gdtoaimp.h revision 1.4 1 /* $NetBSD: gdtoaimp.h,v 1.4 2006/05/04 18:38:56 christos Exp $ */
2
3 /****************************************************************
4
5 The author of this software is David M. Gay.
6
7 Copyright (C) 1998-2000 by Lucent Technologies
8 All Rights Reserved
9
10 Permission to use, copy, modify, and distribute this software and
11 its documentation for any purpose and without fee is hereby
12 granted, provided that the above copyright notice appear in all
13 copies and that both that the copyright notice and this
14 permission notice and warranty disclaimer appear in supporting
15 documentation, and that the name of Lucent or any of its entities
16 not be used in advertising or publicity pertaining to
17 distribution of the software without specific, written prior
18 permission.
19
20 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
21 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
22 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
23 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
24 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
25 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
26 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
27 THIS SOFTWARE.
28
29 ****************************************************************/
30
31 /* This is a variation on dtoa.c that converts arbitary binary
32 floating-point formats to and from decimal notation. It uses
33 double-precision arithmetic internally, so there are still
34 various #ifdefs that adapt the calculations to the native
35 double-precision arithmetic (any of IEEE, VAX D_floating,
36 or IBM mainframe arithmetic).
37
38 Please send bug reports to David M. Gay (dmg at acm dot org,
39 with " at " changed at "@" and " dot " changed to ".").
40 */
41
42 /* On a machine with IEEE extended-precision registers, it is
43 * necessary to specify double-precision (53-bit) rounding precision
44 * before invoking strtod or dtoa. If the machine uses (the equivalent
45 * of) Intel 80x87 arithmetic, the call
46 * _control87(PC_53, MCW_PC);
47 * does this with many compilers. Whether this or another call is
48 * appropriate depends on the compiler; for this to work, it may be
49 * necessary to #include "float.h" or another system-dependent header
50 * file.
51 */
52
53 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
54 *
55 * This strtod returns a nearest machine number to the input decimal
56 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
57 * broken by the IEEE round-even rule. Otherwise ties are broken by
58 * biased rounding (add half and chop).
59 *
60 * Inspired loosely by William D. Clinger's paper "How to Read Floating
61 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
62 *
63 * Modifications:
64 *
65 * 1. We only require IEEE, IBM, or VAX double-precision
66 * arithmetic (not IEEE double-extended).
67 * 2. We get by with floating-point arithmetic in a case that
68 * Clinger missed -- when we're computing d * 10^n
69 * for a small integer d and the integer n is not too
70 * much larger than 22 (the maximum integer k for which
71 * we can represent 10^k exactly), we may be able to
72 * compute (d*10^k) * 10^(e-k) with just one roundoff.
73 * 3. Rather than a bit-at-a-time adjustment of the binary
74 * result in the hard case, we use floating-point
75 * arithmetic to determine the adjustment to within
76 * one bit; only in really hard cases do we need to
77 * compute a second residual.
78 * 4. Because of 3., we don't need a large table of powers of 10
79 * for ten-to-e (just some small tables, e.g. of 10^k
80 * for 0 <= k <= 22).
81 */
82
83 /*
84 * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
85 * significant byte has the lowest address.
86 * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
87 * significant byte has the lowest address.
88 * #define Long int on machines with 32-bit ints and 64-bit longs.
89 * #define Sudden_Underflow for IEEE-format machines without gradual
90 * underflow (i.e., that flush to zero on underflow).
91 * #define IBM for IBM mainframe-style floating-point arithmetic.
92 * #define VAX for VAX-style floating-point arithmetic (D_floating).
93 * #define No_leftright to omit left-right logic in fast floating-point
94 * computation of dtoa.
95 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
96 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
97 * that use extended-precision instructions to compute rounded
98 * products and quotients) with IBM.
99 * #define ROUND_BIASED for IEEE-format with biased rounding.
100 * #define Inaccurate_Divide for IEEE-format with correctly rounded
101 * products but inaccurate quotients, e.g., for Intel i860.
