__lshift_D2A
    537  1.2  kleink #define match		__match_D2A
    538  1.2  kleink #define mult		__mult_D2A
    539  1.2  kleink #define multadd		__multadd_D2A
    540  1.2  kleink #define nrv_alloc	__nrv_alloc_D2A
    541  1.2  kleink #define pow5mult	__pow5mult_D2A
    542  1.2  kleink #define quorem		__quorem_D2A
    543  1.2  kleink #define ratio		__ratio_D2A
    544  1.2  kleink #define rshift		__rshift_D2A
    545  1.2  kleink #define rv_alloc	__rv_alloc_D2A
    546  1.2  kleink #define s2b		__s2b_D2A
    547  1.2  kleink #define set_ones	__set_ones_D2A
    548  1.2  kleink #define strcp		__strcp_D2A
    549  1.2  kleink #define strcp_D2A	__strcp_D2A
    550  1.2  kleink #define strtoIg		__strtoIg_D2A
    551  1.2  kleink #define sum		__sum_D2A
    552  1.2  kleink #define tens		__tens_D2A
    553  1.2  kleink #define tinytens	__tinytens_D2A
    554  1.2  kleink #define tinytens	__tinytens_D2A
    555  1.2  kleink #define trailz		__trailz_D2A
    556  1.2  kleink #define ulp		__ulp_D2A
    557  1.1  kleink 
    558  1.1  kleink  extern char *dtoa_result;
    559  1.1  kleink  extern CONST double bigtens[], tens[], tinytens[];
    560  1.1  kleink  extern unsigned char hexdig[];
    561  1.1  kleink 
    562  1.1  kleink  extern Bigint *Balloc ANSI((int));
    563  1.1  kleink  extern void Bfree ANSI((Bigint*));
    564  1.1  kleink  extern void ULtof ANSI((ULong*, ULong*, Long, int));
    565  1.1  kleink  extern void ULtod ANSI((ULong*, ULong*, Long, int));
    566  1.1  kleink  extern void ULtodd ANSI((ULong*, ULong*, Long, int));
    567  1.1  kleink  extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
    568  1.1  kleink  extern void ULtox ANSI((UShort*, ULong*, Long, int));
    569  1.1  kleink  extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
    570  1.1  kleink  extern ULong any_on ANSI((Bigint*, int));
    571  1.1  kleink  extern double b2d ANSI((Bigint*, int*));
    572  1.1  kleink  extern int cmp ANSI((Bigint*, Bigint*));
    573  1.1  kleink  extern void copybits ANSI((ULong*, int, Bigint*));
    574  1.1  kleink  extern Bigint *d2b ANSI((double, int*, int*));
    575  1.1  kleink  extern int decrement ANSI((Bigint*));
    576  1.1  kleink  extern Bigint *diff ANSI((Bigint*, Bigint*));
    577  1.1  kleink  extern char *dtoa ANSI((double d, int mode, int ndigits,
    578  1.1  kleink 			int *decpt, int *sign, char **rve));
    579  1.1  kleink  extern char *g__fmt ANSI((char*, char*, char*, int, ULong));
    580  1.1  kleink  extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int));
    581  1.1  kleink  extern void hexdig_init_D2A(Void);
    582  1.1  kleink  extern int hexnan ANSI((CONST char**, FPI*, ULong*));
    583  1.1  kleink  extern int hi0bits_D2A ANSI((ULong));
    584  1.1  kleink  extern Bigint *i2b ANSI((int));
    585  1.1  kleink  extern Bigint *increment ANSI((Bigint*));
    586  1.1  kleink  extern int lo0bits ANSI((ULong*));
    587  1.1  kleink  extern Bigint *lshift ANSI((Bigint*, int));
    588  1.2  kleink  extern int match ANSI((CONST char**, CONST char*));
    589  1.1  kleink  extern Bigint *mult ANSI((Bigint*, Bigint*));
    590  1.1  kleink  extern Bigint *multadd ANSI((Bigint*, int, int));
    591  1.2  kleink  extern char *nrv_alloc ANSI((CONST char*, char **, int));
    592  1.1  kleink  extern Bigint *pow5mult ANSI((Bigint*, int));
    593  1.1  kleink  extern int quorem ANSI((Bigint*, Bigint*));
    594  1.1  kleink  extern double ratio ANSI((Bigint*, Bigint*));
    595  1.1  kleink  extern void rshift ANSI((Bigint*, int));
    596  1.1  kleink  extern char *rv_alloc ANSI((int));
    597  1.1  kleink  extern Bigint *s2b ANSI((CONST char*, int, int, ULong));
    598  1.1  kleink  extern Bigint *set_ones ANSI((Bigint*, int));
    599  1.1  kleink  extern char *strcp ANSI((char*, const char*));
    600  1.1  kleink  extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
    601  1.1  kleink  extern double strtod ANSI((const char *s00, char **se));
    602  1.1  kleink  extern Bigint *sum ANSI((Bigint*, Bigint*));
    603  1.1  kleink  extern int trailz ANSI((Bigint*));
    604  1.1  kleink  extern double ulp ANSI((double));
    605  1.1  kleink 
    606  1.1  kleink #ifdef __cplusplus
    607  1.1  kleink }
    608  1.1  kleink #endif
    609  1.1  kleink /*
    610  1.1  kleink  * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c.  Prior to
    611  1.1  kleink  * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
    612  1.1  kleink  * respectively), but now are determined by compiling and running
    613  1.1  kleink  * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
    614  1.1  kleink  * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
    615  1.1  kleink  * and -DNAN_WORD1=...  values if necessary.  This should still work.
    616  1.1  kleink  * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
    617  1.1  kleink  */
    618  1.1  kleink #ifdef IEEE_Arith
    619  1.2  kleink #ifdef IEEE_BIG_ENDIAN
    620  1.1  kleink #define _0 0
    621  1.1  kleink #define _1 1
    622  1.1  kleink #ifndef NAN_WORD0
    623  1.1  kleink #define NAN_WORD0 d_QNAN0
    624  1.1  kleink #endif
    625  1.1  kleink #ifndef NAN_WORD1
    626  1.1  kleink #define NAN_WORD1 d_QNAN1
    627  1.1  kleink #endif
    628  1.1  kleink #else
    629  1.1  kleink #define _0 1
    630  1.1  kleink #define _1 0
    631  1.1  kleink #ifndef NAN_WORD0
    632  1.1  kleink #define NAN_WORD0 d_QNAN1
    633  1.1  kleink #endif
    634  1.1  kleink #ifndef NAN_WORD1
    635  1.1  kleink #define NAN_WORD1 d_QNAN0
    636  1.1  kleink #endif
    637  1.1  kleink #endif
    638  1.1  kleink #else
    639  1.1  kleink #undef INFNAN_CHECK
    640  1.1  kleink #endif
    641  1.1  kleink 
    642  1.1  kleink #undef SI
    643  1.1  kleink #ifdef Sudden_Underflow
    644  1.1  kleink #define SI 1
    645  1.1  kleink #else
    646  1.1  kleink #define SI 0
    647  1.1  kleink #endif
    648  1.1  kleink 
    649  1.1  kleink #endif /* GDTOAIMP_H_INCLUDED */
    650