102 * #define NO_LONG_LONG on machines that do not have a "long long"
103 * integer type (of >= 64 bits). On such machines, you can
104 * #define Just_16 to store 16 bits per 32-bit Long when doing
105 * high-precision integer arithmetic. Whether this speeds things
106 * up or slows things down depends on the machine and the number
107 * being converted. If long long is available and the name is
108 * something other than "long long", #define Llong to be the name,
109 * and if "unsigned Llong" does not work as an unsigned version of
110 * Llong, #define #ULLong to be the corresponding unsigned type.
111 * #define KR_headers for old-style C function headers.
112 * #define Bad_float_h if your system lacks a float.h or if it does not
113 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
114 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
115 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
116 * if memory is available and otherwise does something you deem
117 * appropriate. If MALLOC is undefined, malloc will be invoked
118 * directly -- and assumed always to succeed.
119 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
120 * memory allocations from a private pool of memory when possible.
121 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
122 * unless #defined to be a different length. This default length
123 * suffices to get rid of MALLOC calls except for unusual cases,
124 * such as decimal-to-binary conversion of a very long string of
125 * digits. When converting IEEE double precision values, the
126 * longest string gdtoa can return is about 751 bytes long. For
127 * conversions by strtod of strings of 800 digits and all gdtoa
128 * conversions of IEEE doubles in single-threaded executions with
129 * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
130 * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
131 * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
132 * Infinity and NaN (case insensitively).
133 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
134 * strtodg also accepts (case insensitively) strings of the form
135 * NaN(x), where x is a string of hexadecimal digits and spaces;
136 * if there is only one string of hexadecimal digits, it is taken
137 * for the fraction bits of the resulting NaN; if there are two or
138 * more strings of hexadecimal digits, each string is assigned
139 * to the next available sequence of 32-bit words of fractions
140 * bits (starting with the most significant), right-aligned in
141 * each sequence.
142 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
143 * multiple threads. In this case, you must provide (or suitably
144 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
145 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
146 * in pow5mult, ensures lazy evaluation of only one copy of high
147 * powers of 5; omitting this lock would introduce a small
148 * probability of wasting memory, but would otherwise be harmless.)
149 * You must also invoke freedtoa(s) to free the value s returned by
150 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
151 * #define IMPRECISE_INEXACT if you do not care about the setting of
152 * the STRTOG_Inexact bits in the special case of doing IEEE double
153 * precision conversions (which could also be done by the strtog in
154 * dtoa.c).
155 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
156 * floating-point constants.
157 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
158 * strtodg.c).
159 * #define NO_STRING_H to use private versions of memcpy.
160 * On some K&R systems, it may also be necessary to
161 * #define DECLARE_SIZE_T in this case.
162 * #define YES_ALIAS to permit aliasing certain double values with
163 * arrays of ULongs. This leads to slightly better code with
164 * some compilers and was always used prior to 19990916, but it
165 * is not strictly legal and can cause trouble with aggressively
166 * optimizing compilers (e.g., gcc 2.95.1 under -O2).
167 * #define USE_LOCALE to use the current locale's decimal_point value.
168 */
169
170 /* #define IEEE_{BIG,LITTLE}_ENDIAN in ${ARCHDIR}/gdtoa/arith.h */
171
172 #include <stdint.h>
173 #define Long int32_t
174 #define ULong uint32_t
175 #define LLong int64_t
176 #define ULLong uint64_t
177
178 #define INFNAN_CHECK
179 #ifdef _REENTRANT
180 #define MULTIPLE_THREADS
181 #endif
182 #define USE_LOCALE
183
184 #ifndef GDTOAIMP_H_INCLUDED
185 #define GDTOAIMP_H_INCLUDED
186 #include "gdtoa.h"
187 #include "gd_qnan.h"
188
189 #ifdef DEBUG
190 #include "stdio.h"
191 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
192 #endif
193
194 #include "stdlib.h"
195 #include "string.h"
196
197 #ifdef KR_headers
198 #define Char char
199 #else
200 #define Char void
201 #endif
202
203 #ifdef MALLOC
204 extern Char *MALLOC ANSI((size_t));
205 #else
206 #define MALLOC malloc
207 #endif
208
209 #undef IEEE_Arith
210 #undef Avoid_Underflow
211 #ifdef IEEE_BIG_ENDIAN
212 #define IEEE_Arith
213 #endif
214 #ifdef IEEE_LITTLE_ENDIAN
215 #define IEEE_Arith
216 #endif
217
218 #include "errno.h"
219 #ifdef Bad_float_h
220
221 #ifdef IEEE_Arith
222 #define DBL_DIG 15
223 #define DBL_MAX_10_EXP 308
224 #define DBL_MAX_EXP 1024
225 #define FLT_RADIX 2
226 #define DBL_MAX 1.7976931348623157e+308
227 #endif
228
229 #ifdef IBM
230 #define DBL_DIG 16
231 #define DBL_MAX_10_EXP 75
232 #define DBL_MAX_EXP 63
233 #define FLT_RADIX 16
234 #define DBL_MAX 7.2370055773322621e+75
235 #endif
236
237 #ifdef VAX
238 #define DBL_DIG 16
239 #define DBL_MAX_10_EXP 38
240 #define DBL_MAX_EXP 127
241 #define FLT_RADIX 2
242 #define DBL_MAX 1.7014118346046923e+38
243 #define n_bigtens 2
244 #endif
245
246 #ifndef LONG_MAX
247 #define LONG_MAX 2147483647
248 #endif
249
250 #else /* ifndef Bad_float_h */
251 #include "float.h"
252 #endif /* Bad_float_h */
253
254 #ifdef IEEE_Arith
255 #define Scale_Bit 0x10
256 #define n_bigtens 5
257 #endif
258
259 #ifdef IBM
260 #define n_bigtens 3
261 #endif
262
263 #ifdef VAX
264 #define n_bigtens 2
265 #endif
266
267 #include "math.h"
268
269 #ifdef __cplusplus
270 extern "C" {
271 #endif
272
273 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + defined(IBM) != 1
274 Exactly one of IEEE_LITTLE_ENDIAN, IEEE_BIG_ENDIAN, VAX, or IBM should be defined.
275 #endif
276
277 typedef union { double d; ULong L[2]; } U;
278
279 #ifdef YES_ALIAS
280 #define dval(x) x
281 #ifdef IEEE_LITTLE_ENDIAN
282 #define word0(x) ((ULong *)&x)[1]
283 #define word1(x) ((ULong *)&x)[0]
284 #else
285 #define word0(x) ((ULong *)&x)[0]
286 #define word1(x) ((ULong *)&x)[1]
287 #endif
288 #else /* !YES_ALIAS */
289 #ifdef IEEE_LITTLE_ENDIAN
290 #define word0(x) ( /* LINTED */ (U*)&x)->L[1]
291 #define word1(x) ( /* LINTED */ (U*)&x)->L[0]
292 #else
293 #define word0(x) ( /* LINTED */ (U*)&x)->L[0]
294 #define word1(x) ( /* LINTED */ (U*)&x)->L[1]
295 #endif
296 #define dval(x) ( /* LINTED */ (U*)&x)->d
297 #endif /* YES_ALIAS */
298
299 /* The following definition of Storeinc is appropriate for MIPS processors.
300 * An alternative that might be better on some machines is
301 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
302 */
303 #if defined(IEEE_LITTLE_ENDIAN) + defined(VAX)
304 #define Storeinc(a,b,c) \
305 (((unsigned short *)(void *)a)[1] = (unsigned short)b, \
306 ((unsigned short *)(void *)a)[0] = (unsigned short)c, \
307 a++)
308 #else
309 #define Storeinc(a,b,c) \
310 (((unsigned short *)(void *)a)[0] = (unsigned short)b, \
311 ((unsigned short *)(void *)a)[1] = (unsigned short)c, \
312 a++)
313 #endif
314
315 /* #define P DBL_MANT_DIG */
316 /* Ten_pmax = floor(P*log(2)/log(5)) */
317 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
318 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
319 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
320
321 #ifdef IEEE_Arith
322 #define Exp_shift 20
323 #define Exp_shift1 20
324 #define Exp_msk1 0x100000
325 #define Exp_msk11 0x100000
326 #define Exp_mask 0x7ff00000
327 #define P 53
328 #define Bias 1023
329 #define Emin (-1022)
330 #define Exp_1 0x3ff00000
331 #define Exp_11 0x3ff00000
332 #define Ebits 11
333 #define Frac_mask 0xfffff
334 #define Frac_mask1 0xfffff
335 #define Ten_pmax 22
336 #define Bletch 0x10
337 #define Bndry_mask 0xfffff
338 #define Bndry_mask1 0xfffff
339 #define LSB 1
340 #define Sign_bit 0x80000000
341 #define Log2P 1
342 #define Tiny0 0
343 #define Tiny1 1
344 #define Quick_max 14
345 #define Int_max 14
346
347 #ifndef Flt_Rounds
348 #ifdef FLT_ROUNDS
349 #define Flt_Rounds FLT_ROUNDS
350 #else
351 #define Flt_Rounds 1
352 #endif
353 #endif /*Flt_Rounds*/
354
355 #else /* ifndef IEEE_Arith */
356 #undef Sudden_Underflow
357 #define Sudden_Underflow
358 #ifdef IBM
359 #undef Flt_Rounds
360 #define Flt_Rounds 0
361 #define Exp_shift 24
362 #define Exp_shift1 24
363 #define Exp_msk1 0x1000000
364 #define Exp_msk11 0x1000000
365 #define Exp_mask 0x7f000000
366 #define P 14
367 #define Bias 65
368 #define Exp_1 0x41000000
369 #define Exp_11 0x41000000
370 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
371 #define Frac_mask 0xffffff
372 #define Frac_mask1 0xffffff
373 #define Bletch 4
374 #define Ten_pmax 22
375 #define Bndry_mask 0xefffff
376 #define Bndry_mask1 0xffffff
377 #define LSB 1
378 #define Sign_bit 0x80000000
379 #define Log2P 4
380 #define Tiny0 0x100000
381 #define Tiny1 0
382 #define Quick_max 14
383 #define Int_max 15
384 #else /* VAX */
385 #undef Flt_Rounds
386 #define Flt_Rounds 1
387 #define Exp_shift 23
388 #define Exp_shift1 7
389 #define Exp_msk1 0x80
390 #define Exp_msk11 0x800000
391 #define Exp_mask 0x7f80
392 #define P 56
393 #define Bias 129
394 #define Exp_1 0x40800000
395 #define Exp_11 0x4080
396 #define Ebits 8
397 #define Frac_mask 0x7fffff
398 #define Frac_mask1 0xffff007f
399 #define Ten_pmax 24
400 #define Bletch 2
401 #define Bndry_mask 0xffff007f
402 #define Bndry_mask1 0xffff007f
403 #define LSB 0x10000
404 #define Sign_bit 0x8000
405 #define Log2P 1
406 #define Tiny0 0x80
407 #define Tiny1 0
408 #define Quick_max 15
409 #define Int_max 15
410 #endif /* IBM, VAX */
411 #endif /* IEEE_Arith */
412
413 #ifndef IEEE_Arith
414 #define ROUND_BIASED
415 #endif
416
417 #ifdef RND_PRODQUOT
418 #define rounded_product(a,b) a = rnd_prod(a, b)
419 #define rounded_quotient(a,b) a = rnd_quot(a, b)
420 #ifdef KR_headers
421 extern double rnd_prod(), rnd_quot();
422 #else
423 extern double rnd_prod(double, double), rnd_quot(double, double);
424 #endif
425 #else
426 #define rounded_product(a,b) a *= b
427 #define rounded_quotient(a,b) a /= b
428 #endif
429
430 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
431 #define Big1 0xffffffff
432
433 #undef Pack_16
434 #ifndef Pack_32
435 #define Pack_32
436 #endif
437
438 #ifdef NO_LONG_LONG
439 #undef ULLong
440 #ifdef Just_16
441 #undef Pack_32
442 #define Pack_16
443 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
444 * This makes some inner loops simpler and sometimes saves work
445 * during multiplications, but it often seems to make things slightly
446 * slower. Hence the default is now to store 32 bits per Long.
447 */
448 #endif
449 #else /* long long available */
450 #ifndef Llong
451 #define Llong long long
452 #endif
453 #ifndef ULLong
454 #define ULLong unsigned Llong
455 #endif
456 #endif /* NO_LONG_LONG */
457
458 #ifdef Pack_32
459 #define ULbits 32
460 #define kshift 5
461 #define kmask 31
462 #define ALL_ON 0xffffffff
463 #else
464 #define ULbits 16
465 #define kshift 4
466 #define kmask 15
467 #define ALL_ON 0xffff
468 #endif
469
470 #ifndef MULTIPLE_THREADS
471 #define ACQUIRE_DTOA_LOCK(n) /*nothing*/
472 #define FREE_DTOA_LOCK(n) /*nothing*/
473 #else
474 #include "reentrant.h"
475
476 extern mutex_t __gdtoa_locks[2];
477
478 #define ACQUIRE_DTOA_LOCK(n) \
479 do { \
480 if (__isthreaded) \
481 mutex_lock(&__gdtoa_locks[n]); \
482 } while (/* CONSTCOND */ 0)
483 #define FREE_DTOA_LOCK(n) \
484 do { \
485 if (__isthreaded) \
486 mutex_unlock(&__gdtoa_locks[n]); \
487 } while (/* CONSTCOND */ 0)
488 #endif
489
490 #define Kmax 15
491
492 struct
493 Bigint {
494 struct Bigint *next;
495 int k, maxwds, sign, wds;
496 ULong x[1];
497 };
498
499 typedef struct Bigint Bigint;
500
501 #ifdef NO_STRING_H
502 #ifdef DECLARE_SIZE_T
503 typedef unsigned int size_t;
504 #endif
505 extern void memcpy_D2A ANSI((void*, const void*, size_t));
506 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
507 #else /* !NO_STRING_H */
508 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
509 #endif /* NO_STRING_H */
510
511 #define Balloc __Balloc_D2A
512 #define Bfree __Bfree_D2A
513 #define ULtoQ __ULtoQ_D2A
514 #define ULtof __ULtof_D2A
515 #define ULtod __ULtod_D2A
516 #define ULtodd __ULtodd_D2A
517 #define ULtox __ULtox_D2A
518 #define ULtoxL __ULtoxL_D2A
519 #define any_on __any_on_D2A
520 #define b2d __b2d_D2A
521 #define bigtens __bigtens_D2A
522 #define cmp __cmp_D2A
523 #define copybits __copybits_D2A
524 #define d2b __d2b_D2A
525 #define decrement __decrement_D2A
526 #define diff __diff_D2A
527 #define dtoa_result __dtoa_result_D2A
528 #define g__fmt __g__fmt_D2A
529 #define gethex __gethex_D2A
530 #define hexdig __hexdig_D2A
531 #define hexdig_init_D2A __hexdig_init_D2A
532 #define hexnan __hexnan_D2A
533 #define hi0bits __hi0bits_D2A
534 #define hi0bits_D2A __hi0bits_D2A
535 #define i2b __i2b_D2A
536 #define increment __increment_D2A
537 #define lo0bits __lo0bits_D2A
538 #define lshift __lshift_D2A
539 #define match __match_D2A
540 #define mult __mult_D2A
541 #define multadd __multadd_D2A
542 #define nrv_alloc __nrv_alloc_D2A
543 #define pow5mult __pow5mult_D2A
544 #define quorem __quorem_D2A
545 #define ratio __ratio_D2A
546 #define rshift __rshift_D2A
547 #define rv_alloc __rv_alloc_D2A
548 #define s2b __s2b_D2A
549 #define set_ones __set_ones_D2A
550 #define strcp __strcp_D2A
551 #define strcp_D2A __strcp_D2A
552 #define strtoIg __strtoIg_D2A
553 #define sum __sum_D2A
554 #define tens __tens_D2A
555 #define tinytens __tinytens_D2A
556 #define tinytens __tinytens_D2A
557 #define trailz __trailz_D2A
558 #define ulp __ulp_D2A
559
560 extern char *dtoa_result;
561 extern CONST double bigtens[], tens[], tinytens[];
562 extern unsigned char hexdig[];
563
564 extern Bigint *Balloc ANSI((int));
565 extern void Bfree ANSI((Bigint*));
566 extern void ULtof ANSI((ULong*, ULong*, Long, int));
567 extern void ULtod ANSI((ULong*, ULong*, Long, int));
568 extern void ULtodd ANSI((ULong*, ULong*, Long, int));
569 extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
570 extern void ULtox ANSI((UShort*, ULong*, Long, int));
571 extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
572 extern ULong any_on ANSI((Bigint*, int));
573 extern double b2d ANSI((Bigint*, int*));
574 extern int cmp ANSI((Bigint*, Bigint*));
575 extern void copybits ANSI((ULong*, int, Bigint*));
576 extern Bigint *d2b ANSI((double, int*, int*));
577 extern int decrement ANSI((Bigint*));
578 extern Bigint *diff ANSI((Bigint*, Bigint*));
579 extern char *dtoa ANSI((double d, int mode, int ndigits,
580 int *decpt, int *sign, char **rve));
581 extern char *g__fmt ANSI((char*, char*, char*, int, ULong));
582 extern int gethex ANSI((CONST char**, CONST FPI*, Long*, Bigint**, int));
583 extern void hexdig_init_D2A(Void);
584 extern int hexnan ANSI((CONST char**, CONST FPI*, ULong*));
585 extern int hi0bits_D2A ANSI((ULong));
586 extern Bigint *i2b ANSI((int));
587 extern Bigint *increment ANSI((Bigint*));
588 extern int lo0bits ANSI((ULong*));
589 extern Bigint *lshift ANSI((Bigint*, int));
590 extern int match ANSI((CONST char**, CONST char*));
591 extern Bigint *mult ANSI((Bigint*, Bigint*));
592 extern Bigint *multadd ANSI((Bigint*, int, int));
593 extern char *nrv_alloc ANSI((CONST char*, char **, int));
594 extern Bigint *pow5mult ANSI((Bigint*, int));
595 extern int quorem ANSI((Bigint*, Bigint*));
596 extern double ratio ANSI((Bigint*, Bigint*));
597 extern void rshift ANSI((Bigint*, int));
598 extern char *rv_alloc ANSI((int));
599 extern Bigint *s2b ANSI((CONST char*, int, int, ULong));
600 extern Bigint *set_ones ANSI((Bigint*, int));
601 extern char *strcp ANSI((char*, const char*));
602 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
603 extern double strtod ANSI((const char *s00, char **se));
604 extern Bigint *sum ANSI((Bigint*, Bigint*));
605 extern int trailz ANSI((CONST Bigint*));
606 extern double ulp ANSI((double));
607
608 #ifdef __cplusplus
609 }
610 #endif
611 /*
612 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to
613 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
614 * respectively), but now are determined by compiling and running
615 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
616 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
617 * and -DNAN_WORD1=... values if necessary. This should still work.
618 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
619 */
620 #ifdef IEEE_Arith
621 #ifdef IEEE_BIG_ENDIAN
622 #define _0 0
623 #define _1 1
624 #ifndef NAN_WORD0
625 #define NAN_WORD0 d_QNAN0
626 #endif
627 #ifndef NAN_WORD1
628 #define NAN_WORD1 d_QNAN1
629 #endif
630 #else
631 #define _0 1
632 #define _1 0
633 #ifndef NAN_WORD0
634 #define NAN_WORD0 d_QNAN1
635 #endif
636 #ifndef NAN_WORD1
637 #define NAN_WORD1 d_QNAN0
638 #endif
639 #endif
640 #else
641 #undef INFNAN_CHECK
642 #endif
643
644 #undef SI
645 #ifdef Sudden_Underflow
646 #define SI 1
647 #else
648 #define SI 0
649 #endif
650
651 #endif /* GDTOAIMP_H_INCLUDED */
652